Beltayib, Abduladeem ORCID: https://orcid.org/0000-0002-8405-1811 and Sebak, Abdel-Razik ORCID: https://orcid.org/0000-0003-1057-6735 (2019) Analytical Design Procedure for Forward Wave Couplers in RGW Technology Based on Hybrid PEC/PMC Waveguide Model. IEEE Access, 7 . pp. 119319-119331. ISSN 2169-3536
Preview |
Text (application/pdf)
1MBBeltayib2-IEEE Access-2019.pdf - Published Version Available under License Creative Commons Attribution. |
Official URL: http://dx.doi.org/10.1109/ACCESS.2019.2936306
Abstract
In this paper, a systematic design methodology of a 0dB and a 3dB forward couplers based on the ridge gap waveguide (RGW) technology is presented. This methodology is based on exact theoretical formulations rather than any approximate or empirical equations. The procedure of the proposed design methodology is mainly to build a virtual equivalent waveguide model. This waveguide has two horizontal upper and lower perfect electric conductor (PEC) walls, while the left and the right walls are made of perfect magnetic conductors (PMC). A detailed analysis for this hybrid PEC/PMC waveguide, a common waveguide for coupling, is introduced as the starting phase for designing the RGW couplers. The equivalent RGW coupler that assures the same operation of the hybrid PEC/PMC waveguide at a specific frequency range is deduced based on detailed theoretical aspects. Moreover, a simple analyzing of transitional bends and phase shifters with accurate calculations is presented in this paper, which are the fundamental building blocks of several mmW components such as the six-port junction and the butler matrix. The possibility of tuning the coupler center frequency is introduced without the need of using any nonlinear elements. The resulting RGW couplers are implemented through well-known full wave simulator (Ansoft HFSS), with verification through prototype measurements in order to confirm the validity of the proposed methodology. A good agreement is achieved between measurement and simulation results.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering |
---|---|
Item Type: | Article |
Refereed: | Yes |
Authors: | Beltayib, Abduladeem and Sebak, Abdel-Razik |
Journal or Publication: | IEEE Access |
Date: | 2019 |
Funders: |
|
Digital Object Identifier (DOI): | 10.1109/ACCESS.2019.2936306 |
Keywords: | Hybrid forward couplers, periodic structure, ridge gap waveguide, hybrid PEC/PMC waveguide |
ID Code: | 986105 |
Deposited By: | Krista Alexander |
Deposited On: | 21 Nov 2019 20:19 |
Last Modified: | 21 Nov 2019 20:19 |
References:
1. W. A. Tyrrell, "Hybrid circuits for microwaves", Proc. IRE., vol. 35, pp. 1294-1306, Nov. 1947.2. S. B. Cohn, "The re-entrant cross section and wide-band 3-dB hybrid couplers", IEEE Trans. Microw. Theory Techn., vol. MTT-11, no. 4, pp. 254-258, Jul. 1963.
3. B. Sheleg, B. E. Spielman, "Broadband (7–18 GHz) 10 dB overlay coupler for MIC application", Electron. Lett., vol. 11, no. 8, pp. 175-176, Apr. 1975.
4. G. H. Zhai, W. Hong, K. Wu, J. X. Chen, P. Chen, J. Wei, H. J. Tang, "Folded half mode substrate integrated waveguide 3 dB coupler", IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 512-514, Aug. 2008.
5. A. A. Sakr, W. M. Dyab, K. Wu, "Theory of polarization-selective coupling and its application to design of planar orthomode transducers", IEEE Trans. Antennas Propag., vol. 66, no. 2, pp. 749-762, Feb. 2018.
6. A. A. Sakr, W. M. Dyab, K. Wu, "Design methodologies of compact orthomode transducers based on mechanism of polarization selectivity", IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1279-1290, Mar. 2018.
7. S. I. Shams, A. A. Kishk, "Design of 3-dB hybrid coupler based on RGW technology", IEEE Trans. Microw. Theory Techn., vol. 65, no. 10, pp. 3849-3855, Oct. 2017.
8. M. M. M. Ali, S. I. Shams, A. Sebak, "Ultra-wideband printed ridge gap waveguide hybrid directional coupler for millimetre wave applications", IET Microw. Antennas Propag., vol. 13, no. 8, pp. 1181-1187, Jul. 2019.
