Luo, Jiaru (2018) Innovative sludge disinfection approach to generate Class A biosolids for land applications. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
1MBLuo_MASc_F2018.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
Beneficial use of biosolids (sludge), generated by municipal wastewater treatment plant, requires adequate disinfection before its land application. Traditional methods for sludge disinfection are either time consuming or cost demanded. To overcome the drawbacks, novel technologies which uses electrical field phenomena, were proposed to achieve Class A biosolids. Electro-Fenton disinfection and electrokinetics combined with biocide treatment were investigated in this thesis. The lab scale results demonstrated better effectiveness of Electro-Fenton disinfection than Fenton oxidation. Class A quality of biosolids (with 5.8 log reduction) has been achieved within 30 min when Electro-Fenton system was applied in presence of H2O2 (30%). It was found that technological parameters such as pH, current, hydrogen peroxide concentration, total solids content, ratios of Fe2+/H2O2 influenced effectiveness of sludge disinfection. The results showed that electrokinetic phenomena combined with biocide achieved faster disinfection efficiency reaching log 7.2 fecal coliform reduction within 30 to 50 min while the internal temperature rose to 40℃ only. Then, an optimization of current, as well as biocide dosage were conducted in this study. Scale up of the system has also demonstrated an effective sludge disinfection. The study showed that both systems can be applied to WAS (or potentially to other types of sludge) to convert it to Class A biosolids. The systems are particularly beneficial for sludge thickened with iron containing coagulant. The novel technologies produce fertilizing materials which are safe for environment and public health when landfarming.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Luo, Jiaru |
Institution: | Concordia University |
Degree Name: | M.A. Sc. |
Program: | Civil Engineering |
Date: | 27 June 2018 |
Thesis Supervisor(s): | Elektorowicz, Maria |
ID Code: | 983991 |
Deposited By: | Jiaru Luo |
Deposited On: | 16 Nov 2018 15:56 |
Last Modified: | 27 Jun 2019 00:00 |
References:
Andreoli, C.V., V. M. Sperling, 2007. Sludge Treatment and Disposal, Environmental Protection. https://doi.org/10.1016/B978-1-85617-705-4.00021-6APHA/AWWA/WEF, 2012. Standard Methods for the Examination of Water and Wastewater. Stand. Methods 541. https://doi.org/ISBN 9780875532356
Bougeard, C.M.M., Goslan, E.H., Jefferson, B., Parsons, S.A., 2010. Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine. Water Res. 44, 729–740. https://doi.org/10.1016/j.watres.2009.10.008
Boyd, C.E., Daniels, H. V., 1988. Evaluation of Hach Fish Farmer’s Water Quality Test Kits for Saline Water. J. World Aquac. Soc. 19, 21–26. https://doi.org/10.1111/j.1749-7345.1988.tb01041.x
Brillas, E., Martínez-Huitle, C.A., 2015. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. https://doi.org/10.1016/j.apcatb.2014.11.016
Brillas, E., Sire, I., Oturan, M.A., Sirés, I., Oturan, M.A., 2009. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton ’s Reaction Chemistry. Chem. Rev. 109, 6570–6631. https://doi.org/10.1021/cr900136g
