Login | Register

Thermostable xylanases from thermophilic fungi and bacteria: current perspective


Thermostable xylanases from thermophilic fungi and bacteria: current perspective

Chadha, B.S., Kaur, Baljit, Basotra, Neha, Tsang, Adrian and Pandey, Ashok (2019) Thermostable xylanases from thermophilic fungi and bacteria: current perspective. Bioresource Technology . ISSN 09608524 (In Press)

[thumbnail of Tsang-2019.pdf]
Text (application/pdf)
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.1016/j.biortech.2019.01.044


Thermostable xylanases from thermophilic fungi and bacteria have a wide commercial acceptability in feed, food, paper and pulp and bioconversion of lignocellulosics with an estimated annual market of USD 500 Million. The genome wide analysis of thermophilic fungi clearly shows the presence of elaborate genetic information coding for multiple xylanases primarily coding for GH10, GH11 in addition to GH7 and GH30 xylanases. The transcriptomics and proteome profiling has given insight into the differential expression of these xylanases in some of the thermophilic fungi. Bioprospecting has resulted in identification of novel thermophilic xylanases that have been endorsed by the industrial houses for heterologous over- expression and formulations. The future use of xylanases is expected to increase exponentially for their role in biorefineries. The discovery of new and improvement of existing xylanases using molecular tools such as directed evolution is expected to be the mainstay to meet increasing demand of thermostable xylanases.

Divisions:Concordia University > Research Units > Centre for Structural and Functional Genomics
Item Type:Article
Authors:Chadha, B.S. and Kaur, Baljit and Basotra, Neha and Tsang, Adrian and Pandey, Ashok
Journal or Publication:Bioresource Technology
Date:11 January 2019
  • DBT – India
  • AMAAS (ICAR) – India
Digital Object Identifier (DOI):10.1016/j.biortech.2019.01.044
Keywords:Hermophilic fungi and bacteria; Thermostable xylanases; Glycoside hydrolases; Genomics and metagenomics; Production
ID Code:984917
Deposited By: Michael Biron
Deposited On:21 Jan 2019 23:27
Last Modified:11 Jan 2021 02:00


Z. Ahmed, M.S. Butt, A. Ahmed, M. Riaz, S.M. Sabir, F.U. Rehman Effect of Aspergillus niger xylanase on dough characteristics and bread quality attributes J. Food Sci. Technol., 51 (2014), pp. 2445-2453

S. Aikawa, S. Baramee, J. Sermsathanaswadi, P. Thianheng, C. Tachaapaikoon, A. Shikata, R. Waeonukul, P. Pason, K. Ratanakhanokchai, A. Kosugi Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium Sys. Appl. Microbiol., 41 (2018), pp. 261-269

H. Al-Darkazali, V. Meevootisom, D. Isarangkul, S. Wiyakrutta Gene expression and molecular characterization of a xylanase from chicken cecum metagenome Int. J. Microbiol (2017), 10.1155/2017/4018398

J. Álvarez-Cervantes, G. Díaz-Godínez, Y. Mercado-Flores, V.K. Gupta, M.A.Anducho-Reyes Phylogenetic analysis of β-xylanase SRXL1 of Sporisorium reilianum and its relationship with families (GH10 and GH11) of Ascomycetes and Basidiomycetes Sci. Rep., 6 (2016), p. 24010

B.D. Amel, B. Nawel, B. Khelifa, G. Mohammed, J. Manon, K.G. Salima, N. Farida, H. Hocine, O. Bernard, C. Jean-Luc, F. Marie-Laure Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1T Carbohydr. Res., 419 (2016), pp. 60-68

J. An, Y. Xie, Y. Zhang, D. Tian, S. Wang, G. Yang, Y. Feng Characterization of thermostable, specific GH10 xylanase from Caldicellulosiruptor bescii with high catalytic activity J. Mol. Catal B: Enzym., 117 (2015), pp. 13-20

