Login | Register

Robust visual tracking via nonlocal regularized multi-view sparse representation

Title:

Robust visual tracking via nonlocal regularized multi-view sparse representation

Zhu, Wei-Ping, Kang, Bin, Liang, Dong and Chen, Mingkai (2018) Robust visual tracking via nonlocal regularized multi-view sparse representation. Pattern Recognition . ISSN 00313203

[thumbnail of Zhu 2018.pdf]
Preview
Text (application/pdf)
Zhu 2018.pdf - Accepted Version
Available under License Spectrum Terms of Access.
7MB

Official URL: http://dx.doi.org/10.1016/j.patcog.2018.11.005

Abstract

The multi-view sparse representation based visual tracking has attracted increasing attention because the sparse representations of different object features can complement with each other. Since the robustness of different object features is actually not the same in challenging video sequences, it may contain unreliable features (the features with low robustness) in multi-view sparse representation. In this case, how to highlight the useful information of unreliable features for proper multi-feature fusion has become a tough work. To solve this problem, we propose a multi-view discriminant sparse representation method for robust visual tracking, in which we firstly divide the multi-view observations into different groups, and then estimate the sparse representations of multi-view group projections for calculating the observation likelihood. The advantages of the proposed sparse representation method are two-folds: 1) It can properly fuse the observation groups with reliable and unreliable features by using an online updated discriminant matrix to explore the group similarity in multi-feature space. 2) It introduces a nonlocal regularizer to enforce the spatial smoothness among the sparse representations of different group projections, which can enhance the robustness of multi-view sparse representation. Experimental results show that our method can achieve a better tracking performance than state-of-the-art tracking methods do

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Refereed:Yes
Authors:Zhu, Wei-Ping and Kang, Bin and Liang, Dong and Chen, Mingkai
Journal or Publication:Pattern Recognition
Date:2018
Digital Object Identifier (DOI):10.1016/j.patcog.2018.11.005
Keywords:sparse representation; visual tracking; multi-view learning; dual group structure
ID Code:984704
Deposited By: ALINE SOREL
Deposited On:27 Nov 2018 19:56
Last Modified:10 Nov 2020 02:00

References:

L. Zhou. On data-driven delay estimation for media cloud, IEEE Transactions on Multimedia, 18 (5) (2016), pp. 905-915

L. Zhou. Qoe-driven delay announcement for cloud mobile media, IEEE Transactions on Circuits and Systems for Video Technology, 27 (1) (2017), pp. 84-94

L. Zhou. Mobile device-to-device video distribution: theory and application, ACM Transactions on Multimedia Computing, Communications and Applications, 12 (3) (2015), pp. 1253-1271

S. Avidan. Support vector tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (8) (2004), pp. 1064-1072

S. Zhang, X. Yu, Y. Sui, S. Zhao, L. Zhang. Object tracking with multi-view support vector machines, IEEE Transactions on Multimedia, 17 (3) (2015), pp. 265-278

H. Grabner, H. Bischof On-line boosting and vision, IEEE Conference on Computer Vision and Pattern Recognition (2006)

H. Grabner, C. Leistner, H. Bischof. Semi-supervised on-line boosting for robust tracking, Proc. ECCV (2008)

F. Yang, H. Lu, M. Yang. Robust visual tracking via multiple kernel boosting with affinity constraints
IEEE Transactions on Circuits and Systems for Video Technology, 24 (2) (2014), pp. 242-254

B. Babenko, Y. Ming-Hsuan, S. Belongie. Visual tracking with online multiple instance learning, IEEE Conference on Computer Vision and Pattern Recognition (2009), pp. 983-990

K. Zhang, H. Song. Real-time visual tracking via online weighted multiple instance learning, Pattern Recognition, 46 (1) (2013), pp. 397-411

K. Zhang, L. Zhang, M.H. Yang. Fast compressive tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 (10) (2014), pp. 2002-2015

J.F. Henriques, R. Caseiro, P. Martins, J. Batista. High-speed tracking with kernelized correlation filters, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37 (3) (2015), pp. 583-596

M. Mueller, N. Smith, B. Ghanem. Context-aware correlation filter tracking, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

D.A. Ross, J. Lim, R.S. Lin, M.H. Yang. Incremental learning for robust visual tracking, International Journal of Computer Version, 77 (1) (2008), pp. 125-141

Y. Xie, W. Zhang, Y. Qu, Y. Zhang. Discriminative subspace learning with sparse representation view-based model for robust visual tracking, Pattern Recognition, 47 (3) (2014), pp. 1383-1394

Y. Sui, S. Zhang, L. Zhang. Robust visual tracking via sparsity-induced subspace learning, IEEE Transactions on Image Processing, 24 (12) (2015), pp. 4686-4700

T. Zhang, S. Liu, A. Narendra, M.H. Yang, G. Bernard. Roubust visual tracking vis consistent low-rank sparse learning, International Journal of Computer Vision, 111 (2) (2014), pp. 171-190

Y. Wu, B. Shen, H. Ling. Visual tracking via online nonnegative matrix factorization, IEEE Transactions on Circuits and Systems for Video Technology, 24 (3) (2014), pp. 374-383

H. Zhang, S. Hu, X. Zhang, L. Luo. Visual tracking via constrained incremental non-negative matrix factorization, IEEE Signal Processing Letters, 22 (9) (2015), pp. 1350-1353

S. Zhang, H. Yao, X. Sun, X. Lu. Sparse coding base visual tracking: review and experimental comparison, Pattern Recognition, 46 (7) (2013), pp. 1772-1788

Z. Chi, H. li, H. Lu, M. Yang. Dual deep network for visual tracking, IEEE Transactions on Image Processing, 26 (4) (2017), pp. 2005-2015