Buxton, G. V, Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH- ,O- ) in Aqueous Solution. J. Phys. Chem. Ref. Data 17, 513–886. https://doi.org/10.1063/1.555805
Cagle, F.W., Frederick S, G., 1947. 2,2’ -Bipyridine Ferrous Complex Ion as Indicator in the Determination of Iron. Anal. Chem. 19, 384–385. https://doi.org/10.1021/ac60006a008
Cakir, F.Y., Stenstrom, M.K., 2005. Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology. Water Res. 39, 4197–4203. https://doi.org/10.1016/j.watres.2005.07.042
Cano, A., Cañizares, P., Barrera-Díaz, C., Sáez, C., Rodrigo, M.A., 2012. Use of conductive-diamond electrochemical-oxidation for the disinfection of several actual treated wastewaters. Chem. Eng. J. 211–212, 463–469. https://doi.org/10.1016/j.cej.2012.09.071
CCME. 2012. Guildline document for the benificial use of municipal biosolid municipal sludge and treated septage . In Canada-wide Approach for the Management of Wastewater Biosolids.https://www.ccme.ca/files/Resources/waste/biosolids/pn_1473_biosolids_guidance_eng_1.0.pdf
Chen, G., 2004. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11–41. https://doi.org/10.1016/j.seppur.2003.10.006
Chen, Y., Cheng, J.J., Creamer, K.S., 2008. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99, 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057
Cho, M., Chung, H., Choi, W., Yoon, J., 2004. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res. 38, 1069–1077. https://doi.org/10.1016/j.watres.2003.10.029
Custer, C.M., Custer, T.W., Thyen, S., Becker, P.H., 2014. Incubation stage and polychlorinated biphenyl (PCB) congener patterns in an altricial and precocial bird species. Environ. Pollut. 195, 109–114. https://doi.org/10.1016/j.envpol.2014.08.010
Dagher, D., Ungar, K., Robison, R., Dagher, F., 2017. The wide spectrum high biocidal potency of Bioxy formulation when dissolved in water at different concentrations. PLoS One 12. https://doi.org/10.1371/journal.pone.0172224
Delaire, C., van Genuchten, C.M., Amrose, S.E., Gadgil, A.J., 2016. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates. Water Res. 103, 74–82. https://doi.org/10.1016/j.watres.2016.07.020
Delaire, C., Van, G, C.M., Nelson, K.L., Amrose, S.E., Gadgil, A.J., 2015. Escherichia coli Attenuation by Fe Electrocoagulation in Synthetic Bengal Groundwater: Effect of pH and Natural Organic Matter. Environ. Sci. Technol. 49, 9945–9953. https://doi.org/10.1021/acs.est.5b01696
Deng, Y., 2007. Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate. J. Hazard. Mater. 146, 334–340. https://doi.org/10.1016/j.jhazmat.2006.12.026
Diagne, M., Oturan, N., Oturan, M.A., 2007. Removal of methyl parathion from water by electrochemically generated Fenton’s reagent. Chemosphere 66, 841–848. https://doi.org/10.1016/j.chemosphere.2006.06.033
Diao, H.F., Li, X.Y., Gu, J.D., Shi, H.C., Xie, Z.M., 2004. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction. Process Biochem. 39, 1421–1426. https://doi.org/10.1016/S0032-9592(03)00274-7
Drees, K.P., Abbaszadegan, M., Maier, R.M., 2003. Comparative electrochemical inactivation of bacteria and bacteriophage. Water Res. 37, 2291–2300. https://doi.org/10.1016/S0043-1354(03)00009-5
EPA, 1993. EPA Guide to Part 503 Rule, in: EPA Guide to Part 503 Rule. p. 23.
Epstein, E., Alpert, J.E., Gould, M., 1983. COMPOSTING : ENGINEERING PRACTICES AND ECONOMIC ANALYSIS 15, 157–167.
