Login | Register

Wideband Cross Polarization Rotation based on Reflective Anisotropic Surfaces

Title:

Wideband Cross Polarization Rotation based on Reflective Anisotropic Surfaces

Moghadam, Marjan Jalali ORCID: https://orcid.org/0000-0002-0827-8950, Akbari, Mohammad ORCID: https://orcid.org/0000-0002-7436-6529, Samadi, Fereshteh and Sebak, Abdel-Razik (2018) Wideband Cross Polarization Rotation based on Reflective Anisotropic Surfaces. IEEE Access, 6 . pp. 15919-15925. ISSN 2169-3536

[thumbnail of Moghadam-2018.pdf]
Preview
Text (application/pdf)
Moghadam-2018.pdf - Published Version
Available under License Spectrum Terms of Access.
3MB

Official URL: http://dx.doi.org/10.1109/ACCESS.2018.2802778

Abstract

This paper presents a new design to broaden polarization conversion ratio (PCR) bandwidth utilizing reflective surfaces. The proposed design is based on anisotropic surfaces for linearly polarized electromagnetic waves. The combination of a traditional two-corner-cut square patch and a two-layer substrate with defected ground structure contributes to PCR bandwidth expansion and size reduction. The experimental results indicate that PCR fractional bandwidth is higher than 121% in 5.4-22 GHz band for both x- and y-polarized waves and the conversion efficiency is greater than 90%. In addition, the proposed structure is approximately robust under oblique incidences, which verifies the applicability of the structure in a practical environment. The experimental results are in excellent agreement with simulated ones. The reflective surface with wideband PCR can be utilized in various practical applications, such as radiometer, reflector antennas, remote sensors, and imaging sensors.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Refereed:Yes
Authors:Moghadam, Marjan Jalali and Akbari, Mohammad and Samadi, Fereshteh and Sebak, Abdel-Razik
Journal or Publication:IEEE Access
Date:2018
Funders:
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1109/ACCESS.2018.2802778
Keywords:Anisotropic surfaces, defected ground structure, DGS, polarization conversion ratio, PCR, polarization, metasurface
ID Code:983717
Deposited By: Danielle Dennie
Deposited On:10 Apr 2018 20:14
Last Modified:10 Apr 2018 20:14

References:

1. M. Akbari M. Farahani A.-R. Sebak and T. A. Denidni “Ka-band linear to circular polarization converter based on multilayer slab with broadband performance ” IEEE Access vol. 5 pp. 17927–17937 2017.

2. M. Akbari H. A. Ghalyon M. Farahani A.-R. Sebak and T. A. Denidni “Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems ” IEEE Access vol. 5 pp. 6527–6537 2017.

3. M. Akbari S. Gupta M. Farahani A. R. Sebak and T. A. Denidni “Gain enhancement of circularly polarized dielectric resonator antenna based on FSS superstrate for MMW applications ” IEEE Trans. Antennas Propag. vol. 16 no. pp. 2324–2327 Dec. 2017.

4. M. Farahani J. Pourahmadazar M. Akbari M. Nedil A. R. Sebak and T. A. Denidni “Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall ” IEEE Antennas Wireless Propag. Lett. vol. 14 pp. 1157–1160 2015.

5. M. Farahani M. Akbari M. Nedil A. R. Sebak and T. A. Denidni “Miniaturised circularly-polarised antenna with high-constitutive parameter substrate ” Electron. Lett. vol. 53 no. 20 pp. 1343–1344 Sep. 2017.

6. M. Akbari M. M. Ali M. Farahani A. R. Sebak and T. Denidni “Spatially mutual coupling reduction between CP-MIMO antennas using FSS superstrate ” Electron. Lett. vol. 53 no. 8 pp. 516–518 Apr. 2017.

