Login | Register

The influence of truncating the carboxy-terminal amino acid residues of streptococcal enolase on its ability to interact with canine plasminogen

Title:

The influence of truncating the carboxy-terminal amino acid residues of streptococcal enolase on its ability to interact with canine plasminogen

Deshmukh, Sasmit S., Kornblatt, M. Judith and Kornblatt, Jack A. ORCID: https://orcid.org/0000-0002-9802-8321 (2019) The influence of truncating the carboxy-terminal amino acid residues of streptococcal enolase on its ability to interact with canine plasminogen. PLOS ONE, 14 (1). e0206338. ISSN 1932-6203

[thumbnail of Kornblatt-PLOS-2019.pdf]
Preview
Text (application/pdf)
Kornblatt-PLOS-2019.pdf - Published Version
Available under License Creative Commons Attribution.
3MB

Official URL: http://dx.doi.org/10.1371/journal.pone.0206338

Abstract

The native octameric structure of streptococcal enolase from Streptococcus pyogenes increasingly dissociates as amino acid residues are removed one by one from the carboxy-terminus. These truncations gradually convert native octameric enolase into monomers and oligomers. In this work, we investigated how these truncations influence the interaction between Streptococcal enolase and canine plasminogen. We used dual polarization interferometry (DPI), localized surface plasmon resonance (LSPR), and sedimentation velocity analytical ultracentrifugation (AUC) to study the interaction. The DPI was our first technique, was performed on all the truncations and used one exclusive kind of chip. The LSRP was used to show that the DPI results were not dependent on the type of chip used. The AUC was required to show that our surface results were not the result of selecting a minority population in any given sample; the majority of the protein was responsible for the binding phenomenon we observed. By comparing results from these techniques we identified one detail that is essential for streptococcal enolase to bind plasminogen: In our hands the individual monomers bind plasminogen; dimers, trimers, tetramers may or may not bind, the fully intact, native, octamer does not bind plasminogen. We also evaluated the contribution to the equilibrium constant made by surface binding as well as in solution. On a surface, the association coefficient is about twice that in solution. The difference is probably not significant. Finally, the fully octameric form of the protein that does not contain a hexa-his N-terminal peptide does not bind to a silicon oxynitride surface, does not bind to an Au-nanoparticle surface, does not bind to a surface coated with Ni-NTA nor does it bind to a surface coated with DPgn. The likelihood is great that the enolase species on the surface of Streptococcus pyogenes is an x-mer of the native octamer.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Article
Refereed:Yes
Authors:Deshmukh, Sasmit S. and Kornblatt, M. Judith and Kornblatt, Jack A.
Journal or Publication:PLOS ONE
Date:2019
Funders:
  • Concordia Open Access Author Fund
  • Natural Sciences and Engineering Research Council of Canada, Grant Number 9988-2006
Digital Object Identifier (DOI):10.1371/journal.pone.0206338
ID Code:985057
Deposited By: Krista Alexander
Deposited On:13 Mar 2019 20:06
Last Modified:13 Mar 2019 20:06

References:

1. Miles L. A., Dahlberg C. M., Plescia J., Felez J., Kato K., and Plow E. F. Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry. 1991;30:1682–1691. pmid:1847072

2. Fox D. and Smulian A. G. Plasminogen-binding activity of enolase in the opportunistic pathogen Pneumocystis carinii. Med.Mycol. 2001;39:495–507. pmid:11798055

3. Lottenberg R., Minning-Wenz D., and Boyle M. D. Capturing host plasmin(ogen): a common mechanism for invasive pathogens? Trends Microbiol. 1994;2:20–24. pmid:8162432

4. Pancholi V. and Fischetti V. A. α-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J.Biol.Chem. 1998;273:14503–14515. pmid:9603964

5. Attali C., Durmort C., Vernet T., and Di Guilmi A. M. The interaction of Streptococcus pneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage. Infect.Immun. 2008;76:5350–5356. pmid:18725422

6. Sumitomo T., Nakata M., Higashino M., Yamaguchi M., and Kawabata S. Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions. Sci.Rep. 2016;7:20069– pmid:26822058

