Login | Register

Modeling Renal Disease “On the Fly”


Modeling Renal Disease “On the Fly”

Millet-Boureima, Cassandra, Porras Marroquin, Jessica and Gamberi, Chiara (2018) Modeling Renal Disease “On the Fly”. BioMed Research International, 2018 . pp. 1-13. ISSN 2314-6133

[thumbnail of Chiara-BRI-2018.pdf]
Text (application/pdf)
Chiara-BRI-2018.pdf - Published Version
Available under License Creative Commons Attribution.

Official URL: http://dx.doi.org/10.1155/2018/5697436


Detoxification is a fundamental function for all living organisms that need to excrete catabolites and toxins to maintain homeostasis. Kidneys are major organs of detoxification that maintain water and electrolyte balance to preserve physiological functions of vertebrates. In insects, the renal function is carried out by Malpighian tubules and nephrocytes. Due to differences in their circulation, the renal systems of mammalians and insects differ in their functional modalities, yet carry out similar biochemical and physiological functions and share extensive genetic and molecular similarities. Evolutionary conservation can be leveraged to model specific aspects of the complex mammalian kidney function in the genetic powerhouse Drosophila melanogaster to study how genes interact in diseased states. Here, we compare the human and Drosophila renal systems and present selected fly disease models.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Article
Authors:Millet-Boureima, Cassandra and Porras Marroquin, Jessica and Gamberi, Chiara
Journal or Publication:BioMed Research International
  • Concordia Open Access Author Fund
  • CUPFA Professional Development Award
Digital Object Identifier (DOI):10.1155/2018/5697436
ID Code:983929
Deposited By: Danielle Dennie
Deposited On:04 Jun 2018 13:34
Last Modified:04 Jun 2018 13:34


K. L. Lentine, H. Xiao, G. Machnicki, A. Gheorghian, and M. A. Schnitzler, “Renal function and healthcare costs in patients with polycystic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 8, pp. 1471–1479, 2010.

K. W. Beyenbach and P. L.-F. Liu, “Mechanism of fluid secretion common to aglomerular and glomerular kidneys,” Kidney International, vol. 49, no. 6, pp. 1543–1548, 1996.

J. A. T. Dow and M. F. Romero, “Drosophila provides rapid modeling of renal development, function, and disease,” American Journal of Physiology-Renal Physiology, vol. 299, no. 6, pp. F1237–F1244, 2010.

S. R. Singh, W. Liu, and S. X. Hou, “The adult Drosophila Malpighian tubules are maintained by multipotent stem cells,” Cell Stem Cell, vol. 1, no. 2, pp. 191–203, 2007.

S. H. P. Maddrell, “The fastest fluid‐secreting cell known: The upper Malpighian tubule of Rhodnius,” BioEssays, vol. 13, no. 7, pp. 357–362, 1991. View at Publisher ·

H. Weavers, S. Prieto-Sánchez, F. Grawe et al., “The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm,” Nature, vol. 457, no. 7227, pp. 322–326, 2008.

R. Rodewald and M. J. Karnovsky, “Porous substructure of the glomerular slit diaphragm in the rat and mouse,” The Journal of Cell Biology, vol. 60, no. 2, pp. 423–433, 1974.

H. Pavenstädt, W. Kriz, and M. Kretzler, “Cell biology of the glomerular podocyte,” Physiological Reviews, vol. 83, no. 1, pp. 253–307, 2003.

R. G. Spiro, “Studies on the renal glomerular basement membrane. Preparation and chemical composition,” The Journal of Biological Chemistry, vol. 242, no. 8, pp. 1915–1922, 1967.

N. Barker, M. B. Rookmaaker, P. Kujala et al., “Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development,” Cell Reports, vol. 2, no. 3, pp. 540–552, 2012.

A. T. Dudley, K. M. Lyons, and E. J. Robertson, “A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye,” Genes & Development, vol. 9, no. 22, pp. 2795–2807, 1995.

T. J. Carroll, J. S. Park, S. Hayashi, A. Majumdar, and A. P. McMahon, “Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system,” Developmental Cell, vol. 9, no. 2, pp. 283–292, 2005.

K. Stark, S. Vainio, G. Vassileva, and A. P. McMahon, “Epithelial transformation metanephric mesenchyme in the developing kidney regulated by Wnt-4,” Nature, vol. 372, no. 6507, pp. 679–683, 1994.