S. Anbarasan, R. Wahlström, M. Hummel, H. Ojamo, H. Sixta, O. Turunen High stability and low competitive inhibition of thermophilic Thermopolyspora flexuosa GH10 xylanase in biomass-dissolving ionic liquids Appl. Microbiol. Biotechnol., 101 (2017), pp. 1487-1498

A.K. Badhan, B.S. Chadha, J. Kaur, H.S. Saini, M.K. Bhat Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099 Bioresour. Technol., 98 (2007), pp. 504-510

A.K. Badhan, B.S. Chadha, K.G. Sonia, H.S. Saini, M.K. Bhat Functionally diverse multiple xylanases of thermophilic fungus Myceliophthora sp. IMI 387099 Enzy. Microb. Technol., 35 (2004), pp. 460-466

M. Bar, G. Golan, M. Nechama A new crystal form of XT6 enables a significant improvement of its diffraction quality and resolution Acta. Crystallogr., D.60 (2004), pp. 545-549

A. Basit, J. Liu, T. Miao, F. Zheng, K. Rahim, H. Lou, W. Jiang Characterization of two Endo-β-1, 4-Xylanases from Myceliophthora thermophila and their saccharification efficiencies
Synergistic with Commercial Cellulase. Front. Microbiol., 9 (2018), p. 233

N. Basotra, S. Joshi, T. Satyanarayana, P.K. Pati, A. Tsang, B.S. Chadha Expression of catalytically efficient xylanases from thermophilic fungus Malbranchea cinnamomea for synergistically enhancing hydrolysis of lignocellulosics Int. J. Biol. Macromol., 108 (2018), pp. 185-192

N. Basotra, B. Kaur, M. Di. Falco, A. Tsang, B.S. Chadha Mycothermus thermophilus (Syn. Scytalidium thermophilum): Repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed Bioresour. Technol., 222 (2016), pp. 413-421

N.A. Bennett, J. Ryan, P. Biely, M. Vrsanska, L. Kremnicky, B.J. Macris, D. Kekos, P.Christakopoulos, P. Katapodis, M. Claeyssens, W. Nerinckx Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Thermomyces lanuginosus ATCC 46882 Carbohydr. Res., 306 (1998), pp. 445-455

A. Bhalla, K.M. Bischoff, R.K. Sani Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass Front. Bioeng. Biotechnol., 3 (2015), p. 84

R.M. Berka, I.V. Grigoriev, R. Otillar, A. Salamov, J. Grimwood, I. Reid, N. Ishmael, T. John, C.Darmond, M.C. Moisan, B. Henrissat Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris Nat. Biotechnol., 29 (2011), pp. 922-927

Z. Bibi, A. Ansari, R.R. Zohra, A. Aman, S.A.U. Qader Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29 J. Radiat. Res. Appl. Sci., 7 (2014), pp. 478-485

M. Bibra, V. Kunreddy, R. Sani Thermostable Xylanase Production by Geobacillus sp. Strain DUSELR13, and Its Application in Ethanol Production with Lignocellulosic Biomass Microorganisms, 6 (2018), p. 93

R. Biswas, V. Sahai, S. Mishra, V.S. Bisaria Bioprocess strategies for enhanced production of xylanase by Melanocarpus albomyces IITD3A on agro-residual extract J. Biosci. Bioeng., 110 (2010), pp. 702-708

R. Biswas, V. Sahai, S. Mishra, V.S. Bisaria Development of mutants of Melanocarpus albomyces for hyperproduction of xylanase Biotechnol. Bioproc. Eng., 15 (2010), pp. 800-809

S. Boonrung, S. Katekaew, W. Mongkolthanaruk, T. Aimi, S. Boonlue Purification and characterization of low molecular weight extreme alkaline xylanase from the thermophilic fungus Myceliophthora thermophila BF1-7 Mycosci., 57 (2018), pp. 408-416