Esmaeily, A., Elektorowicz, M., Habibi, S., Oleszkiewicz, J., 2006. Dewatering and coliform inactivation in biosolids using electrokinetic phenomena. J. Environ. Eng. Sci. 5. https://doi.org/10.1139/S05-039
Fang, Q., Shang, C., Chen, G., 2006. MS2 Inactivation by Chloride-Assisted Electrochemical Disinfection. J. Environ. Eng. 132, 13–22. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:1(13)
Ferrer, I., Ponsá, S., Vázquez, F., Font, X., 2008. Increasing biogas production by thermal (70 °C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 42, 186–192. https://doi.org/10.1016/j.bej.2008.06.020
Fytili, D., Zabaniotou, A., 2008. Utilization of sewage sludge in EU application of old and new methods-A review. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2006.05.014
Geldreich, Huff and Best. 1965. J. Am. Water Works Assoc. 57:208
Ghernaout, D., Badis, A., Kellil, A., Ghernaout, B., 2008. Application of electrocoagulation in Escherichia coli culture and two surface waters. Desalination 219, 118–125. https://doi.org/10.1016/j.desal.2007.05.010
Ghoneim, M.M., El-Desoky, H.S., Zidan, N.M., 2011. Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions. Desalination 274, 22–30. https://doi.org/10.1016/j.desal.2011.01.062
Huang, J., Elektorowicz, M., Oleszkiewicz, J.A., 2008. Dewatering and disinfection of aerobic and anaerobic sludge using an electrokinetic (EK) system. Water Sci. Technol. 57, 231–236. https://doi.org/10.2166/wst.2008.009
Huang, X., Qu, Y., Cid, C.A., Finke, C., Hoffmann, M.R., Lim, K., Jiang, S.C., 2016. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell. Water Res. 92, 164–172. https://doi.org/10.1016/j.watres.2016.01.040
Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., 2007. Fundamentals of Heat and Mass Transfer, Water. https://doi.org/10.1016/j.applthermaleng.2011.03.022
Jahromi, A.F., 2016., Enhanced Electro-Oxidation For TKN Removal From Highly Polluted Industrial Wastewater. 14th International Environmental Specialty Conference CSCE 2016, London,Ontario.
Jamali, M.K., Kazi, T.G., Arain, M.B., Afridi, H.I., Jalbani, N., Memon, A.R., 2007. Heavy metal contents of vegetables grown in soil, irrigated with mixtures of wastewater and sewage sludge in Pakistan, using ultrasonic-assisted pseudo-digestion. J. Agron. Crop Sci. 193, 218–228. https://doi.org/10.1111/j.1439-037X.2007.00261.x
Jeong, J., Kim, C., Yoon, J., 2009. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Res. 43, 895–901. https://doi.org/10.1016/j.watres.2008.11.033
Jeong, J., Kim, J.Y., Yoon, J., 2006. The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ. Sci. Technol. 40, 6117–6122. https://doi.org/10.1021/es0604313
Kapalka, A., 2008. Reactivity of Electrogenerated Free Hydroxyl Radicals and Activation of Dioxygen on Boron-Doped Diamond Electrodes. Biblion.Epfl.Ch 4129.
Kaur, N., Singh, A.K., 2016. Ohmic Heating: Concept and Applications—A Review. Crit. Rev. Food Sci. Nutr. 56, 2338–2351. https://doi.org/10.1080/10408398.2013.835303
Kim, J.Y., Lee, C., Love, D.C., Sedlak, D.L., Yoon, J., Nelson, K.L., 2011. ion and zero-valent iron nanoparticles Inactivation of MS2 coliphage by Ferrous Ion and Zero-Valent Iron Nanoparticles. Energy Environ. 6978–6984.
