Login | Register

Optimum Wideband High Gain Analog Beamforming Network for 5G Applications


Optimum Wideband High Gain Analog Beamforming Network for 5G Applications

Mujammami, Essa H. ORCID: https://orcid.org/0000-0001-8012-6022, Afifi, Islam ORCID: https://orcid.org/0000-0001-6519-0915 and Sebak, Abdelrazik B. ORCID: https://orcid.org/0000-0003-1057-6735 (2019) Optimum Wideband High Gain Analog Beamforming Network for 5G Applications. IEEE Access, 7 . pp. 52226-52237. ISSN 2169-3536

[thumbnail of Mujammami2-IEEE Access-2019.pdf]
Text (application/pdf)
Mujammami2-IEEE Access-2019.pdf - Published Version
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.1109/ACCESS.2019.2912119


A broadband high-gain millimeter-wave (mmWave) array beamforming network (BFN) design, analysis, and implementation based on the Rotman lens antenna array feeding are presented. The BFN is intended for operation in the (26-40) GHz frequency band for a wide range of potential applications in the fifth generation (5G). The system is made on Rogers substrate, RO6010, to provide compatibility with standard planar low-cost processing techniques for millimeter-wave monolithic integrated circuit (MMIC). The measured results show the system capability of 80° beam scanning for different angles at -39.7°, -26.5°, -13.3°, 0°, +13.3°, +26.5°, and +39.5° at 28 GHz. With these features in addition to being compact size, low profile, and lightweight, this BFN is suitable for various millimeter-wave and 5G applications such as the advanced multi-in multi-out (MIMO) systems, remote sensing, and automotive radar.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Authors:Mujammami, Essa H. and Afifi, Islam and Sebak, Abdelrazik B.
Journal or Publication:IEEE Access
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1109/ACCESS.2019.2912119
Keywords:5G antenna, automotive radar, beamforming, beam-switching, high gain, quasi-Yagi, remote sensing, Rotman lens
ID Code:986099
Deposited By: Krista Alexander
Deposited On:13 Nov 2019 22:12
Last Modified:13 Nov 2019 22:12


1. T. S. Rappaport et al., "Millimeter wave mobile communications for 5G cellular: It will work!", IEEE Access, vol. 1, pp. 335-349, 2013.

2. T. Inoue, "5G standards progress and challenges", Proc. IEEE Radio Wireless Symp. (RWS), pp. 1-4, Jan. 2017.

3. D. Liu, W. Hong, T. S. Rappaport, C. Luxey, W. Hong, "What will 5G antennas and propagation be?", IEEE Trans. Antennas Propag., vol. 65, pp. 6205-6212, Dec. 2017.

4. J. Lian, Y. Ban, C. Xiao, Z. Yu, " Compact substrate-integrated \$4times8\$ butler matrix with sidelobe suppression for millimeter-wave multibeam application ", IEEE Antennas Wireless Propag. Lett., vol. 17, no. 5, pp. 928-932, May 2018.

5. Y. Cao, K.-S. Chin, W. Che, W. Yang, E. S. Li, "A compact 38 GHz multibeam antenna array with multifolded butler matrix for 5G applications", IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2996-2999, 2017.

6. Y. J. Cho, G.-Y. Suk, B. Kim, D. K. Kim, C.-B. Chae, "RF lens-embedded antenna array for mmWave MIMO: Design and performance", IEEE Commun. Mag., vol. 56, no. 7, pp. 42-48, Jul. 2018.

7. A. Rahimian, "Design and performance of a Ku-band Rotman lens beamforming network for satellite systems", Prog. Electromagn. Res. B, vol. 28, pp. 41-55, Jan. 2013.

8. Y. Liu, H. Yang, D. Huang, J. Zhu, "A low sidelobe multibeam slot array antenna fed by Rotman lens", Proc. Loughborough Antennas Propag. Conf. (LAPC), pp. 1-5, Nov. 2016.

9. A. Pautz, M. Hägelen, R. Kulke, "Multiple target detection using Rotman lens beamforming", Proc. 18th Int. Radar Symp. (IRS), pp. 1-10, Jun. 2017.

10. O. Kilic, S. J. Weiss, "Rotman lens applications for the US Army: A review of history present and future", URSI Radio Sci. Bull., vol. 2010, no. 332, pp. 10-23, Jun. 2010.

11. E. Tolin, O. Litschke, S. Bruni, F. Vipiana, "Innovative Rotman lens setup for extended scan range array antennas", Proc. IEEE-APS Top. Conf. Antennas Propag. Wireless Commun. (APWC), pp. 252-255, Sep. 2017.

12. B. Jlassi, MEMS-Based Millimeter Front-end for Automotive Radar Applications, 2018, [online] Available: https://uwspace.uwaterloo.ca/handle/10012/12890.

13. R. Rotman, M. Tur, L. Yaron, "True time delay in phased arrays", Proc. IEEE, vol. 104, no. 3, pp. 504-518, Mar. 2016.

14. X. Wang, A. Akbarzadeh, L. Zou, C. Caloz, "Real-time spectrum sniffer for cognitive radio based on Rotman lens spectrum decomposer", IEEE Access, vol. 6, pp. 52366-52373, 2018.

15. M. A. Hassanien, R. Hahnel, D. Plettemeier, "A novel electronically wideband steering system using Rotman lens for 5G applications at 28 GHz", Proc. 12th Eur. Conf. Antennas Propag. (EuCAP), pp. 1-5, 2018.

