Afifi, Islam, Ali, Mohamed Mamdouh M. ORCID: https://orcid.org/0000-0003-4003-2851 and Sebak, Abdel-Razik (2018) Analysis and Design of a Wideband Coaxial Transition to Metal and Printed Ridge Gap Waveguide. IEEE Access, 6 . pp. 70698-70706. ISSN 2169-3536
Preview |
Text (application/pdf)
2MBAfifi-IEEE Access-2018.pdf - Published Version Available under License Spectrum Terms of Access. |
Official URL: http://dx.doi.org/10.1109/ACCESS.2018.2881732
Abstract
In this paper, a wideband coaxial to ridge gap transition is proposed and implemented. The transition has a compact size, wide bandwidth, and simple structure. It can be used to excite ridge gap waveguides implemented by the printed circuit board or computer numerical control (CNC) technologies. A similar circuit model for a coax-to-microstrip junction is proposed and used to establish a systematic design procedure for the proposed transition. Perfect electric conductor and perfect magnetic conductor (PMC) boundaries are used to make the procedure independent of the fabrication technology. The PMC is replaced by a bed of nails for ridge gap realized by CNC technology and mushroom-shaped structure in the case of PCB technology. The proposed transition based on the PCB technology is fabricated and measured. There is a good agreement between simulated and measured results which validates the proposed design. The transition has a 59.22% bandwidth with S11<−10 dB and S21>−0.5 dB.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Afifi, Islam and Ali, Mohamed Mamdouh M. and Sebak, Abdel-Razik |
Journal or Publication: | IEEE Access |
Date: | 2018 |
Funders: |
|
Digital Object Identifier (DOI): | 10.1109/ACCESS.2018.2881732 |
Keywords: | Ridge gap, coaxial transition, millimeter wave, wideband |
ID Code: | 984775 |
Deposited By: | Krista Alexander |
Deposited On: | 17 Dec 2018 20:12 |
Last Modified: | 17 Dec 2018 20:12 |
References:
1. D. M. Sheen, D. L. McMakin, T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection", IEEE Trans. Microw. Theory Techn., vol. 49, pp. 1581-1592, Sep. 2001.2. H. Zamani, M. Fakharzadeh, "1.5-D sparse array for millimeter-wave imaging based on compressive sensing techniques", IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 2008-2015, Apr. 2018.
3. Z. Briqech, A. R. Sebak, "Millimeter-wave imaging system using a 60 GHz dual-polarized AFTSA-SC probe", Proc. 33rd Nat. Radio Sci. Conf. (NRSC), pp. 325-332, Feb. 2016.
4. D. M. Sheen et al., "Wide-bandwidth wide-beamwidth high-resolution millimeter-wave imaging for concealed weapon detection", Proc. SPIE, vol. 8715, pp. 871509, May 2013.
5. T. S. Rappaport, J. N. Murdock, F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications", Proc. IEEE, vol. 99, no. 8, pp. 1390-1436, Aug. 2011.
6. A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, P.-S. Kildal, "Design of transition from coaxial line to ridge gap waveguide", Proc. IEEE Antennas Propag. Soc. Int. Symp., pp. 1-4, Jun. 2009.
7. P.-S. Kildal, "Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves", Proc. 3rd Eur. Conf. Antennas Propag., pp. 28-32, Mar. 2009.
8. P.-S. Kildal, A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, A. Valero-Nogueira, "Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression", IET Microw. Antennas Propag., vol. 5, no. 3, pp. 262-270, Mar. 2011.
9. H. Raza, J. Yang, P.-S. Kildal, E. A. Alós, "Microstrip-ridge gap waveguide–study of losses bends and transition to WR-15", IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 1943-1952, Sep. 2014.
10. M. Bozzi, A. Georgiadis, K. Wu, "Review of substrate-integrated waveguide circuits and antennas", IET Microw. Antennas Propag., vol. 5, no. 8, pp. 909-920, Jun. 2011.
11. M. M. M. Ali, S. I. Shams, A. R. Sebak, "Printed ridge gap waveguide 3-dB coupler: Analysis and design procedure", IEEE Access, vol. 6, pp. 8501-8509, 2018.
12. A. Farahbakhsh, D. Zarifi, A. U. Zaman, "A mm Wave wideband slot array antenna based on ridge gap waveguide with 30% bandwidth", IEEE Trans. Antennas Propag., vol. 66, no. 2, pp. 1008-1013, Feb. 2018.
