Garrido, José ORCID: https://orcid.org/0000-0002-2016-7524 and Xacur, Oscar Alberto Quijano (2018) Bayesian credibility for GLMs. Insurance: Mathematics and Economics . ISSN 01676687 (In Press)
Preview |
Text (application/pdf)
636kBGarrido 2018.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Official URL: http://dx.doi.org/10.1016/j.insmatheco.2018.05.001
Abstract
We revisit the classical credibility results of Jewell (1974) and Bühlmann (1967) to obtain credibility premiums for a GLM using a modern Bayesian approach. Here the prior distribution can be chosen without restrictions to be conjugate to the response distribution. It can even come from out–of–sample information if the actuary prefers.
Then we use the relative entropy between the “true” and the estimated models as a loss function, without restricting credibility premiums to be linear. A numerical illustration on real data shows the feasibility of the approach, now that computing power is cheap, and simulations software readily available.
Divisions: | Concordia University > Faculty of Arts and Science > Mathematics and Statistics |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Garrido, José and Xacur, Oscar Alberto Quijano |
Journal or Publication: | Insurance: Mathematics and Economics |
Date: | 2018 |
Funders: |
|
Digital Object Identifier (DOI): | 10.1016/j.insmatheco.2018.05.001 |
ID Code: | 984212 |
Deposited By: | ALINE SOREL |
Deposited On: | 27 Aug 2018 16:36 |
Last Modified: | 17 May 2020 00:00 |
References:
Bernardo José M.. Intrinsic credible regions: An objective bayesian approach to interval estimation, TEST, 14 (2) (2005), pp. 317-384Bühlmann H. Experience rating and credibility, Astin Bull., 4 (3) (1967), pp. 99-207
Daniels H.E. Exact saddlepoint approximations, Biometrika, 67 (1) (1980), pp. 59-63. URL http://biomet.oxfordjournals.org/content/67/1/59.abstract
de Jong P., Heller G.Z. Generalized Linear Models for Insurance Data, 9780511755408, Cambridge University Press (2008). URL http://dx.doi.org/10.1017/CBO9780511755408, Cambridge Books Online
De Vylder F.E. Non-linear regression in credibility theory, Insurance Math. Econom., 4 (3) (1985), pp. 163-172. URL http://EconPapers.repec.org/RePEc:eee:insuma:v:4:y:1985:i:3:p:163-172
Diaconis P., Ylvisaker D. Conjugate priors for exponential families, Ann. Statist., 7 (2) (1979), pp. 269-281. URL http://dx.doi.org/10.1214/aos/1176344611
Hachemeister, C.A., 1975. Credibility for regression models with application to trend. In: Proc. of the Berkeley Actuarial Research Conference on Credibility, pp. 129–163.
Jewell W.S.Credible means are exact Bayesian for exponential familiesAstin Bull., 8 (1) (1974), pp. 77-90
Johnson N.L. Uniqueness of a result in the theory of accident proneness, Biometrika, 44 (1957), pp. 530-531
Jørgensen B. The Theory of Exponential Dispersion Models and Analysis of Deviance, Instituto de Matemática Pura e Aplicada, (IMPA), Brazil (1992)
Jørgensen B. The Theory of Dispersion Models, Chapman & Hall, London (1997)
Kaas R., Goovaerts M., Dhaene J., Denuit M. Modern Actuarial Risk Theory, Springer-Verlag, Berlin Heidelberg (2008)
Kullback S.Information Theory and Statistics, Dover Publications, New York (1968)
Kullback S., Leibler R.A.On information and sufficiency, Ann. Math. Statist., 22 (1) (1951), pp. 79-86. URL http://dx.doi.org/10.1214/aoms/1177729694
Landsman Z.M., Makov U.E. Exponential dispersion models and credibility, Scand. Actuar. J., 1998 (1) (1998), pp. 89-96. URL http://dx.doi.org/10.1080/03461238.1998.10413995
Nelder J.A., Verall R.J. Credibility theory and generalized linear models. Astin Bull., 27 (1) (1997), pp. 71-82
Nelder J.A., Wedderburn R.W.M.Generalized linear models, J. Roy. Statist. Soc. Ser. A, Gen., 135 (1972), pp. 370-384
Ohlsson E. Combining generalized linear models and credibility models in practice, Scand. Actuar. J., 2008 (4) (2008), pp. 301-314
R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/.
Stan Development Team, 2016. RStan: the R interface to Stan, URL http://mc-stan.org/. R package version 2.14.1.
Repository Staff Only: item control page