16. T. K. V. Dai, T. Nguyen, O. Kilic, "Compact multi-layer microstrip Rotman lens design using coupling slots to support millimetre wave devices", IET Microw. Antennas Propag., vol. 12, no. 8, pp. 1260-1265, Jan. 2018.

17. J. Pourahmadazar, T. Denidni, "X-band substarte integrated Rotman Lens with ±24° scanning capability", Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, pp. 232-233, Jul. 2015.

18. S. A. R. Hosseini, Z. H. Firouzeh, M. Maddahali, "Design of Rotman lens antenna at Ku-band based on substrate integrated technology", J. Commun. Eng., vol. 3, no. 1, pp. 33-43, Jan./Jun. 2014.

19. K. Tekkouk, M. Ettorre, L. Le Coq, R. Sauleau, "Multibeam SIW slotted waveguide antenna system fed by a compact dual-layer Rotman lens", IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 504-514, Feb. 2016.

20. K. Tekkouk, M. Ettorre, R. Sauleau, "SIW Rotman lens antenna with ridged delay lines and reduced footprint", IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 3136-3144, Jun. 2018.

21. K. V. Hoel, S. Kristoffersen, N. Jastram, D. S. Filipovic, "3D printed Rotman lens", Proc. 47th Eur. Microw. Conf. (EuMC), pp. 125-128, Oct. 2017.

22. L. F. C. Suárez, D. V. N. Méndez, M. Baquero-Escudero, B. Bernardo-Clemente, S. M. Giner, "Transitions between Gap Waveguides for use in a phased array antenna fed by a Rotman lens", Proc. 8th Eur. Conf. Antennas Propag. (EuCAP), pp. 774-777, Apr. 2014.

23. F. C. Suárez, D. N. Méndez, M. Baquero-Escudero, "Rotman lens with ridge gap waveguide technology for millimeter wave applications", Proc. 7th Eur. Conf. Antennas Propag. (EuCAP), pp. 4006-4009, Apr. 2013.

24. J. Pourahmadazar, M. Farahani, T. Denidni, "Printed ridge gap waveguide Rotman lens for millimetre-wave applications", Proc. 18th Int. Symp. Antenna Technol. Appl. Electromagn. (ANTEM), pp. 1-2, Aug. 2018.

25. A. Rahimian, A. Alomainy, Y. Alfadhl, "A flexible printed millimetre-wave beamforming network for WiGig and 5G wireless subsystems", Proc. Loughborough Antennas Propag. Conf. (LAPC), pp. 1-5, Nov. 2016.

26. Setting the Scene for 5G: Opportunities & Challenges, Jan. 2019, [online] Available: https://www.itu.int/en/ITU-D/Documents/ITU_5G_REPORT-2018.pdf.

27. R. C. Hansen, "Design trades for Rotman lenses", IEEE Trans. Antennas Propag., vol. 39, no. 4, pp. 464-472, Apr. 1991.

28. W. Rotman, R. Turner, "Wide-angle microwave lens for line source applications", IEEE Trans. Antennas Propag., vol. AP-11, no. 6, pp. 623-632, Nov. 1963.

29. M. S. Smith, "Design considerations for Ruze and Rotman lenses", Radio Electron. Eng., vol. 52, no. 4, pp. 181-187, Apr. 1982.

30. T. Katagi, S. Mano, S. Sato, "An improved design method of Rotman lens antennas", IEEE Trans. Antennas Propag., vol. 32, no. 5, pp. 524-527, May 1984.

31. P. Simon, "Analysis and synthesis of Rotman lenses", Proc. 22nd AIAA Int. Commun. Satell. Syst. Conf. Exhib. (ICSSC), pp. 3196, May 2004.

32. A. Darvazehban, O. Manoochehri, M. A. Salari, P. Dehkhoda, A. Tavakoli, "Ultra-wideband scanning antenna array with rotman lens", IEEE Trans. Microw. Theory Techn., vol. 65, no. 9, pp. 3435-3442, Sep. 2017.

33. R. Uyguroglu, A. Y. Oztoprak, "A method for minimizing the phase errors of Rotman lenses", Proc. Int. Conf. Elect. Electron. Eng. (ELECO), pp. II-174-II-176, Nov. 2009.

34. E. O. Rausch, A. F. Peterson, "Rotman lens design issues", Proc. IEEE Antennas Propag. Soc. Int. Symp., vol. 2B, pp. 35-38, Jul. 2005.

35. C. W. Penney, "Rotman lens design and simulation in software [application notes]", IEEE Microw. Mag., vol. 9, no. 6, pp. 138-149, Dec. 2008.

36. E. Sbarra, L. Marcaccioli, R. V. Gatti, R. Sorrentino, "A novel Rotman lens in SIW technology", Proc. Eur. Radar Conf., pp. 236-239, Oct. 2007.

37. E. H. Mujammami, A. B. Sebak, "Wideband high gain printed Quasi-Yagi diffraction gratings-based antenna for 5G applications", IEEE Access, vol. 7, pp. 18089-18100, 2019.

38. M. Yunita, G. Hadi, Y. Isvara, A. Budiyarto, A. Budiyono, "Analysis of Vivaldi rectangular bow-tie and Quasi-Yagi antenna performance for S-band FMCW-SAR on UAV platform", J. Unmanned Syst. Technol., vol. 5, no. 3, pp. 76-79, 2018.

39. C. A. Balanis, Antenna Theory Analysis and Design, Hoboken, NJ, USA:Wiley, 2005.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top