13. S. Birgermajer, N. Janković, V. Crnojević-Bengin, M. Bozzi, V. Radonić, "Forward-wave 0 dB directional coupler based on microstrip-ridge gap waveguide technology", Proc. 13th Int. Conf. Adv. Technol. Syst. Services Telecommun. (TELSIKS), pp. 154-157, Oct. 2017.
14. S. Birgermajer, N. Janković, V. Radonić, V. Crnojević-Bengin, M. Bozzi, "Microstrip-ridge gap waveguide filter based on cavity resonators with mushroom inclusions", IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 136-146, Jan. 2018.
15. M. M. M. Ali, A. r. Sebak, "Compact printed ridge gap waveguide crossover for future 5G wireless communication system", IEEE Microw. Wireless Compon. Lett., vol. 28, no. 7, pp. 549-551, Jul. 2018.
16. M. Farahani, M. Akbari, M. Nedil, T. A. Denidni, A. R. Sebak, "A novel low-loss millimeter-wave 3-dB 90° ridge-gap coupler using large aperture progressive phase compensation", IEEE Access, vol. 5, pp. 9610-9618, 2017.
17. A. Dadgarpour, M. S. Sorkherizi, A. A. Kishk, "High-efficient circularly polarized magnetoelectric dipole antenna for 5G applications using dual-polarized split-ring resonator lens", IEEE Trans. Antennas Propag., vol. 65, no. 8, pp. 4263-4267, Aug. 2017.
18. S. I. Shams, A. A. Kishk, "Design of 3-dB hybrid coupler based on RGW technology", IEEE Trans. Microw. Theory Techn., vol. 65, no. 10, pp. 3849-3855, Oct. 2017.
19. M. S. Sorkherizi, A. Dadgarpour, A. A. Kishk, "Planar high-efficiency antenna array using new printed ridge gap waveguide technology", IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3772-3776, Jul. 2017.
20. M. S. Sorkherizi, A. A. Kishk, "Transition from microstrip to printed ridge gap waveguide for millimeter-wave application", Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, pp. 1588-1589, Jul. 2015.
21. B. Molaei, A. Khaleghi, "A novel wideband microstrip line to ridge gap waveguide transition using defected ground slot", IEEE Microw. Wireless Compon. Lett., vol. 25, no. 2, pp. 91-93, Feb. 2015.
22. M. S. Sorkherizi, A. A. Kishk, "Fully printed gap waveguide with facilitated design properties", IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 657-659, Sep. 2016.
23. U. Nandi, A. U. Zaman, A. Vosoogh, J. Yang, "Millimeter wave contactless microstrip-gap waveguide transition suitable for integration of RF MMIC with gap waveguide array antenna", Proc. 11th Eur. Conf. Antennas Propag. (EUCAP), pp. 1682-1684, Mar. 2017.
24. N. Bayat-Makou, A. A. Kishk, "Realistic air-filled TEM printed parallel-plate waveguide based on ridge gap waveguide", IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2128-2140, May 2018.
25. F. Fan, J. Yang, V. Vassilev, A. Uz Zaman, "Bandwidth investigation on half-height pin in ridge gap waveguide", IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 100-108, Jan. 2018.
26. S. I. Shams, A. A. Kishk, "Wideband coaxial to ridge gap waveguide transition", IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4117-4125, Dec. 2016.
27. M. A. Nasr, A. A. Kishk, "Wideband inline coaxial to ridge waveguide transition with tuning capability for ridge gap waveguide", IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2757-2766, Jun. 2018.
28. D. Zarifi, A. Farahbakhsh, A. U. Zaman, P. S. Kildal, "Design and fabrication of a high-gain 60-GHz corrugated slot antenna array with ridge gap waveguide distribution layer", IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2905-2913, Jul. 2016.
29. Z. Talepour, A. Khaleghi, "A K-band planar slot array antenna on a single layer ridge gap waveguide", Proc. 11th Eur. Conf. Antennas Propag. (EUCAP), pp. 1685-1689, Mar. 2017.
30. F. Ahmadfard, S. A. Razavi, "Bandwidth and gain enhancement of ridge gap waveguide H-plane horn antennas using outer transitions", IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 4315-4319, Aug. 2018.
31. D. M. Pozar, Microwave Engineering, Hoboken, NJ, USA:Wiley, 2011.
32. G. M. Rebeiz, RF MEMS: Theory Design and Technology, New York, NY, USA:Wiley, 2003.
Repository Staff Only: item control page