K. Boonyapakron, A. Jaruwat, B. Liwnaree Structure-based protein engineering for thermostable and alkaliphilic enhancement of endo-b-1,4-xylanase for applications in pulp bleaching J Biotech., 259 (2017), pp. 95-102

M.S. Butt, M. Tahir-Nadeem, Z. Ahmad, M.T. Sultan Xylanases and their applications in baking industry Food Technol., Biotechnol (2008), p. 46

K.P. Buzała, P. Przybysz, H. Kalinowska, M. Derkowska Effect of cellulases and xylanases on refining process and kraft pulp properties PloS one, 11 (2016), p. 0161575

B.S. Chadha, A. Badhan, F. Mello, M.K. Bhat Two endoxylanases active and stable at alkaline pH from newly isolated thermophilic fungus, Myceliophthora sp.IMI 387099 J. Biotechnol., 109 (2004), pp. 227-237

H. Chakdar, M. Kumar, K. Pandiyan, A. Singh, K. Nanjappan, P.L. Kashyap, A.K. Srivastava Bacterial xylanases:biology to biotechnology. 3 Biotech., 6 (2016), p. 150

X.L. Chen, F. Zhao, Y.S. Yue, Y.Z. Zhang, P.Y. Li A new group of modular xylanases in glycoside hydrolase family * from marine bacteria Appl. Environ. Microbiol., 84 (2018), pp. 01785-1818

Y.S. Cheng, C.C. Chen, C.H. Huang Structural analysis of a glycoside hydrolase family 11 xylanase from Neocallimastix patriciarum: insights into the molecular basis of a thermophilic enzyme J Biol Chem., 289 (2014), pp. 11020-11028

F. Cheng, J. Sheng, R. Dong, Y. Men, L. Gan, L. Shen Novel xylanase from a holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic acid production from wheat straw J. Agric. Food Chem., 60 (2012), pp. 12516-12524

T. Collins, C. Gerday, G. Feller Xylanases, xylanase families and extremophilic xylanases FEMS Microbiol Rev., 29 (2005), pp. 3-23

H.A.L. Darkazali, V. Meevootisom, D. Isarangkul, S. Wiyakrutta Gene Expression and Molecular Characterization of a Xylanase from Chicken Cecum Metagenome Int. J. Microbiol (2017), 10.1155/2017/4018398

D. Dodd, I.O. Cann Enzymatic deconstruction of xylan for biofuel production GCB Bioenergy., 1 (2009), pp. 2-17

Y. Du, P. Shi, H. Huang, X. Zhang, H. Luo, Y. Wang, B. Yao Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry Bioresour. Technol., 130 (2013), pp. 161-167

G. Fan, P. Katrolia, H. Jia, S. Yang, Q. Yan, Z. Jiang High-level expression of a xylanase gene from the thermophilic fungus Paecilomyces thermophilain Pichia pastoris Biotechnol. Lett., 34 (2012), pp. 2043-2048

F. Freire, verma, A., Bule, P., Alves, V.D., Fontes, C.M.G., Goyal, A., Najmudin, S. Conservation in the mechanism of glucuronoxylan hydrolysis revealed by the structure of glucuronoxylan xylanohydrolase (CtXyn30A) from Clostridium thermocellum Str. Biol., D72 (2016), pp. 1162-1173

M. Frommhagen, M.J. Koetsier, A.H. Westphal, J. Visser, S.W. Hinz, J.P. Vincken, W.J.Berkel, M.A. Kabel, H. Gruppen Lytic polysaccharide monooxygenases from Myceliophthor thermophila C1 differ in substrate preference and reducing agent specificity Biotechnol. Biofuels., 9 (2016), p. 186

R.K. Ganju, P.J. Vithayathil, S.K. Murthy Purification and characterization of two xylanases from Chaetomium thermophile var. coprophile Can. J. Microbiol., 35 (1989), pp. 836-842