Li, W., Zhou, Q., Hua, T., 2010. Removal of Organic Matter from Landfill Leachate by Advanced Oxidation Processes: A Review. Int. J. Chem. Eng. 2010, 1–10. https://doi.org/10.1155/2010/270532
Li, X.Y., Ding, F., Lo, P.S.Y., Sin, S.H.P., 2002. Electrochemical Disinfection of Saline Wastewater Effluent. J. Environ. Eng. 128, 697–704. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:8(697)
Lin, S.H., Lo, C.C., 1997. Fenton process for treatment of desizing wastewater. Water Res. 31, 2050–2056. https://doi.org/10.1016/S0043-1354(97)00024-9
Lu, Q., He, Z.L., Stoffella, P.J., 2012. Land application of biosolids in the USA: A review. Appl. Environ. Soil Sci. https://doi.org/10.1155/2012/201462
Luo, J,. Elektorowicz, M,. “Innovative sludge disinfection approach to generate Class A biosolids for land applications” 16th International Environmental Specialty Conference, CSCE, Fredericton, New Brunswick, Canada, June 2016
Luo J., Elektorowicz M. 2018. Disinfection supported by electrical field of iron containing sludge, sediments and suspensions. DOI, 2019-001. UCON-227
Mohamed, M., Eissa, A., 2012. Pulsed Electric Fields for Food Processing Technology. Struct. Funct. Food Eng. 32. https://doi.org/10.5772/1615
Navab, D, T., Beton, R., Hill, R.J., Gehr, R., Frigon, D., 2012. Inactivation mechanisms of bacterial pathogen indicators during electro-dewatering of activated sludge biosolids. Water Res. 46, 3999–4008. https://doi.org/10.1016/j.watres.2012.05.009
Neyens, E., Baeyens, J., 2003. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 98, 33–50. https://doi.org/10.1016/S0304-3894(02)00282-0
Nidheesh, P. V., Gandhimathi, R., 2012. Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination 299, 1–15. https://doi.org/10.1016/j.desal.2012.05.011
Nieto-Juarez, J.I., Pierzchla, K., Sienkiewicz, A., Kohn, T., 2010. Inactivation of MS2 coliphage in Fenton and Fenton-like systems: Role of transition metals, hydrogen peroxide and sunlight. Environ. Sci. Technol. 44, 3351–3356. https://doi.org/10.1021/es903739f
Ortega-Gómez, E., Fernández-Ibáñez, P., Ballesteros, M, M.M., Polo-López, M.I., Esteban García, B., Sánchez Pérez, J.A., 2012. Water disinfection using photo-Fenton: Effect of temperature on Enterococcus faecalis survival. Water Res. 46, 6154–6162. https://doi.org/10.1016/j.watres.2012.09.007
Pang, S.Y., Jiang, J., Ma, J., 2011. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: Evidence against ferryl ions (Fe(IV)) as active intermediates in fenton reaction. Environ. Sci. Technol. 45, 307–312. https://doi.org/10.1021/es102401d
Polo-López, M.I., García-Fernández, I., Velegraki, T., Katsoni, A., Oller, I., Mantzavinos, D., Fernández-Ibáñez, P., 2012. Mild solar photo-Fenton: An effective tool for the removal of Fusarium from simulated municipal effluents. Appl. Catal. B Environ. 111–112, 545–554. https://doi.org/10.1016/j.apcatb.2011.11.006
Poortinga, A.T., Bos, R., Norde, W., Busscher, H.J., 2002. Electric double layer interactions in bacterial adhesion to surfaces. Surf. Sci. Rep. https://doi.org/10.1016/S0167-5729(02)00032-8
CMWC, 2015. Literiture review: Risks Associated with Application of Municipal Biosolids to Agricultural Lands in a Canadian Context, Canadian Municipal Water Consortium.
Rashimi Prasad, Development of factored cost estimates – as applied in engineering, procurement, and consturction for the process industries TCM Framwork: 7.3 – Cost Estimating and Budgeting, AACE International Recommended Practice No. 59R -10. REV. June 18, 2011.
Rigg, T., Taylor, W., Weiss, J., 1954. The rate constant of the reaction between hydrogen peroxide and ferrous ions. J. Chem. Phys. 22, 575–577. https://doi.org/10.1063/1.1740127
Reimers. R, S, Andrew J. Englande, Jr., Norman K. Murray, Y.X., 2015. US: 9199885.
Rodríguez-Chueca, J., Mediano, A., Ormad, M.P., Mosteo, R., Ovelleiro, J.L., 2014. Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields. Water Res. 60, 250–258. https://doi.org/10.1016/j.watres.2014.04.040
Rubinsky, B., 2007. Irreversible electroporation in medicine. Technol. Cancer Res. Treat. https://doi.org/10.1177/153303460700600401
Safaei T, E., Elektorowicz M., Reimers, R., Oleszkiewicz J. A. Water Environmental Federation Proceeding " Potential Sterilization of Biosolids by the BioElectro™ Process":2771-2777. https://doi.org/10.2175/193864713813674054
Safaei T, E. 2012. Inactivation of Clostridium perfringens Spores in Anaerobically Digested Biosolids, Thesis: Concordia University.