7. Bachmann F. Molecular aspects of plasminogen, plasminogen activators and plasmin. 1994;525–600.

8. Law R. H., Caradoc-Davies T., Cowieson N., Horvath A. J., Quek A. J., Encarnacao J. A., Steer D., Cowan A., Zhang Q., Lu B. G., Pike R. N., Smith A. I., Coughlin P. B., and Whisstock J. C. The X-ray crystal structure of full-length human plasminogen. Cell Rep. 2012;1:185–190. pmid:22832192

9. Xue Y., Bodin C., and Olsson K. Crystal structure of the native plasminogen reveals an activation-resistant compact conformation. J.Thromb.Haemost. 2012;10:1385–1396. pmid:22540246

10. Cork A. J., Ericsson D. J., Law R. H., Casey L. W., Valkov E., Bertozzi C., Stamp A., Jovcevski B., Aquilina J. A., Whisstock J. C., Walker M. J., and Kobe B. Stability of the octameric structure affects plasminogen-binding capacity of streptococcal enolase. PLoS.One. 2015;10:e0121764– pmid:25807546

11. Cork A. J., Jergic S., Hammerschmidt S., Kobe B., Pancholi V., Benesch J. L., Robinson C. V., Dixon N. E., Aquilina J. A., and Walker M. J. Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J.Biol.Chem. 2009;284:17129–17137. pmid:19363026

12. Ehinger S., Schubert W. D., Bergmann S., Hammerschmidt S., and Heinz D. W. Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J.Mol.Biol. 2004;343:997–1005. pmid:15476816

13. Ferretti J. J., McShan W. M., Ajdic D., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S. W., Roe B. A., and McLaughlin R. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc.Natl.Acad.Sci.U.S.A. 2001;98:4658–4663. pmid:11296296

14. Derbise A., Song Y. P., Parikh S., Fischetti V. A., and Pancholi V. Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect.Immun. 2004;72:94–105. pmid:14688086

15. Balhara V., Deshmukh S. S., Kalman L., and Kornblatt J. A. The interaction of streptococcal enolase with canine plasminogen: the role of surfaces in complex formation. PLoS.One. 2014;9:e88395– pmid:24520380

16. Kornblatt M. J., Kornblatt J. A., and Hancock M. A. The interaction of canine plasminogen with Streptococcus pyogenes enolase: they bind to one another but what is the nature of the structures involved? PLoS.One. 2011;6:e28481– pmid:22174817

17. Kornblatt J. A., Quiros V., and Kornblatt M. J. The Energetics of Streptococcal Enolase Octamer Formation: The Quantitative Contributions of the Last Eight Amino Acids at the Carboxy-Terminus. PLoS.One. 2015;10:e0135754– pmid:26287818

18. Kornblatt J. A., Barretto T. A., Chigogidze K., and Chirwa B. Canine Plasminogen: Spectral responses to changes in 6-aminohexanoate and temperature. Analytical Chemistry Insights. 2007;2:17–29. pmid:19662173

19. Karbassi F., Quiros V., Pancholi V., and Kornblatt M. J. Dissociation of the octameric enolase from S. pyogenes—one interface stabilizes another. PLoS.One. 2010;5:e8810– pmid:20098674

20. Coffey P. D., Swann M. J., Waigh T. A., Mu Q. S., and Lu J. R. The structure and mass of heterogeneous thin films measured with dual polarization interferometry and ellipsometry. Rsc Advances. 2013;3:3316–3324.

21. Daghestani H. N. and Day B. W. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors. Sensors. 2010;10:9630–9646. pmid:22163431

22. Feng X. Y., Gao F., Qin P. Y., Ma G. H., Su Z. G., Ge J., Wang P., and Zhang S. P. Real Time Monitoring of On-Chip Coenzyme Regeneration with SPR and DPI. Analytical Chemistry. 2013;85:2370–2376. pmid:23339632

23. Hirst D. J., Lee T. H., Swann M. J., Unabia S., Park Y., Hahm K. S., and Aguilar M. I. Effect of acyl chain structure and bilayer phase state on binding and penetration of a supported lipid bilayer by HPA3. Eur.Biophys.J. 2011;40:503–514. pmid:21222117

24. Lee T. H., Hall K. N., Swann M. J., Popplewell J. F., Unabia S., Park Y., Hahm K. S., and Aguilar M. I. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1. Biochim.Biophys.Acta. 2010;1798:544–557. pmid:20100457

25. Swann M. J., Peel L. L., Carrington S., and Freeman N. J. Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Analytical Biochemistry. 2004;329:190–198. pmid:15158477