Y. Garcia- Haunte, M. Cayetano Cruz, A.S. Hernandez, C.C. Ramirez, R.M. Moreno, J.E. Campos, G.A. Osorio, Cardoza., C.G.B., Estrada, S.T., Lara, M.E.H. The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag! Produces a hyperthermophilc and thermostable β-1,4-xylanase with exo- and endo-activity Extremophiles., 21 (2017), pp. 175-186

J. Gerasimova, N. Kuisiene Characterization of the novel xylanase from the thermophilic Geobacillus thermodenitrificans JK1 Microbiol., 81 (2012), pp. 418-424

G. Gupta, V. Sahai, R.K. Gupta Optimization of xylanase production from Melanocarpus albomyces using wheat straw extract and its scale up in stirred tank bioreactor Ind. J. Chem. Technol., 20 (2013), pp. 282-289

S.W. Hinz, L. Pouvreau, R. Joosten, J. Bartels, M.C. Jonathan, J. Wery, H.A. Schols Hemicellulase production in Chrysosporium lucknowense C1 J. Cereal Sci, 50 (2009), pp. 318-323

D. Huang, J. Liu, Y. Qi, K. Yang, Y. Xu, L. Feng Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-l-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2 Appl. Microbiol. Biotechnol., 101 (2017), pp. 6023-6037

X. Huang, Z. Li, C. Du, J. Wang, S. Li Improved expression and characterization of a multidomain xylanase from Thermoanaerobacterium aotearoense SCUT27 in Bacillus subtilis J. Agricul. Food Chem., 63 (2015), pp. 6430-6439

S. Hüttner, Z. Granchi, T.T. Nguyen, S. van Pelt, J. Larsbrink, V.N. Thanh, L. Olsson Genome sequence of Rhizomucor pusillus FCH 5.7, a thermophilic zygomycete involved in plant biomass degradation harbouring putative GH9 endoglucanasesBiotechnol. Rep., 20 (2018), p. 00279

S. Hüttner, T.T. Nguyen, Z. Granchi, T. Chin-A-Woeng, D. Ahrén, J. Larsbrink, V.N. Thanh, L.Olsson Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea Biotechnol. Biofuels, 10 (2017), p. 265

M. Irfan, C.F. Gonzalez, S. Raza, M. Rafiq, F. Hasan, S. Khan, A.A. Shah Improvement in thermostability of xylanase from Geobacillus thermodenitrificans C5 by site directed mutagenesis Enz. Microb. Technol., 111 (2018), pp. 38-47

K.K. Jain, T.B. Dey, S. Kumar, R.C. Kuhad Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacusRCKK: a potential fungus Bioprocess and Biosys. Eng., 38 (2015), pp. 787-796

Y.S. Jeong, H.B. Na, S.K. Kim, Y.H. Kim, E.J. Kwon, J. Kim, H.D. Yun, J.K. Lee, H. Kim Characterization of Xyn10J, a novel family 10 xylanase from a compost metagenomic library Appl. Biochem. Biotechnol., 166 (2012), pp. 1328-1339

X. Jia, S. Mi, J. Wang, W. Qiao, X. Peng, Y. Han Insight into glycoside hydrolases for debranched xylan degradation from extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus PloS one, 9 (2014), Article e106482

E. Kalogeris, P. Christakopoulos, M. Vršanská, D. Kekos, P. Biely, B.J. Macris Catalytic properties of the endoxylanase I from Thermoascus aurantiacus J. Mol. Catal. B: Enz., 11 (2001), pp. 491-501

A. Karnaouri, E. Topakas, I. Antonopoulou, P. Christakopoulos Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophile Front Microbiol., 5 (2014), p. 281

P. Katapodis, V. Christakopoulou, D. Kekos, P. Christakpoulos Optimization of xylanase production by Chaetomium thermophilum in wheat straw using response surface methodology Biochem. Eng. J., 35 (2007), pp. 136-141

