Login | Register

High Gain and Wideband High Dense Dielectric Patch Antenna Using FSS Superstrate for Millimeter-Wave Applications

Title:

High Gain and Wideband High Dense Dielectric Patch Antenna Using FSS Superstrate for Millimeter-Wave Applications

Asaadi, Muftah, Afifi, Islam and Sebak, Abdel-Razik (2018) High Gain and Wideband High Dense Dielectric Patch Antenna Using FSS Superstrate for Millimeter-Wave Applications. IEEE Access, 6 . pp. 38243-38250. ISSN 2169-3536

[thumbnail of Asaadi-IEEE Access-2018.pdf]
Preview
Text (application/pdf)
Asaadi-IEEE Access-2018.pdf - Published Version
Available under License Spectrum Terms of Access.
10MB

Official URL: http://dx.doi.org/10.1109/ACCESS.2018.2854225

Abstract

Gain and bandwidth enhancement of low profile, linearly polarized square dense dielectric patch antennas using a frequency selective surface (FSS) superstrate layer is proposed. A high dense dielectric patch antenna is utilized as a radiating element instead of a metallic patch in order to gain several significant advantages, including low profile, wide bandwidth, and high radiation efficiency. The implemented antenna is excited by an aperture-coupled feeding technique. The antenna gain is enhanced by using a highly reflective FSS superstrate layer, realizing an antenna gain enhancement of 11 dBi. The implemented antenna acquired a measured gain of about 17.78 dBi at 28 GHz with a 9% bandwidth and radiation efficiency of 90%. The bandwidth of the proposed antenna is improved by using a unit cell printed on two sides, as it provides a positive phase gradient over the desired frequency range. The antenna impedance bandwidth is broadened and the measured impedance matching S11 exhibited a 15.54% instead of 9% bandwidth while maintaining a high-gain characteristic of about 15.4 dBi. The implemented antenna presents a solid radiation performance with good agreement between the measured and simulation results. For some attractive advantages such as low profile, low cost, lightweight, small size, and ease of implementation, the proposed antenna is a very good candidate for millimeter-wave wireless communications.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Refereed:Yes
Authors:Asaadi, Muftah and Afifi, Islam and Sebak, Abdel-Razik
Journal or Publication:IEEE Access
Date:2018
Funders:
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1109/ACCESS.2018.2854225
Keywords:Millimeter-wave antennas, high gain, broad bandwidth, high dense dielectric (DD) patch, superstrate, FSS, 5G applications
ID Code:984414
Deposited By: Krista Alexander
Deposited On:20 Sep 2018 20:25
Last Modified:20 Sep 2018 20:25

References:

1. H. Vettikalladi, O. Lafond, M. Himdi, "High-efficient and high-gain superstrate antenna for 60-GHz indoor communication", IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1422-1425, 2009.

2. A. Vosoogh, P. S. Kildal, V. Vassilev, " Wideband and high-gain corporate-fed gap waveguide slot array antenna with ETSI class II radiation pattern in V -band ", IEEE Trans. Antennas Propag., vol. 65, pp. 1823-1831, Apr. 2017.

3. H. W. Lai, K.-M. Luk, K. W. Leung, "Dense dielectric patch antenna—A new kind of low-profile antenna element for wireless communications", IEEE Trans. Antennas Propag., vol. 61, no. 8, pp. 4239-4245, Aug. 2013.

4. A. A. Kishk, A. Ittipiboon, Y. M. M. Antar, M. Cuhaci, "Slot excitation of the dielectric disk radiator", IEEE Trans. Antennas Propag., vol. 43, no. 2, pp. 198-201, Feb. 1995.

5. Y. Li, K.-M. Luk, "Wideband perforated dense dielectric patch antenna array for millimeter-wave applications", IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3780-3786, Aug. 2015.

6. M. Asaadi, A. Sebak, " Gain and bandwidth enhancement of \$2times 2\$ square dense dielectric patch antenna array using a holey superstrate ", IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1808-1811, 2017.

7. A. K. Singh, M. P. Abegaonkar, S. K. Koul, "High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate", IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2388-2391, 2017.

8. M. J. Al-Hasan, T. A. Denidni, A. R. Sebak, "Millimeter-wave EBG-based aperture-coupled dielectric resonator antenna", IEEE Trans. Antennas Propag., vol. 61, no. 8, pp. 4354-4357, Aug. 2013.

9. Y. Jia, Y. Liu, H. Wang, K. Li, S. Gone, "Low-RCS high-gain and wideband mushroom antenna", IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 277-280, 2015.

10. B. P. Chacko, G. Augustin, T. A. Denidni, "FPC antennas: C-band point-to-point communication systems", IEEE Antennas Propag. Mag., vol. 58, no. 1, pp. 56-64, Feb. 2016.

11. M. Akbari, S. Gupta, M. Farahani, A. R. Sebak, T. A. Denidni, "Gain enhancement of circularly polarized dielectric resonator antenna based on FSS superstrate for MMW applications", IEEE Trans. Antennas Propag., vol. 64, no. 12, pp. 5542-5546, Dec. 2016.

12. Y. Ge, K. P. Esselle, T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband low-profile EBG resonator antennas", IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 743-750, Feb. 2012.

13. A. R. Weily, T. S. Bird, Y. J. Guo, "A reconfigurable high-gain partially reflecting surface antenna", IEEE Trans. Antennas Propag., vol. 56, no. 11, pp. 3382-3390, Nov. 2008.

14. A. R. Weily, K. P. Esselle, T. S. Bird, B. C. Sanders, "Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth", IET Microw. Antennas Propag., vol. 1, no. 1, pp. 198-203, Feb. 2007.
15. A. P. Feresidis, J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces", IEE Proc.-Microw. Antennas Propag., vol. 148, no. 6, pp. 345-350, Dec. 2001.

16. C. Mateo-Segura, A. P. Feresidis, G. Goussetis, "Highly directive 2-D leaky wave antennas based on double-layer meta-surfaces", Proc. 4th Eur. Conf. Antennas Propag., pp. 1-5, 2010.

17. H. Attia, M. L. Abdelghani, T. A. Denidni, "Wideband and high-gain millimeter-wave antenna based on FSS Fabry–Pérot cavity", IEEE Trans. Antennas Propag., vol. 65, no. 10, pp. 5589-5594, Oct. 2017.

18. A. Foroozesh, L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design", IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 258-270, Feb. 2010.

19. A. Elboushi, O. Haraz, A. Sebak, "High gain circularly polarized slot-coupled antenna for millimeter wave applications", Microw. Opt. Technol. Lett., vol. 56, no. 11, pp. 2522-2526, 2014.

20. K. Konstantinidis, A. P. Feresidis, P. S. Hall, "Broadband sub-wavelength profile high-gain antennas based on multi-layer metasurfaces", IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 423-427, Jan. 2015.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top