Safaei T, E., Elektorowicz M., Reimers R., Oleszkiewicz J. A., Dagher F. 2012. Proceses for treatment of residuals, App. Patent 14/438123
Sanin F. D, William W. Clarkson, P. A.V., 2011. Sludge Engineering: The Treatment and Disposal of Wastewater Sludges.
Schmalz, V., Dittmar, T., Haaken, D., Worch, E., 2009. Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes - Contribution for direct reuse of domestic wastewater. Water Res. 43, 5260–5266. https://doi.org/10.1016/j.watres.2009.08.036
Selvakumar, A., Tuccillo, M.E., Muthukrishnan, S., Ray, A.B., 2009. Use of Fenton’s Reagent as a disinfectant. Remediation 19, 135–142. https://doi.org/10.1002/rem.20208
Smith, S.R., Lang, N.L., Cheung, K.H.M., Spanoudaki, K., 2005. Factors controlling pathogen destruction during anaerobic digestion of biowastes, in: Waste Management. pp. 417–425. https://doi.org/10.1016/j.wasman.2005.02.010
Straub, T.M., Pepper, I.L., Gerba, C.P., 1993. Hazards from pathogenic microorganisms in land-disposed sewage sludge. Rev. Environ. Contam. Toxicol. 132, 55–91. https://doi.org/10.1177/095624780301500207
Tsadilas, C.D., 2011. Heavy metals forms in biosolids, soils, and biosolid-amended soils., in: Dyn. Bioavailability Heavy Met. Rootzone. pp. 271–291.
U.S. EPA. 2000a. Alkaline Stabilization of Biosolids. Washington, U.S. Environmental Protection Agency. EPA 832-F-00-052
Walling, C., 1975. Fenton’s Reagent Revisited. Acc. Chem. Res. 8, 125–131. https://doi.org/10.1021/ar50088a003
Wang, C.T., Hu, J.L., Chou, W.L., Kuo, Y.M., 2008. Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode. J. Hazard. Mater. 152, 601–606. https://doi.org/10.1016/j.jhazmat.2007.07.023
Xia, P.-F., Li, Q., Tan, L.-R., Sun, X.-F., Song, C., Wang, S.-G., 2016. Extracellular polymeric substances protect Escherichia coli from organic solvents. RSC Adv. 6. https://doi.org/10.1039/c6ra11707d
Yin, Z., Hoffmann, M., Jiang, S., 2018. Sludge disinfection using electrical thermal treatment: The role of ohmic heating. Sci. Total Environ. 615, 262–271. https://doi.org/10.1016/j.scitotenv.2017.09.175
Yuan, S., Gou, N., Alshawabkeh, A.N., Gu, A.Z., 2013. Efficient degradation of contaminants of emerging concerns by a new electro-Fenton process with Ti/MMO cathode. Chemosphere 93, 2796–2804. https://doi.org/10.1016/j.chemosphere.2013.09.051
Zhang, H., Wu, X., Li, X., 2012. Oxidation and coagulation removal of COD from landfill leachate by Fered-Fenton process. Chem. Eng. J. 210, 188–194. https://doi.org/10.1016/j.cej.2012.08.094
Zhang, H., Zhang, D., Zhou, J., 2006. Removal of COD from landfill leachate by electro-Fenton method. J. Hazard. Mater. 135, 106–111. https://doi.org/10.1016/j.jhazmat.2005.11.025
Zhou, M., Yu, Q., Lei, L., Barton, G., 2007. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Sep. Purif. Technol. 57, 380–387. https://doi.org/10.1016/j.seppur.2007.04.021
Zimmermann, U., J. Vienken, and G. Pilwat. Development of drug carrier systems: electrical field induced effects in cell membranes. Bioelectrochemistry and Bioenergetics, 7:553-574, 1980.
Repository Staff Only: item control page