C. Ma, J. Huang, X. Yang, M.H. Yang. Hierarchical convolutional features for visual tracking, IEEE International Conference on Computer Vision (ICCV) (2015)

L. Bertinetto, J. Valmadre, J.F. Henriques, A. Vedaldi, P. Torr. Fully-convolutional siamese networks for object tracking, European Conference on Computer Vision (ECCV) (2016)

X. Mei, H. Ling Robust visual tracking and vehicle classification via sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (11) (2011), pp. 2259-2272

C. Bao, Y. Wu, H. Ling, H. Ji. Real time robust l1 tracker using accelerated proximal gradient approach, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012), pp. 1830-1837

T. Zhang, G. Bernard, S. Liu, A. Narendra. Robust visual tracking via structured multi-task sparse learning, International Journal of Computer Vision, 101 (2) (2013), pp. 367-383

B. Ma, J. Shen, Y. Liu, H. Hu, L. Shao, X. Li. Visual tracking using strong classifier and structural local sparse descriptors, IEEE Transactions on Multimedia, 17 (10) (2015), pp. 1818-1828

S. Zhang, H. Zhou, F. Jiang, X. Li. Robust visual tracking using structurally random projection and weighted least squares, IEEE Transactions on Circuits and Systems for Video Technology, 25 (11) (2015), pp. 1749-1760

T. Zhang, A. Bibi, B. Ghanem. In defense of sparse tracking: circulant sparse tracker, IEEE Computer Vision and Patter Recognition (2016)

Y. Zhou, J. Han, X. Yuan, Z. Wei, R. Hong. Inverse sparse group lasso model for robust object tracking, IEEE Transactions on Multimedia, 19 (8) (2017), pp. 1798-1810

X. Mei, Z. Hong, D. Prokhorov, D. Tao. Robust multitask multiview tracking in videos, IEEE Transactions on Neural Networks and Learning Systems, 26 (11) (2015), pp. 2874-2890

W. Hu, W. Li, X. Zhang, S.J. Maybank. Single and multiple object tracking using a multi-feature joint sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37 (4) (2015), pp. 816-833

X. Lan, A.J. Ma, P.C. Yuan, R. Chellappa. Joint sparse representation and robust feature-level fusion for multi-cue visual tracking, IEEE Transactions on Image Processing, 24 (12) (2015), pp. 5826-5841

L. F, H. Lu, D. Wang, Y. Wu, K. Zhang. Dual group structured tracking, IEEE Transactions on Circuits and Systems for Video Technology, 26 (9) (2016), pp. 1697-1708

B. Kang, D. Liang, S. Zhang. Robust visual tracking via multi-view dicriminant based sparse representation, International Conference on Image Processing (ICIP) (2017)

M. Kan, S. Shan, H. Zhang, S. Lao, X. Chen. Multi-view discriminant analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 38 (1) (2016), pp. 188-194

Z. Yang, M. Jacob. Nonlocal regularization of inverse problems: a unified variational framework, IEEE Transactions on Image Processing, 22 (8) (2013), pp. 3192-3203

M.A.T. Figueiredo, J.M. Bioucas-Dias, R.D. Nowak. Majorization-minimization algorithms for wavelet based image restoration, IEEE Transactions on Image Processing, 16 (12) (2007), pp. 2980-2991

S. Gao, W.H. Tsang, L.T. Chia. Laplacian sparse coding, hypergraph laplacian sparse coding, and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (1) (2013), pp. 92-104

M. Afonso, J. Bioucas-Dias, M. Figueiredo. An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problem, IEEE Transactions on Image Processing, 20 (3) (2011), pp. 681-695

Y. Hu, D. Zhang, J. Ye, X. Li, X. He. Fast and accurate matrix completion via truncated nuclear norm regularization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (9) (2013), pp. 2117-2130

G. Liu, Z. Lin, Y. Yu. Robust subspace segmentation by low-rank representation, International Conference on Machine Learning (2010)

M. Tao, X. Yuan. Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM Journal on Optimization, 21 (1) (2011), pp. 57-81

Y. Wu, J. Lim, M.H. Yang. Online object tracking: a benchmark, Proc. CVPR (2013)

S. Hare, A. Saffari, P.H.S. Torr. Struck: Structured output tracking with kernels, IEEE International Conference on Computer Vision (ICCV) (2011)

J. Henriques, R. Caseiro, P. Martins, J. Batista. Exploiting the circulant structure of tracking-by-detection with kernel, European Conference on Computer Vision (ECCV) (2012)

Z. Kalal, K. Mikolajczyk, J. Matas. Tracking-learning-detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (7) (2012), pp. 1409-1422

A. Adam, E. Rivlin, I. Shimshoni. Robust fragments-based tracking using the integral histogram, IEEE Conference on Computer Vision and Pattern Recognition (2006)

D. Comaniciu, V. Ramesh, P. Meer. Kernel-based object tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 25 (2003), pp. 564-577

H. Grabner, M. Grabner, H. Bischof. Real-time tracking via on-line boosting, British Machine Vision Conference (2006)

T. Ojala, M. Pietikainen, T. Maepaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (7) (2002), pp. 971-987

O. Oreifej, X. Li, M. Shah. Simultaneous video stabilization and moving object detection in turbulence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2) (2013), pp. 450-462

Z. Lin, M. Chen, L. Wu, Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, 2009, In UIUC Technical Report.

X. Yuan, X. Liu, S. Yan. Visual classification with multitask joint sparse representation, IEEE Transactions on Image Processing, 21 (10) (2012), pp. 4349-4360

C. Xu, D. Tao, C. Xu. Large-margin multi-view information bottleneck, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 (8) (2014), pp. 1559-1572
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top