S. Jain, “The many faces of RET dysfunction in kidney,” Organogenesis, vol. 5, no. 4, pp. 177–190, 2014.

A. Kobayashi, M. T. Valerius, J. W. Mugford et al., “Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development,” Cell Stem Cell, vol. 3, no. 2, pp. 169–181, 2008.

A. J. Murphy, J. Pierce, C. De Caestecker et al., “SIX2 and CITED1, markers of nephronic progenitor self-renewal, remain active in primitive elements of Wilms' tumor,” Journal of Pediatric Surgery, vol. 47, no. 6, pp. 1239–1248, 2012.

E. Batourina, S. Gim, N. Bello et al., “Vitamin A controls epithelial/mesenchymal interactions through Ret expression,” Nature Genetics, vol. 27, no. 1, pp. 74–78, 2001.

B. D. Humphreys, S.-L. Lin, A. Kobayashi et al., “Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis,” The American Journal of Pathology, vol. 176, no. 1, pp. 85–97, 2010.

A. Tufro, J. Teichman, N. Banu, and G. Villegas, “Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways,” Biochemical and Biophysical Research Communications, vol. 358, no. 2, pp. 410–416, 2007.

I. V. Yosypiv, M. Schroeder, and S. S. El-Dahr, “Angiotensin II type 1 receptor-EGF receptor cross-talk regulates ureteric bud branching morphogenesis,” Journal of the American Society of Nephrology, vol. 17, no. 4, pp. 1005–1014, 2006.

J.-K. Guo and L. G. Cantley, “Cellular maintenance and repair of the kidney,” Annual Review of Physiology, vol. 72, pp. 357–376, 2009.

R. Kopan, H.-T. Cheng, and K. Surendran, “Molecular insights into segmentation along the proximal-distal axis of the nephron,” Journal of the American Society of Nephrology, vol. 18, no. 7, pp. 2014–2020, 2007.

K. Georgas, B. Rumballe, M. T. Valerius et al., “Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment,” Developmental Biology, vol. 332, no. 2, pp. 273–286, 2009.

C. Heliot, A. Desgrange, I. Buisson et al., “HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2,” Development, vol. 140, no. 4, pp. 873–885, 2013.

M. Takemoto, L. He, J. Norlin et al., “Large-scale identification of genes implicated in kidney glomerulus development and function,” EMBO Journal, vol. 25, no. 5, pp. 1160–1174, 2006.

K. Reidy and A. Tufro, “Semaphorins in kidney development and disease: Modulators of ureteric bud branching, vascular morphogenesis, and podocyte-endothelial crosstalk,” Pediatric Nephrology, vol. 26, no. 9, pp. 1407–1412, 2011.

H. Hölthofer, K. Sainio, and A. Miettinen, “The glomerular mesangium: studies of its developmental origin and markers in vivo and in vitro,” APMIS-Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 103, no. 1-6, pp. 354–366, 1995.

J. W. Mugford, P. Sipilä, J. A. McMahon, and A. P. McMahon, “Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney,” Developmental Biology, vol. 324, no. 1, pp. 88–98, 2008.

A. Weismann, “Die nachembryonale Entwicklung der Musciden nach Beobachtungen an Musca vomitoria und Sarcophaga carnaria,” Zeitschrift für wissenschaftliche Zoologie, vol. 14, pp. 187–336, 1864.

A. O. Kowalevsky, “Zum Verhalten des Rückengefäßes und des guirlandenförmigen Zellstranges der Musciden während der Metamorphose,” Biologisches Centralblatt, vol. 6, pp. 74–79, 1886.

A. C. Hollande, “La cellule péricardiale des insectes: Cytologie, histochemie, role physiologique,” Archives D'anatomie Microscopique, vol. 18, pp. 85–307, 1922.

R. P. Mills and R. C. King, “The pericardial cells of Drosophila melanogaster,” Journal of Cell Science, vol. 106, pp. 261–268, 1965.

S. K. Aggarwal and R. C. King, “The ultrastructure of the wreath cells of Drosophila melanogaster larvae,” Protoplasma, vol. 63, no. 4, pp. 343–352, 1967.

A. C. Crossley, “The ultrastructure and function of pericardial cells and other nephrocytes in an insect: Calliphora erythrocephala,” Tissue & Cell, vol. 4, no. 3, pp. 529–560, 1972.

