Login | Register

Design of Substrate Integrated Gap Waveguide and Their Transitions to Microstrip Line, for Millimeter-Wave Applications

Title:

Design of Substrate Integrated Gap Waveguide and Their Transitions to Microstrip Line, for Millimeter-Wave Applications

Zhang, Jing, Zhang, Xiupu ORCID: https://orcid.org/0000-0003-2764-5397 and Kishk, Ahmed A. ORCID: https://orcid.org/0000-0001-9265-7269 (2019) Design of Substrate Integrated Gap Waveguide and Their Transitions to Microstrip Line, for Millimeter-Wave Applications. IEEE Access, 7 . pp. 154268-154276. ISSN 2169-3536

[thumbnail of J.Zhang-IEEE Access-2019.pdf]
Preview
Text (application/pdf)
J.Zhang-IEEE Access-2019.pdf - Published Version
Available under License Creative Commons Attribution.
9MB

Official URL: http://dx.doi.org/10.1109/ACCESS.2019.2933154

Abstract

This paper offers an approximate, but very convenient and accurate, manner to find the desired strip width for substrate integrated gap waveguide (SIGW) with a given characteristic impedance and the conductor and dielectric attenuation constants, without any complicated manual calculations or time-consuming full-wave simulation and optimization iterations. Moreover, the investigation of the transition between SIGW and microstrip lines will prove that an additional transition structure, such as a conventional microstrip taper, is not required any more at millimeter-wave frequencies for the desired transmission performance. This is a useful feature in circuit design and compactness. Both of the above works will be of great help to realize future feeding networks for SIGW antenna arrays or other types of cost-effective SIGW passive components at high frequencies. Two SIGW prototypes, working at Ka and V bands, are fabricated and offer experimental verifications, which present good agreement with the simulation results.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Refereed:Yes
Authors:Zhang, Jing and Zhang, Xiupu and Kishk, Ahmed A.
Journal or Publication:IEEE Access
Date:2019
Funders:
  • Concordia Open Access Author Fund
  • Fonds de recherche Nature et technologies
Digital Object Identifier (DOI):10.1109/ACCESS.2019.2933154
Keywords:Gap waveguide, millimeter waves, characteristic impedance, attenuation constant, transition, 5G
ID Code:986097
Deposited By: Krista Alexander
Deposited On:13 Nov 2019 22:09
Last Modified:13 Nov 2019 22:09

References:

1. P.-S. Kildal, A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, A. Valero-Nogueira, "Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression", IET Microw. Antennas Propag., vol. 5, pp. 262-270, Mar. 2011.

2. P.-S. Kildal, E. Alfonso, A. Valero-Nogueira, E. Rajo-Iglesias, "Local metamaterial-based waveguides in gaps between parallel metal plates", IEEE Antennas Wireless Propag. Lett., vol. 8, no. 4, pp. 84-87, Apr. 2009.

3. S. Rahiminejad, A. U. Zaman, E. Pucci, H. Raza, V. Vassilev, S. Haasl, P. Lundgren, P.-S. Kildal, P. Enoksson, "Micromachined ridge gap waveguide and resonator for millimeter-wave applications", Sens. Actuators A Phys., vol. 186, pp. 264-269, Oct. 2012.

4. H. Raza, J. Yang, P.-S. Kildal, E. A. Alós, "Microstrip-ridge gap waveguide–study of losses bends and transition to WR-15", IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 1943-1952, Sep. 2014.

5. E. Pucci, E. Rajo-Iglesias, J. L. Vázquez-Roy, P.-S. Kildal, "Planar dual-mode horn array with corporate-feed network in inverted microstrip gap waveguide", IEEE Trans. Antennas Propag., vol. 62, no. 7, pp. 3534-3542, Jul. 2014.

6. S. A. Razavi, P.-S. Kildal, L. Xiang, E. A. Alós, H. Chen, " \$2times2\$ -Slot element for 60-GHz planar array antenna realized on two doubled-sided PCBs using SIW cavity and EBG-type soft surface fed by microstrip-ridge gap waveguide ", IEEE Trans. Antennas Propag., vol. 62, no. 9, pp. 4564-4573, Sep. 2014.

7. M. S. Sorkherizi, A. A. Kishk, "Self-packaged low-loss planar bandpass filters for millimeter-wave application based on printed gap waveguide technology", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 7, no. 9, pp. 1419-1431, Sep. 2017.

8. E. Rajo-Iglesias, A. A. Brazález, "5G antenna in inverted microstrip gap waveguide technology including a transition to microstrip", Proc. Int. Symp. Antennas Propag., pp. 1042-1043, Oct. 2016.

9. A. A. Brazález, E. Rajo-Iglesias, J. L. Vázquez-Roy, A. Vosoogh, P.-S. Kildal, "Design and validation of microstrip gap waveguides and their transitions to rectangular waveguide for millimeter-wave applications", IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4035-4050, Dec. 2015.