M.A. Kolbusz, M. Di Falco, N. Ishmael, S. Marqueteau, M.C. Moisan, C. da Silva Baptista, J.Powlowski, A. TsangTranscriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophile Fungal Genet. Biol., 72 (2014), pp. 10-20

K.S. Kumar, A. Manimaran, K. Permaul, S. Singh Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp J. Biosci. Bioeng., 107 (2009), pp. 494-498

V. Kumar, J. Marin-Navarro, P. Shukla Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. W.J.Microbiol Biotechnol., 32 (2016), p. 34

E.J. Kwon, Y.S. Jeong, Y.H. Kim, S.K. Kim, H.B. Na, J. Kim, H.D. Yun, H. Kim Construction of a metagenomic library from compost and screening of cellulase-and xylanase-positive clones J. Kor. Soc. Appl. Biol. Chem., 53 (2010), pp. 702-708

Y. Le, H. Wang High-level soluble expression of a thermostable xylanase from thermophilic fungus Thermomyces lanuginosus in Escherichia coli via fusion with OsmY protein Protein Expr. Purif., 99 (2014), pp. 1-5

Leisola, M., J. Jokela, O. Pastinen, O. Turunen., H. Schoemaker. 2002. Industrial use of enzymes. In: Encyclopedia of Life Support Systems (EOLSS), EOLSS Publishers Co. Oxford UK.

X. Liu, T. Liu, Y. Zhang, F. Xin, S. Mi, B. Wen, T. Gu, X. Shi, F. Wang, L. Sun Structural insights into the thermophilic adaption mechanism of endo-1, 4-β-xylanase from Caldicellulosiruptor owensensis J. Agric. food Chem., 66 (2017), pp. 187-193

V. Lombard, H. Golaconda Ramulu, E. Drula, P.M. Coutinho, B. Henrissat The carbohydrate-active enzymes database (CAZy) in 2013 Nucleic acids research, 42 (2013), pp. D490-D495

D.B. Loureiro, M. Braia, D. Romanini, G. Tubio Partitioning of xylanase from Thermomyces lanuginosus in PEG/NaCit aqueous two-phase systems: Structural and functional approach Protein Expr. Purify., 129 (2017), pp. 25-30

I. Maalej, I. Belhaj, N.F. Masmoudi, H. Belghith Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: purification and characterization Appl. Biochem Biotechnol., 158 (2009), pp. 200-212

C. Mahajan, N. Basotra, S. Singh, M. Di Falco, A. Tsang, B.S. Chadha Malbranchea cinnamomea: a thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes Bioresour. Technol, 200 (2016), pp. 55-63

C. Mahajan, B.S. Chadha, L. Nain, A. Kaur Evaluation of glycosyl hydrolases from thermophilic fungi for their potential in bioconversion of alkali and biologically treated Parthenium hysterophorus weed and rice straw into ethanol Bioresour. Technol., 163 (2014), pp. 300-307

S. Mathew, A. Aronsson, E.N. Karlsson, P. Adlercreutz Xylo-and arabinoxylooligosaccharides from wheat bran by endoxylanases, utilisation by probiotic bacteria, and structural studies of the enzymes Appl. Microbiol Biotechnol., 102 (2018), pp. 3105-3120

N.P. Mchunu, S. Singh, K. Permaul Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli J. Biotechnol, 141 (2009), pp. 26-30

K. McPhillips, D.M. Waters, C. Parlet, D.J. Walsh, E.K. Arendt, P.G. Murray Purification and characterisation of a β-1, 4-xylanase from Remersonia thermophila CBS 540.69 and its application in bread making Appl. Biochem Biotechnol., 172 (2014), pp. 1747-1762