J. Miller, T. Chi, P. Kapahi et al., “Drosophila melanogaster as an emerging translational model of human nephrolithiasis,” The Journal of Urology, vol. 190, no. 5, pp. 1648–1656, 2013

S. Zhuang, H. Shao, F. Guo, R. Trimble, E. Pearce, and S. M. Abmayr, “Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes,” Development, vol. 136, no. 14, pp. 2335–2344, 2009.

M. Kestilä, U. Lenkkeri, M. Männikkö et al., “Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome,” Molecular Cell, vol. 1, no. 4, pp. 575–582, 1998.

M. Simons and T. B. Huber, “Flying podocytes,” Kidney International, vol. 75, no. 5, pp. 455–457, 2009.

J. Na and R. Cagan, “The Drosophila nephrocyte: Back on stage,” Journal of the American Society of Nephrology, vol. 24, no. 2, pp. 161–163, 2013

F. Zhang, Y. Zhao, Y. Chao, K. Muir, and Z. Han, “Cubilin and amnionless mediate protein reabsorption in Drosophila nephrocytes,” Journal of the American Society of Nephrology, vol. 24, no. 2, pp. 209–216, 2013.

R. L. Cagan, “The Drosophila nephrocyte,” Current Opinion in Nephrology and Hypertension, vol. 20, no. 4, pp. 409–415, 2011

T. Hermle, D. A. Braun, M. Helmstädter, T. B. Huber, and F. Hildebrandt, “Modeling monogenic human nephrotic syndrome in the Drosophila garland cell nephrocyte,” Journal of the American Society of Nephrology, vol. 28, no. 5, pp. 1521–1533, 2017.

F. Hochapfel, L. Denk, G. Mendl et al., “Distinct functions of Crumbs regulating slit diaphragms and endocytosis in Drosophila nephrocytes,” Cellular and Molecular Life Sciences, vol. 74, no. 24, pp. 4573–4586, 2017.

A. S. Tutor, S. Prieto-Sánchez, and M. Ruiz-Gómez, “Src64B phosphorylates Dumbfounded and regulates slit diaphragm dynamics: Drosophila as a model to study nephropathies,” Development, vol. 141, no. 2, pp. 367–376, 2014.

J. R. Ivy, M. Drechsler, J. H. Catterson et al., “Klf15 is critical for the development and differentiation of Drosophila nephrocytes,” PLoS ONE, vol. 10, no. 8, Article ID e0134620, 2015.

M. Helmstädter, T. B. Huber, and T. Hermle, “Using the Drosophila nephrocyte to model podocyte function and disease,” Frontiers in Pediatrics, vol. 5, 2017.

J. Wang, L. Kean, J. Yang et al., “Function-informed transcriptome analysis of Drosophila renal tubule,” Genome Biology, vol. 5, no. 9, p. R69, 2004.

A. C. Jung, B. Denholm, H. Skaer, and M. Affolter, “Renal tubule development in Drosophila: A closer look at the cellular level,” Journal of the American Society of Nephrology, vol. 16, no. 2, pp. 322–328, 2005.

M. J. O'Donnell, M. R. Rheault, S. A. Davies et al., “Hormonally controlled chloride movement across Drosophila tubules is via ion channels in stellate cells,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 274, no. 4, pp. R1039–R1049, 1998.

M. A. Sözen, J. D. Armstrong, M. Yang, K. Kaiser, and J. A. T. Dow, “Functional domains are specified to single-cell resolution in a Drosophila epithelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 10, pp. 5207–5212, 1997.

V. R. Chintapalli, S. Terhzaz, J. Wang et al., “Functional correlates of positional and gender-specific renal asymmetry in Drosophila,” PLoS ONE, vol. 7, no. 4, Article ID e32577, 2012.

J. A. T. Dow, S. H. P. Maddrell, S.-A. Davies, N. J. V. Skaer, and K. Kaiser, “A novel role for the nitric oxide-cGMP signaling pathway: The control of epithelial function in Drosophila,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 266, no. 5, pp. R1716–R1719, 1994.

M. J. O'Donnell and S. H. Maddrell, “Fluid reabsorption and ion transport by the lower Malpighian tubules of adult female Drosophila,” Journal of Experimental Biology, vol. 198, no. 8, pp. 1647–1653, 1995.