26. Balhara V., Schmidt R., Gorr S. U., and Dewolf C. Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K. Biochim.Biophys.Acta. 2013;1828:2193–2203. pmid:23747365

27. Das A., Zhao J., Schatz G. C., Sligar S. G., and Van Duyne R. P. Screening of type I and II drug binding to human cytochrome P450-3A4 in nanodiscs by localized surface plasmon resonance spectroscopy. Anal.Chem. 2009;81:3754–3759. pmid:19364136

28. Mayer K. M. and Hafner J. H. Localized surface plasmon resonance sensors. Chem.Rev. 2011;111:3828–3857. pmid:21648956

29. McGurn L. D., Moazami-Goudarzi M., White S. A., Suwal T., Brar B., Tang J. Q., Espie G. S., and Kimber M. S. The structure, kinetics and interactions of the beta-carboxysomal beta-carbonic anhydrase, CcaA. Biochem.J. 2016;473:4559–4572. pmid:27729545

30. Piazza M., Dieckmann T., and Guillemette J. G. Structural Studies of a Complex Between Endothelial Nitric Oxide Synthase and Calmodulin at Physiological Calcium Concentration. Biochemistry. 2016;

31. Yonzon C. R., Jeoung E., Zou S., Schatz G. C., Mrksich M., and Van Duyne R. P. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. J.Am.Chem.Soc. 2004;126:12669–12676. pmid:15453801

32. Zhao J., Zhang X., Yonzon C. R., Haes A. J., and Van Duyne R. P. Localized surface plasmon resonance biosensors. Nanomedicine.(Lond). 2006;1:219–228.

33. Zhao J., Das A., Zhang X., Schatz G. C., Sligar S. G., and Van Duyne R. P. Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome p450. J.Am.Chem.Soc. 2006;128:11004–11005. pmid:16925400

34. Kornblatt J. A. and Schuck P. Influence of temperature on the conformation of canine plasminogen: an analytical ultracentrifugation and dynamic light scattering study. Biochemistry. 2005;44:13122–13131. pmid:16185080

35. Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys.J. 2000;78:1606–1619. pmid:10692345

36. Schuck P., Perugini M. A., Gonzales N. R., Howlett G. J., and Schubert D. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys.J. 2002;82:1096–1111. pmid:11806949

37. Schuck P., Zhao H., Brautigam C. A., and Ghirlando R. Basic principles of analytical ultracentrifugation. 2015;1:1–302.

38. Zhao H., Balbo A., Brown P. H., and Schuck P. The boundary structure in the analysis of reversibly interacting systems by sedimentation velocity. Methods. 2011;54:16–30. pmid:21315155

39. Schuck P. Sedimentation velocity analytical ultracentrifugation. 2016;1:1–244.

40. Stafford W. F. III. Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal.Biochem. 1992;203:295–301. pmid:1416025

41. Philo J. S. Is any measurement method optimal for all aggregate sizes and types? AAPS.J. 2006;8:E564–E571. pmid:17025274

42. Philo J. S. Improved methods for fitting sedimentation coefficient distributions derived by time-derivative techniques. Anal.Biochem. 2006;354:238–246. pmid:16730633

43. Bergmann S., Rohde M., Chhatwal G. S., and Hammerschmidt S. alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol.Microbiol. 2001;40:1273–1287. pmid:11442827

44. Bergmann S., Wild D., Diekmann O., Frank R., Bracht D., Chhatwal G. S., and Hammerschmidt S. Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol.Microbiol. 2003;49:411–423. pmid:12828639

45. Abaza M. S. and Atassi M. Z. Effects of amino acid substitutions outside an antigenic site on protein binding to monoclonal antibodies of predetermined specificity obtained by peptide immunization: demonstration with region 145–151 (antigenic site 5) of myoglobin. J.Protein Chem. 1992;11:687–698. pmid:1466763

46. Kornblatt M. J., Richard Albert J., Mattie S., Zakaib J., Dayanandan S., Hanic-Joyce P. J., and Joyce The Saccharomyces cerevisiae enolase-related regions encode proteins that are active enolases. Yeast. 2013;30:55–69. pmid:23359425

47. Lu Q., Lu H., Qi J., Lu G., and Gao G. F. An octamer of enolase from Streptococcus suis. Protein Cell. 2012;3:769–780. pmid:23055041
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top