M. Mechelke, D.E. Koeck, J. Broeker, B. Roessler, F. Krabichler, W.H. Schearz, V.V.Zverlov, W. Liebl Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinixhemicellulosilytica-six new xylanase, three arabinofuranosidases and one xylosidase J. Biotechnol, 257 (2017), pp. 122-130

M. Mientus, S. Brady, A. Angelov, P. Zimmerman, B. Wemheuer, A. Schuldes, R. Daniel, W.Liebl Thermostable Xylanase and β-Glucanase derived from the Metagenome of the Avachinsky Crater in Kamchatka (Russia). (2013), 10.2174/2211550102999131128150257

S. Ming-zhe, Z. Hong-chen, M. Ling-cai, S. Jun-she, S. Hui, B. Yun-juan, P. Hai-sheng, Y.Zheng, Z. Xiu-qing, Z. Jing-sheng, L. Yi-han, L. Fu-ping Direct cloning, expression of a thermostable xylanase gene from the metagenomic DNA of cow dung compost and enzymatic production of xylooligosaccahrides from corn cob Biotechnol. Lett., 37 (2015), pp. 1877-1886

S Anuradha Nagar, Davender Kumar Mittal Lalit Kumar, Vijay Kumar Gupta. Immobilization of xylanase on glutaraldehyde activated aluminum oxide pellets for increasing digestibility of poultry feed Process Biochem, 47 (2012), pp. 1402-1410

P.H. Nielsen, K.M. Oxenbøll, H. Wenzel Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes A/S Int. J. Life Cycle Ass., 12 (2007), p. 432

D.S. Oliveira, C. Meherb-Dini, C.M. Franco, E. Gomes, R. Da-Silva Production of crude xylanase from Thermoascus aurantiacus CBMAI 756 aiming the baking process J. Food sci., 75 (2010), pp. 588-594

I.Q. Padilha, S.V. Valenzuela Mayorga, T.C. Grisi, P. Díaz Lucea, D.A. de Araújo, F.I.J.Pastor Blasco A glucuronoxylan-specific xylanase from a new Paenibacillus favisporus strain isolated from tropical soil of Brazil Int. Microbiol., 17 (2014), pp. 175-184

X. Peng, W. Qiao, S. Mi, X. Jia, H. Su, Y. Han Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment Biotechnol. Biofuels, 8 (2015), p. 131

J.C. Pereira, N.P. Marques, A. Rodrigues, T.B. Oliveira, M. Boscolo, R. de Silva, E. Gomes, B. Martins Thermophilic fungi as new sources for production of cellulase and xylanase with potential use in sugarcane bagasse saccharification J. Appl. Microbiol., 118 (2015), pp. 928-939

L. Ping, M. Wang, X. Yuan, F. Cui, D. Huang, W. Sun, B. Zou, S. Huo, H. Wang Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacus Int. J. Biol Macromol., 109 (2018), pp. 1270-1279

A. Pollet, J.A. Delcour, C.M. Courtin Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families Crit. Rev. Biotechnol., 30 (2010), pp. 176-191

C. Qian, N. Liu, X. Yan, Q. Wang, Z. Zhaou, Q. Wang
Engineering a high performance metagenomic derived novel xylanase with improved soluble protein yield and thermostability., 70 (2015), pp. 35-41

Lucas, G.L. Vitcosque, L.F. Ribeiro, R.J. Ward, M.V. Rubio, A.R.Damásio, F.M. Squina, R.C. Gregory, P.H. Walton, J.A. Jorge A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in bioTechnol Biotechnol. Biofuels., 7 (2014), p. 115

A. Robledo, C.N. Aguilar, R.E. Belmares-Cerda, A.C. Flores-Gallegos, J.C. Contreras-Esquivel, J.C. Montañez, S.I. Mussatto Production of thermostable xylanase by thermophilic fungal strains isolated from maize silage CyTA-J. Food, 14 (2016), pp. 302-308