7. H.-Y. Chen “Broadband perfect polarization conversion metasurfaces ” Chin. Phys. B vol. 24 no. 1 p. 014201 2015.

8. N. K. Grady “Terahertz metamaterials for linear polarization conversion and anomalous refraction ” Science vol. 359 no. 6375 p. 1235399 May 2013.

9. Z. Wei Y. Cao Y. Fan X. Yu and H. Li “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators ” Appl. Phys. Lett. vol. 99 no. 22 2011 Art. no. 221907.

10. N. Yu F. Aieta P. Genevet M. A. Kats Z. Gaburro and F. Capasso “A broadband background-free quarter-wave plate based on plasmonic metasurfaces ” Nano Lett. vol. 12 no. 12 pp. 6328–6333 2012.

11. M. Feng J. Wang H. Ma W. Mo H. Ye and S. Qu “Broadband polarization rotator based on multi-order plasmon resonances and high impedance surfaces ” J. Appl. Phys. vol. 114 no. 7 p. 074508 2013.

12. J. Hao “Optical metamaterial for polarization control ” Phys. Rev. A Gen. Phys. vol. 80 p. 023807 Aug. 2009.

13. Y. Jia Y. Liu Y. J. Guo K. Li and S.-X. Gong “Broadband polarization rotation reflective surfaces and their applications to RCS reduction ” IEEE Trans. Antennas Propag. vol. 64 no. 1 pp. 179–188 Jan. 2016.

14. H. Chen “Ultra-wideband polarization conversion metasurfaces ” in Proc. IEEE APCAP Jul. 2014 pp. 1009–1011.

15. X. Han W.-P. Cao H. O. Li H. F. Ma and T. J. Cui “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurface ” IEEE Trans. Antennas Propag. vol. 63 no. 8 pp. 3522–3530 Aug. 2015.

16. J. Zhao and Y. Cheng “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial ” Appl. Phys. B vol. 122 no. 10 p. 255 2016.

17. Y. Jia Y. Liu Y. J. Guo K. Li and S. Gong “A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction ” IEEE Trans. Antennas Propag. vol. 65 no. 6 pp. 3291–3295 Jun. 2017.

18. B. Q. Lin X. Y. Da J. L. Wu W. Li Y. W. Fang and Z. H. Zhu “Ultra-wideband and high-efficiency cross polarization converter based on anisotropic metasurface ” Miceow. Opt. Tech. Lett. vol. 58 no. 10 pp. 2402–2405 Oct. 2016.

19. N. K. Grady “Terahertz metamaterials for linear polarization conversion and anomalous refraction ” Science vol. 340 no. 6138 pp. 1304–1307 2013.

20. J. Y. Yin Y. Wan Q. Zhang and T. J. Cui “Ultra wideband polarization-selective conversions of electromagnetic waves by metasurface under large-range incident angles ” Sci. Rep. vol. 5 no. 1 p. 12476 2015.

21. Y. Zhao and A. Alù “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates ” Nano Lett. vol. 13 no. 3 pp. 1086–1091 2013.

22. Y. Zhao M. A. Belkin and A. Alù “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers ” Nature Commun. vol. 3 p. 870 May 2012.

23. X. Huang B. Xiao L. Guo S. Yu and H. Yang “Triple-band linear and circular reflective polarizer based on E-shaped metamaterial ” J. Opt. vol. 16 no. 12 p. 125101 2014.

24. K. C. Hwang “A novel meander-grooved polarization twist reflector ” IEEE Microw. Wireless Compon. Lett. vol. 20 no. 4 pp. 217–219 Apr. 2010.

25. X. X. Zheng Z. Y. Xiao and X. Y. Ling “Broadband and efficient reflective polarization converter based on a three-dimensional metamaterial ” Opt. Quantum Electron. vol. 48 p. 461 Sep. 2016.

26. H. Shi J. Li A. Zhang J. Wang and Z. Xu “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity ” Opt. Exp. vol. 22 no. 17 pp. 20973–20981 2014 doi: 10.1364/OE.22.020973.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top