M. R. Rheault and M. J. O'Donnell, “Analysis of epithelial k+ transport in Malpighian tubules of Drosophila melanogaster: Evidence for spatial and temporal heterogeneity,” Journal of Experimental Biology, vol. 204, no. 13, pp. 2289–2299, 2001.

S. M. Linton and M. J. O'Donnell, “Contributions of K+:Cl- cotransport and Na+/K+-ATPase to basolateral ion transport in Malpighian tubules of Drosophila melanogaster,” Journal of Experimental Biology, vol. 202, no. 11, pp. 1561–1570, 1999.

M. J. O'Donnell, J. A. T. Dow, G. R. Huesmann, N. J. Tublitz, and S. H. P. Maddrell, “Separate control of anion and cation transport in Malpighian tubules of Drosophila melanogaster,” Journal of Experimental Biology, vol. 199, no. 5, pp. 1163–1175, 1996.

S. A. Davies, G. R. Huesmann, S. H. P. Maddrell et al., “CAP(2b), a cardioacceleratory peptide, is present in Drosophila and stimulates tubule fluid secretion via cGMP,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 269, no. 6, pp. R1321–R1326, 1995.

A. Martínez, “Nitric oxide synthase in invertebrates,” The Histochemical Journal, vol. 27, no. 10, pp. 770–776, 1995.

C. Dani, A. G. Smith, S. Dessolin et al., “Differentiation of embryonic stem cells into adipocytes in vitro,” Journal of Cell Science, vol. 110, no. 11, pp. 1279–1285, 1997. View at Google Scholar · View at Scopus
A. H. Brand and N. Perrimon, “Targeted gene expression as a means of altering cell fates and generating dominant phenotypes,” Development, vol. 118, no. 2, pp. 401–415, 1993.

P. Baumann and H. Skaer, “The Drosophila EGF receptor homologue (DER) is required for Malpighian tubule development,” Development, vol. 119, pp. 65–75, 1993. View at Google Scholar · View at Scopus
R. Harbecke and W. Janning, “The segmentation gene Krüppel of Drosophila melanogaster has homeotic properties,” Genes & Development, vol. 3, no. 1, pp. 114–122, 1989.

B. Denholm, V. Sudarsan, S. Pasalodos-Sanchez et al., “Dual origin of the renal tubules in Drosophila: Mesodermal cells integrate and polarize to establish secretory function,” Current Biology, vol. 13, no. 12, pp. 1052–1057, 2003.

S. Wan, A.-M. Cato, and H. Skaer, “Multiple signalling pathways establish cell fate and cell number in Drosophila Malpighian tubules,” Developmental Biology, vol. 217, no. 1, pp. 153–165, 2000.

E. Livneh, L. Glazer, D. Segal, J. Schlessinger, and B.-Z. Shilo, “The Drosophila EGF receptor gene homolog: Conservation of both hormone binding and kinase domains,” Cell, vol. 40, no. 3, pp. 599–607, 1985.

W. Janning, A. Lutz, and D. Wissen, “Clonal analysis of the blastoderm anlage of the Malpighian tubules in Drosophila melanogaster,” Roux's Archives of Developmental Biology, vol. 195, no. 1, pp. 22–32, 1986.

J. McGettigan, R. K. J. McLennan, K. E. Broderick et al., “Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection,” Insect Biochemistry and Molecular Biology, vol. 35, no. 7, pp. 741–754, 2005.

N. K. Gautam, P. Verma, and M. G. Tapadia, “Drosophila Malpighian tubules: A model for understanding kidney development, function, and disease,” Results and Problems in Cell Differentiation, vol. 60, pp. 3–25, 2017.

S.-A. Davies, G. Overend, S. Sebastian et al., “Immune and stress response "cross-talk" in the Drosophila Malpighian tubule,” Journal of Insect Physiology, vol. 58, no. 4, pp. 488–497, 2012.

K. V. Anderson, “Pinning down positional information: Dorsal-ventral polarity in the Drosophila embryo,” Cell, vol. 95, no. 4, pp. 439–442, 1998.

B. Lemaitre, E. Nicolas, L. Michaut, J. Reichhart, and J. A. Hoffmann, “The dorsoventral regulatory gene cassette spatzle/Toll/Cactus controls the potent antifungal response in Drosophila adults,” Cell, vol. 86, no. 6, pp. 973–983, 1996.

