Cheung, E., Taylor, K., Kornblatt, Jack A. ORCID: https://orcid.org/0000-0002-9802-8321, English, Ann M. ORCID: https://orcid.org/0000-0002-3696-7710, McLendon, G. and Miller, J. R. (1986) Direct measurements of intramolecular electron transfer rates between cytochrome c and cytochrome c peroxidase: effects of exothermicity and primary sequence on rate. Proceedings of the National Academy of Sciences, 83 (5). pp. 1330-1333. ISSN 0027-8424
Preview |
Text (Publisher's Version) (application/pdf)
758kB99.direct.pnas00309-0169.pdf - Published Version Available under License Spectrum Terms of Access. |
Official URL: https://doi.org/10.1073/pnas.83.5.1330
Abstract
Rapid mixing of ferrocytochrome c peroxidase [cyt c peroxidase(II)] and ferricytochrome c [cyt c(III)] results in the reduction of cyt c(III) by cyt c peroxidase(II). In 10 mM phosphate, pH 7.0, the rate of decay of cyt c peroxidase(II) and the rate of accumulation of cyt c(II) give equal first-order rate constants: k = 0.23 +/- 0.02 s-1. Equivalent results are obtained by pulse radiolysis using isopropanol radical as the reducing agent. This rate is independent of the initial cyt c(III):cyt c peroxidase(II) ratios. These results are consistent with unimolecular electron transfer occurring within a cyt c(III)-cyt c peroxidase(II) complex. When cyt c is replaced by porphyrin cyt c (iron-free cyt c), a complex still forms with cyt c peroxidase. On radiolysis, using e-aq as the reducing agent, intracomplex electron transfer occurs from the porphyrin cyt c anion radical to cyt c peroxidase(III) with k = 150 s-1. This large rate increase with increasing delta G degrees suggests that the barrier for intracomplex electron transfer is large. Finally, we have briefly investigated how the cyt c peroxidase(II)----cyt c(III) rate depends on the primary structure of cyt c(III). We find the reactivity order to be as follows: yeast (k = 3.4 s-1) greater than horse (k = 0.3 s-1) greater than tuna (k = 0.2 s-1). These results mirror a report [Ho, P. S., Sutoris, C., Liang, N., Margoliash, E. & Hoffman, B. M. (1985) J. Am. Chem. Soc. 107, 1070-1071] on excited state reactions of the cyt c/cyt c peroxidase couple.
Divisions: | Concordia University > Faculty of Arts and Science > Chemistry and Biochemistry |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Cheung, E. and Taylor, K. and Kornblatt, Jack A. and English, Ann M. and McLendon, G. and Miller, J. R. |
Journal or Publication: | Proceedings of the National Academy of Sciences |
Date: | March 1986 |
Digital Object Identifier (DOI): | 10.1073/pnas.83.5.1330 |
ID Code: | 985185 |
Deposited By: | MIA MASSICOTTE |
Deposited On: | 28 May 2019 14:00 |
Last Modified: | 29 May 2019 13:35 |
References:
1. Yonetani, T. (1976) in The Enzymes, ed. Boyer, P. D. (Academic, New York), Vol. 13, pp. 345-361.2. Erman, J. E. & Vitello, L. B. (1980) J. Biol. Chem. 255, 6224-6227.
3. Kang, C. H., Ferguson-Miller, S. & Margoliash, E. (1977) J. Biol. Chem. 252, 919-926.
4. Poulos, T. L., Freer, S. T., Alden, R. A., Edwards, S. L., Skogland, U., Takio, K., Eriksson, B., Xuong, N., Yonetani, T. & Kraut, J. (1980) J. Biol. Chem. 255, 575-580.
5. Swanson, R., Trus, B. L., Mandel, N., Mandel, G., Kallai, 0. B. & Dickerson, R. E. (1977) J. Biol. Chem. 252, 759-775.
6. Poulos, T. L. & Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330.
7. Chance, B., DeVault, D., Frauenfelder, M., Marcus, R. A., Schrieffer, J. R. & Sutin, N., eds. (1979) Tunneling in Biological Systems (Academic, New York).
8. DeVault, D. (1980) Q. Rev. Biophys. 13, 387-564.
9. Hopfield, J. J. (1974) Proc. Natl. Acad. Sci. USA 71, 3640-3644.
10. Jortner, J. (1980) J. Am. Chem. Soc. 102, 6676-6686.
11. Marcus, R. (1982) Faraday Discuss. Chem. Soc. 74, 7-15.
12. Purcell, W. L. & Erman, J. E. (1976) J. Am. Chem. Soc. 98, 7033-7037.
13. Taniguchi, V., Ellis, W. R., Cammarata, V., Webb, J., Anson, F. C. & Gray, H. B. (1982) in Electrochemical and Spectrochemical
Studies of Biological Redox Components, Advances in Chemistry Series, 201, ed. Kadish, K. M. (Am. Chem. Soc., Washington, DC), pp. 51-68.
14. Conroy, C. W., Tyma, P., Daum, P. H. & Erman, J. E. (1978) Biochim. Biophys. Acta 537, 62-69.
15. Potasek, M. J. (1978) Science 201, 151-153.
16. Ho, P. S., Sutoris, C., Liang, N., Margoliash, E. & Hoffman, B. M. (1985) J. Am. Chem. Soc. 107, 1070-1071.
17. Nelson, C. E., Sitzman, E. V., Kang, C. H. & Margoliash, E. (1977) Anal. Biochem. 83, 622-631.
18. Vanderkooi, J., Adar, F. & Erecinska, M. (1976) Eur. J. Biochem. 64, 381-387.
19. Ward, B. & Chang, C. K. (1982) Photochem. Photobiol. 35, 757-759.
20. McLendon, G. & Miller, J. R. (1985) J. Am. Chem. Soc. 107, 7811-7816.
21. English, A. M., McLendon, G. & Taylor, K. (1984) J. Am. Chem. Soc. 106, 6448-6449.
22. Iizuka, T., Makino, R., Ishimura, Y. & Yonetani, T. (1985) J. Biol. Chem. 260, 1407-1412.
23. Dekok, J., Butler, J., Braams, R. & Van Gelder, B. (1977) Biochim. Biophys. Acta 460, 290-298.
24. McGourty, J. L., Blough, N. V. & Hoffman, B. M. (1982) J. Am. Chem. Soc. 105, 4470-4472.
25. Crutchley, R. J., Ellis, W. R. & Gray, H. B. (1985) J. Am. Chem. Soc. 107, 5002-5004.
Repository Staff Only: item control page