10. B. Molaei, A. Khaleghi, "A novel wideband microstrip line to ridge gap waveguide transition using defected ground slot", IEEE Microw. Wireless Compon. Lett., vol. 25, no. 2, pp. 91-93, Feb. 2015.

11. A. U. Zaman, T. Vukusic, M. Alexanderson, P.-S. Kildal, "Design of a simple transition from microstrip to ridge gap waveguide suited for MMIC and antenna integration", IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1558-1561, 2013.

12. J. Zhang, X. Zhang, D. Shen, "Design of substrate integrated gap waveguide", IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-4, May 2016.

13. D. Shen, K. Wang, X. Zhang, "A substrate integrated gap waveguide based wideband 3-dB coupler for 5G applications", IEEE Access, vol. 6, pp. 66798-66806, 2018.

14. K. Eslami, K. Afrooz, "Rat-race power divider/combiner for 5G application using substrate integrated gap waveguide", Proc. 5th Int. Conf. Millim.-Wave THz Technol., pp. 101-104, Dec. 2018.

15. M. Dong, D. Shen, X. Zhang, W. Ren, Z.-H. Ma, R. Qian, H. Yuan, "Substrate integrated gap waveguide bandpass filters with high selectivity and wide stopband", IEEE MTT-S Int. Microw. Symp. Dig., pp. 285-288, Jun. 2018.

16. D. Shen, C. Ma, W. Ren, X. Zhang, Z. Ma, R. Qian, "A low-profile substrate-integrated-gap-waveguide-fed magnetoelectric dipole", IEEE Antennas Wireless Propag. Lett., vol. 17, no. 8, pp. 1373-1376, Aug. 2018.

17. C. Ma, M. Dong, D. Shen, "A printed magneto-electric dipole based on substrate integrated gap waveguide", Proc. 6th Asia–Pacific Conf. Antennas Propag., pp. 1-3, Oct. 2017.

18. J. Zhang, X. Zhang, A. A. Kishk, "Broadband 60 GHz antennas fed by substrate integrated gap waveguides", IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3261-3270, Jul. 2018.

19. D. Shen, C. Ma, X. Zhang, "Substrate integrated gap waveguide circularly polarized slot antenna", Proc. IEEE Asia–Pacific Conf. Antennas Propag., pp. 460-461, Aug. 2018.

20. A. Polemi, S. Maci, "Closed form expressions for the modal dispersion equations and for the characteristic impedance of a metamaterial-based gap waveguide", IET Microw. Antennas Propag., vol. 4, no. 8, pp. 1073-1080, Aug. 2010.

21. M. Bosiljevac, Z. Sipus, P.-S. Kildal, "Construction of Green’s functions of parallel plates with periodic texture with application to gap waveguides—A plane-wave spectral-domain approach", IET Microw. Antennas Propag., vol. 4, no. 11, pp. 1799-1810, Nov. 2010.

22. A. Polemi, S. Maci, P.-S. Kildal, "Dispersion characteristics of a metamaterial-based parallel-plate ridge gap waveguide realized by bed of nails", IEEE Trans. Antennas Propag., vol. 59, no. 3, pp. 904-913, Mar. 2011.

23. M. Vukomanović, M. Bosiljevac, Z. Šipuš, "Efficient analysis of gap-waveguide structures through a rigorous mode-matching approach", Proc. ELMAR, pp. 1-4, Sep. 2014.

24. A. T. Hassan, M. A. M. Hassan, A. A. Kishk, "Modeling and design empirical formulas of microstrip ridge gap waveguide", IEEE Access, vol. 6, pp. 51002-51010, 2018.

25. E. Alfonso, P.-S. Kildal, M. Baquero, A. Valero-Nogueira, "Study of the characteristic impedance of a ridge gap waveguide", Proc. IEEE Antennas Propag. Soc. Int. Symp., pp. 1-4, Jun. 2009.

26. H. Raza, J. Yang, P.-S. Kildal, E. Alfonso, "Resemblance between gap waveguides and hollow waveguides", IET Microw. Antennas Propag., vol. 7, no. 15, pp. 1221-1227, 2013.

27. D. M. Pozar, Microwave Engineering, New York, NY, USA:Wiley, 2011.

28. M. P. Kirley, J. H. Booske, "Surface resistance of copper from 400 to 850 GHz", Proc. IEEE 14th Int. Vac. Electron. Conf., pp. 1-2, May 2013.

29. I. Afifi, M. M. M. Ali, A.-R. Sebak, "Analysis and design of a wideband coaxial transition to metal and printed ridge gap waveguide", IEEE Access, vol. 6, pp. 70698-70706, 2018.

30. Y. Shi, W. Feng, H. Wang, W. Che, Q. Xue, J. Wang, J. Zhang, X. Qian, M. Zhou, B. Cao, "Novel W-band LTCC transition from microstrip line to ridge gap waveguide and its application in 77/79 GHz antenna array", IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 915-924, Feb. 2019.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top