M. J. Williams, A. Rodriguez, D. A. Kimbrell, and E. D. Eldon, “The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense,” EMBO Journal, vol. 16, no. 20, pp. 6120–6130, 1997

P. Verma, M. G. Tapadia, and M. Kango-Singh, “Correction: Immune response and anti-microbial peptides expression in Malpighian tubules of Drosophila melanogaster is under developmental regulation,” PLoS ONE, vol. 7, no. 8, Article ID e40714, 2012.

N. Silverman and T. Maniatis, “NF-κB signaling pathways in mammalian and insect innate immunity,” Genes & Development, vol. 15, no. 18, pp. 2321–2342, 2001.

T. Tanji and Y. T. Ip, “Regulators of the Toll and Imd pathways in the Drosophila innate immune response,” Trends in Immunology, vol. 26, no. 4, pp. 193–198, 2005.

D. Ferrandon, A. C. Jung, M.-C. Criqui et al., “A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway,” EMBO Journal, vol. 17, no. 5, pp. 1217–1227, 1998.

J. A. Hoffmann, “The immune response of Drosophila,” Nature, vol. 426, no. 6962, pp. 33–38, 2003.

T. Kaneko, T. Yano, K. Aggarwal et al., “PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan,” Nature Immunology, vol. 7, no. 7, pp. 715–723, 2006.

C. Neyen, M. Poidevin, A. Roussel, and B. Lemaitre, “Tissue- and ligand-specific sensing of gram-negative infection in Drosophila by PGRP-LC isoforms and PGRP-LE,” The Journal of Immunology, vol. 189, no. 4, pp. 1886–1897, 2012.

J. D. Molkentin, J. R. Lu, C. L. Antos et al., “A calcineurin-dependent transcriptional pathway for cardiac hypertrophy,” Cell, vol. 93, no. 2, pp. 215–228, 1998.

S. D. Wright, “Toll, a new piece in the puzzle of innate immunity,” The Journal of Experimental Medicine, vol. 189, no. 4, pp. 605–609, 1999.

D. Ferrandon, J.-L. Imler, C. Hetru, and J. A. Hoffmann, “The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections,” Nature Reviews Immunology, vol. 7, no. 11, pp. 862–874, 2007.

N. K. Gautam, P. Verma, and M. G. Tapadia, “Ecdysone regulates morphogenesis and function of Malpighian tubules in Drosophila melanogaster through EcR-B2 isoform,” Developmental Biology, vol. 398, no. 2, pp. 163–176, 2015.

F. Rus, T. Flatt, M. Tong et al., “Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity,” EMBO Journal, vol. 32, no. 11, pp. 1626–1638, 2013.

P. Verma and M. G. Tapadia, “Epithelial immune response in Drosophila Malpighian tubules: Interplay between diap2 and ion channels,” Journal of Cellular Physiology, vol. 229, no. 8, pp. 1078–1095, 2014.

J. A. T. Dow and S. A. Davies, “The Malpighian tubule: Rapid insights from post-genomic biology,” Journal of Insect Physiology, vol. 52, no. 4, pp. 365–378, 2006.

J. Yang, C. McCart, D. J. Woods et al., “A Drosophila systems approach to xenobiotic metabolism,” Physiological Genomics, vol. 30, no. 3, pp. 223–231, 2007.

R. L. Davis, “Physiology and biochemistry of Drosophila learning mutants,” Physiological Reviews, vol. 76, no. 2, pp. 299–317, 1996.

A. K. Allan, J. Du, S. A. Davies, and J. A. T. Dow, “Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles,” Physiological Genomics, vol. 22, pp. 128–138, 2005.

F. E. Karet, K. E. Finberg, R. D. Nelson et al., “Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness,” Nature Genetics, vol. 21, no. 1, pp. 84–90, 1999.

A. Ramello, C. Vitale, and M. Marangella, “Epidemiology of nephrolithiasis,” Journal of Nephrology, vol. 13, supplement 3, pp. S45–S50, 2000.

Y. Chen, H. Liu, H. Chen et al., “Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis,” Kidney International, vol. 80, no. 4, pp. 369–377, 2011.

T. Chi, M. S. Kim, S. Lang et al., “A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease,” PLoS ONE, vol. 10, no. 5, Article ID e0124150, 2015.