9. M. Farahani, M. Akbari, M. Nedil, T. A. Denidni, A. R. Sebak, "A novel low-loss millimeter-wave 3-dB 90° ridge-gap coupler using large aperture progressive phase compensation", IEEE Access, vol. 5, pp. 9610-9618, 2017.
10. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, P. Popovski, "Five disruptive technology directions for 5G", IEEE Commun. Mag., vol. 52, no. 2, pp. 74-80, Feb. 2014.
11. A. Vosoogh, P. S. Kildal, V. Vassilev, " Wideband and high-gain corporate-fed gap waveguide slot array antenna with ETSI class II radiation pattern in V -band ", IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 1823-1831, Apr. 2017.
12. A. Vosoogh, P.-S. Kildal, "Corporate-fed planar 60-GHz slot array made of three unconnected metal layers using AMC pin surface for the gap waveguide", IEEE Antenna Wireless Propag. Lett., vol. 15, pp. 1935-1938, Dec. 2015.
13. D. Zarifi, A. Farahbakhsh, A. U. Zaman, P. S. Kildal, "Design and fabrication of a high-gain 60-GHz corrugated slot antenna array with ridge gap waveguide distribution layer", IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2905-2913, Jul. 2016.
14. A. Polemi, S. Maci, P.-S. Kildal, "Dispersion characteristics of a metamaterial-based parallel-plate ridge gap waveguide realized by bed of nails", IEEE Trans. Antennas Propag., vol. 59, no. 3, pp. 904-913, Mar. 2011.
15. P.-S. Kildal, E. Alfonso, A. Valero-Nogueira, E. Rajo-Iglesias, "Local metamaterial-based waveguides in gaps between parallel metal plates", IEEE Antennas Wireless Propag. Lett., vol. 8, no. 4, pp. 84-87, Apr. 2009.
16. A. Polemi, S. Maci, "Closed form expressions for the modal dispersion equations and for the characteristic impedance of a metamaterial-based gap waveguide", IET Microw. Antennas Propag., vol. 4, no. 8, pp. 1073-1080, Aug. 2010.
17. A. T. Hassan, M. A. Moharram, A. A. Kishk, "Empirical analysis formulae of microstrip ridge gap waveguide", Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, pp. 423-424, Jul. 2018.
18. M. M. M. Ali, S. I. Shams, A.-R. Sebak, "Printed ridge gap waveguide 3-dB coupler: Analysis and design procedure", IEEE Access, vol. 6, pp. 8501-8509, 2017.
19. A. Beltayib, I. Afifi, A.-R. Sebak, " \$4 times4\$ -element cavity slot antenna differentially-fed by odd mode ridge gap waveguide ", IEEE Access, vol. 7, pp. 48185-48195, 2019.
20. H. J. Riblet, "The short-slot hybrid junction", Proc. IRE, vol. 40, no. 2, pp. 180-184, Feb. 1952.
Show Context View Article Full Text: PDF (3442KB) Google Scholar
21. R. F. Harrington, Time-Harmonic Electromagnetic Fields, Hoboken, NJ, USA:Wiley, 2001.
22. R. Mongia, I. J. Bahl, P. Bhartia, RF and Microwave Coupled-line Circuits, Norwood, MA, USA:Artech House, 2007.
23. T. Oyedokun, R. Geschke, T. Stander, "A tunable Ka-band planar groove gap waveguide resonant cavity", Proc. IEEE Radio Antenna Days Indian Ocean (RADIO), pp. 1-2, Sep. 2017.
24. A. A. Brazález, A. U. Zaman, P.-S. Kildal, "Investigation of a microstrip-to-ridge gap waveguide transition by electromagnetic coupling", Proc. IEEE Int. Symp. Antennas Propag., pp. 1-2, Jul. 2012.
25. A. U. Zaman, T. Vukusic, M. Alexanderson, P.-S. Kildal, "Design of a simple transition from microstrip to ridge gap waveguide suited for MMIC and antenna integration", IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1558-1561, 2013.
26. A. Brazález, J. Flygare, J. Yang, V. Vassilev, M. Baquero-Escudero, P. Kildal, " Design of F -band transition from microstrip to ridge gap waveguide including Monte Carlo assembly tolerance analysis ", IEEE Trans. Microw. Theory Techn., vol. 64, no. 4, pp. 1245-1254, Apr. 2016.
Repository Staff Only: item control page