M.A. Sainz-Polo, S.V. Valenzuela, B. González, F.J. Pastor, J. Sanz-Aparicio Structural analysis of glucuronoxylan specific Xyn30D and its attached CBM35 domain give insights into the role of modularity in specificity J. of Biol, Chem (2014), p. M114

B. Sari, O. Faiz, B. Genc, M. Sisecioglu, A. Adiguzel, G. Adiguzel New xylanolytic enzyme from Geobacillus galactosidasius BS61 from a geothermal resource in Turkey Int. J Biol. Macromol., 119 (2018), pp. 1017-1026

T. Schuerg, J.P. Prahl, R. Gabriel, S. Harth, F. Tachea, C.S. Chen, M. Miller, F. Masson, Q.He, S. Brown, M. Mirshiaghi Xylose induces cellulase production in Thermoascus aurantiacus Biotechnol. Biofuels., 10 (2017), p. 271

M. Sharma, B.S. Chadha, H.S. Saini Purification and characterization of two thermostable xylanases from Malbranchea flava active under alkaline conditions Bioresour Technol, 101 (2010), pp. 8834-8842

Sharma, M., Mahajan, C., Bhatti, M.S., Chadha, B.S., 2016. Profiling and production of hemicellulases by thermophilic fungus Malbranchea flava and the role of xylanases in improved bioconversion of pretreated lignocellulosics to ethanol. 3 Biotech, 6, p.30.

P. Shi, Y. Du, H. Yang, H. Huang, X. Zhang, Y. Wang, B. Yao Molecular characterization of a new alkaline-tolerant xylanase from Humicola insolens Y1 BioMed Res, Int (2015)

S. Shulami, O. Shenker, Y. Langut, N. Lavid, O. Gat, G. Zaide, A. Zehavi, A.L. Sonenshein, Y. Shoham Multiple regulatory mechanisms control the expression of the Geobacillus stearothermophilusgene for extracellular xylanase J. Biol Chem (2014), p. M114

S. Singh, A.M. Madlala, B.A. Prior Thermomyces lanuginosus: properties of strains and their hemicellulases FEMS Micobiol. Rev., 27 (2003), pp. 3-16

K.G. Sonia, B.S. Chadha, H.S. Saini Sorghum straw for xylanase hyper-production by Thermomyces lanuginosus (D2W3) under solid-state fermentation Bioresour Technol, 96 (2005), pp. 1561-1569

F.J. St John, C. Crooks, D. Dietrich, J. Hurlbert Xylanase 30 A from Clostridium thermocellum functions as a glucuronoxylan xylanohydrolase J. Mol. Catal. B: Enzy., 133 (2016), pp. S445-S451

T. Teeravivattanakit, S. Baramee, P. Phitsuwan, R. Waeonukul, P. Pason, C.Tachaapaikoon, K. Sakka, K. Ratanakhanokchai A Novel Trifunctional Xylanolytic Enzyme Axy43A from Paenibacillus curdlanolyticus B-6 Exhibiting Endo-Xylanase, β-d-Xylosidase, and Arabinoxylan Arabinofuranohydrolase Activities Appl. Environ. Microbiol.AEM-02256. (2016)

M. Till, D. Goldstone, G. Card, G.T. Attwood, C.D. Moon, V.L. Arcus Structural analysis of the GH43 enzyme Xsa43E from Butyrivibrio proteoclasticus Struc. Comm., F70 (2014), pp. 1193-1198

B.B. Ustinov, A.V. Gusakov, A.I. Antonov, A.P. Sinitsyn Comparison of properties and mode of action of six secreted xylanases from Chrysosporium lucknowense Enz. Microb. Technol, 43 (2008), pp. 56-65

C. Vafiadi, P. Christakopoulos, E. Topakas Purification, characterization and mass spectrometric identification of two thermophilic xylanases from Sporotrichum thermophile
Proc. Biochem, 45 (2010), pp. 419-424