A. L. Negri, “The role of zinc in urinary stone disease,” International Urology and Nephrology, pp. 1–5, 2018, https://doi.org/10.1007/s11255-017-1784-7.

A. N. Smith, J. Skaug, K. A. Choate et al., “Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing,” Nature Genetics, vol. 26, no. 1, pp. 71–75, 2000

P. C. Harris and V. E. Torres, “Polycystic kidney disease,” Annual Review of Medicine, vol. 60, Article ID 125712, pp. 321–337, 2009.

S. Rossetti, M. B. Consugar, A. B. Chapman et al., “Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease,” Journal of the American Society of Nephrology, vol. 18, no. 7, pp. 2143–2160, 2007.

S. Rossetti, V. J. Kubly, M. B. Consugar et al., “Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease,” Kidney International, vol. 75, no. 8, pp. 848–855, 2009.

F. Qian, F. J. Germino, Y. Cai, X. Zhang, S. Somlo, and G. G. Germino, “PKD1 interacts with PKD2 through a probable coiled-coil domain,” Nature Genetics, vol. 16, no. 2, pp. 179–183, 1997

L. Tsiokas, E. Kim, T. Arnould, V. P. Sukhatme, and G. Walz, “Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 13, pp. 6965–6970, 1997.

P. D. Wilson, “Polycystin: New aspects of structure, function, and regulation,” Journal of the American Society of Nephrology, vol. 12, no. 4, pp. 834–845, 2001.

C. Gamberi, D. R. Hipfner, M. Trudel, and W. D. Lubell, “Bicaudal C mutation causes myc and TOR pathway up-regulation and polycystic kidney disease-like phenotypes in Drosophila,” PLoS Genetics, vol. 13, no. 4, Article ID e1006694, 2017.

D. J. Bouvrette, V. Sittaramane, J. R. Heidel, A. Chandrasekhar, and E. C. Bryda, “Knockdown of bicaudal C in zebrafish (Danio rerio) causes cystic kidneys: A nonmammalian model of polycystic kidney disease,” Comparative Medicine, vol. 60, no. 2, pp. 96–106, 2010.

C. Maisonneuve, I. Guilleret, P. Vick et al., “Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow,” Development, vol. 136, no. 17, pp. 3019–3030, 2009.

U. Tran, L. Zakin, A. Schweickert et al., “The RNA-binding protein Bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity,” Development, vol. 137, no. 7, pp. 1107–1116, 2010.

M. R.-C. Kraus, S. Clauin, Y. Pfister et al., “Two mutations in human BICC1 resulting in wnt pathway hyperactivity associated with cystic renal dysplasia,” Human Mutation, vol. 33, no. 1, pp. 86–90, 2012.

O. Wessely and E. M. De Robertis, “The Xenopus homologue of Bicaudal-C is a localized maternal mRNA that can induce endoderm formation,” Development, vol. 127, no. 10, pp. 2053–2062, 2000

O. Wessely, U. Tran, L. Zakin, and E. M. De Robertis, “Identification and expression of the mammalian homologue of Bicaudal-C,” Mechanisms of Development, vol. 101, no. 1-2, pp. 267–270, 2001.

C. Gamberi and P. Lasko, “The Bic-C family of developmental translational regulators,” Comparative and Functional Genomics, vol. 2012, Article ID 141386, 2012.

E. E. Stagner, D. J. Bouvrette, J. Cheng, and E. C. Bryda, “The polycystic kidney disease-related proteins Bicc1 and SamCystin interact,” Biochemical and Biophysical Research Communications, vol. 383, no. 1, pp. 16–21, 2009.

J. Mohler and E. F. Wieschaus, “Bicaudal mutations of Drosophila melanogaster: alteration of blastoderm cell fate,” Cold Spring Harbor Symposium on Quantitative Biology, vol. 50, pp. 105–111, 1985.

I. A. Drummond, “Polycystins, focal adhesions and extracellular matrix interactions,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1812, no. 10, pp. 1322–1326, 2011.

H. Happé, E. de Heer, and D. J. M. Peters, “Polycystic kidney disease: the complexity of planar cell polarity and signaling during tissue regeneration and cyst formation,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1812, no. 10, pp. 1249–1255, 2011. V

K. Lee, L. Battini, and G. L. Gusella, “Cilium, centrosome and cell cycle regulation in polycystic kidney disease,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1812, no. 10, pp. 1263–1271, 2011.

I. Rowe, M. Chiaravalli, V. Mannella et al., “Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy,” Nature Medicine, vol. 19, no. 4, pp. 488–493, 2013.

H. Happé and D. J. M. Peters, “Translational research in ADPKD: Lessons from animal models,” Nature Reviews Nephrology, vol. 10, no. 10, pp. 587–601, 2014. View at Publisher · View at Google Scholar · View at Scopus
H. Happé, A. M. Van Der Wal, D. C. F. Salvatori et al., “Cyst expansion and regression in a mouse model of polycystic kidney disease,” Kidney International, vol. 83, no. 6, pp. 1099–1108, 2013.

T. Arnould, E. Kim, L. Tsiokas et al., “The polycystic kidney disease 1 gene product mediates protein kinase C α-dependent and c-Jun N-terminal kinase-dependent activation of the transcription factor AP-1,” The Journal of Biological Chemistry, vol. 273, no. 11, pp. 6013–6018, 1998.

T. Yamaguchi, S. Nagao, D. P. Wallace et al., “Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys,” Kidney International, vol. 63, no. 6, pp. 1983–1994, 2003.

H. Happé, W. N. Leonhard, A. van der Wal et al., “Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways,” Human Molecular Genetics, vol. 18, no. 14, pp. 2532–2542, 2009.

A. K. Bhunia, K. Piontek, A. Boletta et al., “PKD1 induces p21waf1 and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2,” Cell, vol. 109, no. 2, pp. 157–168, 2002.

H. Happé, A. M. van der Wal, W. N. Leonhard et al., “Altered Hippo signalling in polycystic kidney disease,” The Journal of Pathology, vol. 224, no. 1, pp. 133–142, 2011.

T. Weimbs, “Polycystic kidney disease and renal injury repair: Common pathways, fluid flow, and the function of polycystin-1,” American Journal of Physiology-Renal Physiology, vol. 293, no. 5, pp. F1423–F1432, 2007.

S. C. Parnell, B. S. Magenheimer, R. L. Maser et al., “The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G-proteins in vitro,” Biochemical and Biophysical Research Communications, vol. 251, no. 2, pp. 625–631, 1998.

M. Boca, G. Distefano, F. Qian, A. K. Bhunia, G. G. Germino, and A. Boletta, “Polycystin-1 induces resistance to apoptosis through the phosphatidylinositol 3-kinase/Akt signaling pathway,” Journal of the American Society of Nephrology, vol. 17, no. 3, pp. 637–647, 2006.

J. M. Shillingford, N. S. Murcia, C. H. Larson et al., “The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 14, pp. 5466–5471, 2006.

C. Renken, D.-C. Fischer, G. Kundt, N. Gretz, and D. Haffner, “Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats,” Nephrology Dialysis Transplantation , vol. 26, no. 1, pp. 92–100, 2011.

W. N. Leonhard, A. van der Wal, Z. Novalic et al., “Curcumin inhibits cystogenesis by simultaneous interference of multiple signaling pathways: In vivo evidence from a Pkd1-deletion model,” American Journal of Physiology-Renal Physiology, vol. 300, no. 5, pp. 1193–1202, 2011.

X. Song, V. Di Giovanni, N. He et al., “Systems biology of autosomal dominant polycystic kidney disease (ADPKD): Computational identification of gene expression pathways and integrated regulatory networks,” Human Molecular Genetics, vol. 18, no. 13, pp. 2328–2343, 2009.

M. Lal, X. Song, J. L. Pluznick et al., “Polycystin-1 C-terminal tail associates with β-catenin and inhibits canonical Wnt signaling,” Human Molecular Genetics, vol. 17, no. 20, pp. 3105–3117, 2008

N. Piazzon, C. Maisonneuve, I. Guilleret, S. Rotman, and D. B. Constam, “Bicc1 links the regulation of cAMP signaling in polycystic kidneys to microRNA-induced gene silencing,” Journal of Molecular Cell Biology, vol. 4, no. 6, pp. 398–408, 2012.

U. Tran, L. M. Pickney, B. D. Özpolat, and O. Wessely, “Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros,” Developmental Biology, vol. 307, no. 1, pp. 152–164, 2007.

T. A. Yakulov, T. Yasunaga, H. Ramachandran et al., “Anks3 interacts with nephronophthisis proteins and is required for normal renal development,” Kidney International, vol. 87, no. 6, pp. 1191–1200, 2015.