S.V. Valenzuela, P. Diaz, F.J. Pastor A modular glucuronoxylan-specific xylanase with a carbohydrate binding module of family CBM35 Appl. Environ. Microbiol.AEM-07932. (2012)

S.V. Valenzuela, S. Lopez, P. Biely, J. Sanz-Aparico, F.I.J. Pastor The glycoside hydrolase family 8 reducing-end xylose-releasing exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 is active on branched xylooligosaccharides Appl. Environ. Micobiol., 82 (2016), pp. 5116-5124

J. Van den Brink, G.C.J. Van Muiswinkel, R.P. de Vries Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothalica Appl. Environ. Micrbiol., 79 (2013), pp. 1316-1324

M. Vardakou, J. Flint, P. Christakopoulos, R.J. Lewis, H.J. Gilbert, J.W. Murray A family 10 Thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants J. Mol. Biol., 352 (2005), pp. 060-1067

A.K. Verma, A. Goyal A novel member of family 30 glycoside hydrolase subfamily 8 glucuronoxylan endo-β-1, 4-xylanase (CtXynGH30) from Clostridium thermocellum orchestrates catalysis on arabinose decorated xylans J. Molecul. Catal. B: Enzy., 129 (2016), pp. 6-14

D. Verma, Y. Kawarabayasi, K. Miyazaki, T. Satyanarayana Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome PLoS one, 8 (2013), p. 52459

D. Verma, T. Satyanarayana Improvement in thermostability of metagenomic GH11 endoxylanase (Mxyl) by site-directed mutagenesis and its applicability in paper pulp bleaching process J. Ind. Microbiol. Biotechnol., 40 (2013), pp. 1373-1381

X. Wang, R. Ma, X. Xie, W. Liu, T. Tu, F. Zheng, S. You, J. Ge, H. Xie, B. Yao, H. Luo Thermostability improvement of a Talaromyces leycettanus xylanase by rational protein engineering Sci. Rep., 7 (2017), p. 15287

X. Wang, F. Zheng, Y. Wang, T. Tu, R. Ma, X. Su, S. You, B. Yao, X. Xie, H. Luo Improvement of the catalytic efficiency of a hyperthermophilic xylanase from Bispora sp MEY-1. PloS one, 12 (2017)

Y. Wang, Z. Fu, H. Huang, H. Zhang, B. Yao, H. Xiong, O. Turunen Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge Bioresour Technol, 112 (2012), pp. 275-279

A.M. Winger, J.L. Heazlewood, L.J.G. Chan, C.J. Petzold, K. Permaul, S. Singh Secretome analysis of the thermophilic xylanase hyper-producer Thermomyces lanuginosusSSBP cultivated on corn cobs J. Ind. Microbiol. Biotechnol., 41 (2014), pp. 1687-1696

H. Xiong, A. Nyyssölä, J. Jänis, O. Pastinen, N. von Weymarn, M. Leisola, O. Turunen Characterization of the xylanase produced by submerged cultivation of Thermomyces lanuginosus DSM 10635 Enzy. Microb. Technol., 35 (2004), pp. 93-99

X. Xue, R. Wang, T. Tu, P. Shi, R. Ma, H. Luo, B. Yao, X. Su The N-terminal GH10 domain of a multimodular protein from Caldicellulosiruptorbescii is a versatile xylanase/β-glucanase that can degrade crystalline cellulose Appl. Environ Microbiol. (2015) AEM-00432

Z. Yang, Z. Zhang Codon-optimized expression and characterization of a pH stable fungal xylanase in Pichia pastoris Proc. Biochem., 53 (2017), pp. 80-87

L. Zhao, K. Meng, P. Shi, Y. Bai, H. Luo, H. Huang, Y. Wang, P. Yang, B. Yao A novel thermophilic xylanase from Achaetomium sp. Xz-8 with high catalytic efficiency and application potentials in the brewing and other industries Proc. Biochem., 48 (2013), pp. 1879-1885
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top