J. Chicoine, P. Benoit, C. Gamberi, M. Paliouras, M. Simonelig, and P. Lasko, “Bicaudal-C recruits CCR4-NOT deadenylase to target mRNAs and regulates oogenesis, cytoskeletal organization, and its own expression,” Developmental Cell, vol. 13, no. 5, pp. 691–704, 2007.

E. E. Saffman, S. Styhler, K. Rother, W. Li, S. Richard, and P. Lasko, “Premature translation of oskar in oocytes lacking the RNA-binding protein Bicaudal-C,” Molecular and Cellular Biology, vol. 18, no. 8, pp. 4855–4862, 1998.

M. Mahone, E. E. Saffman, and P. F. Lasko, “Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1,” EMBO Journal, vol. 14, no. 9, pp. 2043–2055, 1995.

F. S. Neuman-Silberberg and T. Schüpbach, “The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGFα-like protein,” Cell, vol. 75, no. 1, pp. 165–174, 1993.

R. P. Ray and T. Schüpbach, “Intercellular signaling and the polarization of body axes during Drosophila oogenesis,” Genes & Development, vol. 10, no. 14, pp. 1711–1723, 1996.

J. E. Wilhelm, M. Buszczak, and S. Sayles, “Efficient protein trafficking requires trailer hitch, a component of a ribonucleoprotein complex localized to the ER in Drosophila,” Developmental Cell, vol. 9, no. 5, pp. 675–685, 2005.

J.-M. Kugler, J. Chicoine, and P. Lasko, “Bicaudal-C associates with a Trailer Hitch/Me31B complex and is required for efficient Gurken secretion,” Developmental Biology, vol. 328, no. 1, pp. 160–172, 2009.

M. J. Snee and P. M. Macdonald, “Bicaudal C and trailer hitch have similar roles in gurken mRNA localization and cytoskeletal organization,” Developmental Biology, vol. 328, no. 2, pp. 434–444, 2009.

Y. Fu, I. Kim, P. Lian et al., “Loss of Bicc1 impairs tubulomorphogenesis of cultured IMCD cells by disrupting E-cadherin-based cell-cell adhesion,” European Journal of Cell Biology, vol. 89, no. 6, pp. 428–436, 2010.

G. Distefano, M. Boca, I. Rowe et al., “Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1,” Molecular and Cellular Biology, vol. 29, no. 9, pp. 2359–2371, 2009.

V. H. Gattone II, R. M. Sinders, T. A. Hornberger, and A. G. Robling, “Late progression of renal pathology and cyst enlargement is reduced by rapamycin in a mouse model of nephronophthisis,” Kidney International, vol. 76, no. 2, pp. 178–182, 2009.

Z. Novalic, A. M. van der Wal, W. N. Leonhard et al., “Dose-dependent effects of sirolimus on mTOR signaling and polycystic kidney disease,” Journal of the American Society of Nephrology, vol. 23, no. 5, pp. 842–853, 2012.

J. M. Shillingford, K. B. Piontek, G. G. Germino, and T. Weimbs, “Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1,” Journal of the American Society of Nephrology, vol. 21, no. 3, pp. 489–497, 2010.

Y. Tao, J. Kim, R. W. Schrier, and C. L. Edelstein, “Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease,” Journal of the American Society of Nephrology, vol. 16, no. 1, pp. 46–51, 2005.

P. R. Wahl, A. L. Serra, M. Le Hir, K. D. Molle, M. N. Hall, and R. P. Wüthrich, “Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD),” Nephrology Dialysis Transplantation, vol. 21, no. 3, pp. 598–604, 2006.

V. H. Gattone II, N. X. Chen, R. M. Sinders et al., “Calcimimetic inhibits late-stage cyst growth in ADPKD,” Journal of the American Society of Nephrology, vol. 20, no. 7, pp. 1527–1532, 2009.

F. Hildebrandt, T. Benzing, and N. Katsanis, “Ciliopathies,” The New England Journal of Medicine, vol. 364, no. 16, pp. 1533–1543, 2011. View at Publisher ·

J. R. Pinto, J. Muller-Delp, and P. B. Chase, “Will you still need me (Ca2+, TnT, and DHPR), will you still cleave me (calpain), when I'm 64?” Aging Cell, vol. 16, no. 2, pp. 202–204, 2017.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top