Login | Register

High Gain Broadband mm-wave Antennas and Beamforming for Wireless Communication Systems

Title:

High Gain Broadband mm-wave Antennas and Beamforming for Wireless Communication Systems

Mujammami, Essa ORCID: https://orcid.org/0000-0001-8012-6022 (2019) High Gain Broadband mm-wave Antennas and Beamforming for Wireless Communication Systems. PhD thesis, Concordia University.

[thumbnail of Mujammami_PhD_S2020.pdf]
Preview
Text (application/pdf)
Mujammami_PhD_S2020.pdf - Accepted Version
Available under License Spectrum Terms of Access.
17MB

Abstract

Generating multi-beams along with having broadband and beam steering capability in the mm-waves band are of crucial importance for diverse applications such as remote piloted vehicles, satellites, collision-avoidance radars, and ultra-wideband communications systems. Besides, the propagation environment at millimeter wave (mm-wave) frequencies—suggested for the next generation of wireless networks (5G)—lends itself to a beamforming structure wherein antenna arrays are required in order to obtain the necessary link budget and to overcome the associated strong attenuation. Therefore, the design of high gain antennas (to focus the directive beam to a user) and beamforming networks (to reduce interference) are essential and are needed to address many challenges associated with 5G wireless communications.
This work addresses the design and development of high-performance Quasi-Yagi antenna and Rotman lens-based beamforming networks. Accordingly, several issues are addressed in this thesis.
A Quasi-Yagi antenna with a perturbed dielectric lens that is broadband and has high gain is designed, optimized, fabricated and tested at 30 GHz. The antenna provides 95% aperture efficiency with a measured gain of 15 dBi as well as a radiation efficiency of ~90% at 30 GHz and a broadband (24-40 GHz) for |S_11 |<-10 dB. The designed end-fire antenna, with its low-profile and compact size, is a good candidate for many applications in the mm-wave band.
An optimum and accurate methodology for designing Rotman lens-based mm-wave analog beamforming network (BFN) is presented. The simulation and measurement results showed good beamforming capabilities as well as a scanning range of 80° in the azimuth plane, and, also, good matching at the array ports. The maximum phase error is ±6.6°, and the main beam of the proposed BFN points at seven different angular directions that cover the range of ±40°. The maximum achieved realized gain is 14 dBi at 28 GHz for the center beam.
An analog Rotman lens-based BFN using RWG technology, integrated with the excitation ports and the antenna array elements, was designed, simulated, manufactured, and measured. The proposed integrated system is realized using the metallized 3D-printing technology, in order to reduce the implementation cost of the full metal RGW Rotman lens. The measured results demonstrate that the system scan range equals ±39.5º over a wideband 27.5-37 GHz decreases to 30º in the band 37-40 GHz. The BFN bandwidth for VSWR < 2 is larger than 38% and is limited by its single antenna element.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (PhD)
Authors:Mujammami, Essa
Institution:Concordia University
Degree Name:Ph. D.
Program:Electrical and Computer Engineering
Date:30 September 2019
Thesis Supervisor(s):Sebak, Abdel Razik
Keywords:5G Antenna, high gain, broadband, lens, Subwavelength gratings, Effective medium, Quasi-Yagi, automotive radar, beamforming, beam-switching, remote sensing, Rotman lens, lens, Perforating, Dielectric slab waveguide, DSW, Ridge gap waveguide, RGW.
ID Code:986154
Deposited By: ESSA MUJAMMAMI
Deposited On:30 Jun 2021 15:04
Last Modified:01 Jul 2021 01:00

References:

[1] Cisco, Visual Networking Index. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html#_Toc529314172 , last access on Nov. 17, 2019.
[2] T. S. Rappaport et al., “Millimeter wave mobile communications for 5G cellular: It will work!,” IEEE Access, vol. 1, 2013, pp. 335-349. doi: 10.1109/ACCESS.2013.2260813
[3] First mm-wave system, [Online]. Available: https://ethw.org/Milestone-Nomination:First_Millimeter-wave_Communication_Experiments_by_J.C._Bose,_1894-96 ,last access on Nov. 19, 2019..
[4] M. Marcus and B. Pattan, “Millimeter wave propagation: spectrum management implications,” IEEE Microwave Magazine, vol. 6, no. 2, June 2005, pp. 54-62. doi: 10.1109/MMW.2005.1491267
[5] 5G candidate frequency bands, [Online]. Available: https://www.fcc.gov/document/fcc-proposes-steps-towards-auction-37-ghz-39-ghz-and-47-ghz-bands-0 , last access on Nov. 17, 2019
[6] 5G frequency ranges. Available [Online].: https://www.3gpp.org/ftp/Specs/archive/38_series/38.101-1/ , last access on Nov. 17, 2019.
[7] C. Jacob, K. Sabith, S. Prabhakaran, N. Bhaskaran, ''Planar printed quasi Yagi antenna- a study,'' International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering., vol. 4, Issue 7, July 2015, doi:10.15662/ijareeie.2015.0407088 6562
[8] C. Tsokos et al., “Analysis of a multibeam optical beamforming network based on Blass matrix architecture,” in Journal of Lightwave Technology, vol. 36, no. 16, Aug. 2018, pp. 3354-3372. doi: 10.1109/JLT.2018.2841861
[9] A. Rahimian, “Investigation of Nolen matrix beamformer usability for capacity analysis in wireless MIMO systems,” Asia-Pacific Conference on Communications (APCC), Denpasar, 2013, pp. 622-623. doi: 10.1109/APCC.2013.6766023
[10] J. Lian, Y. Ban, C. Xiao and Z. Yu, “Compact substrate-integrated 4 × 8 butler matrix with sidelobe suppression for millimeter-wave multibeam application,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 5, May 2018, pp. 928-932. doi: 10.1109/LAWP.2018.2825367
[11] Y. Cao, K. Chin, W. Che, W. Yang and E. S. Li, “A Compact 38 GHz multibeam antenna array with multifolded Butler Matrix for 5Ga,” IEEE Antennas and Wireless Propagation Letters, vol. 16, 2017, pp. 2996-2999. doi: 10.1109/LAWP.2017.2757045
[12] Y. J. Cho, G. Suk, B. Kim, D. K. Kim and C. Chae, “ RF Lens-embedded antenna array for mmwave MIMO: design and performance,” IEEE Communications Magazine, vol. 56, no. 7, JULY 2018, pp. 42-48. doi: 10. 1109/MCOM.2018.1701019
[13] H. N. Chu and T. Ma, “An extended 4×4 Butler matrix with enhanced beam controllability and widened spatial coverage,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, March 2018, pp. 1301-1311. doi: 10.1109/TMTT.2017.2772815
[14] P. Kildal, E. Alfonso, A. Valero-Nogueira and E. Rajo-Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 84-87, 2009. doi: 10.1109/LAWP.2008.2011147
[15] K. V. Hoel, S. Kristoffersen, N. Jastram and D. S. Filipovic, “3D printed Rotman lens,” European Microwave Conference (EuMC), Nuremberg, 2017, pp. 125-128. doi: 10.23919/EuMC.2017.8230815
[16] H. Li, W. Hong, T. Cui, K. Wu, Y. Zhang and L. Yan, “Propagation characteristics of substrate integrated waveguide based on LTCC,” IEEE MTT-S International Microwave Symposium Digest, 2003, Philadelphia, PA, USA, 2003, pp. 2045-2048 vol.3. doi: 10.1109/MWSYM.2003.1210562
[17] C. Free, Z. Tian, P. Barnwell, I. Robertson and C. Aitchison, “A new LTCC fabrication technology for planar millimeter-wave circuits,” Asia Pacific Microwave Conference. APMC'99. Microwaves Enter the 21st Century. Conference Proceedings (Cat. No.99TH8473), Singapore, 1999, pp. 962-965. doi: 10.1109/APMC.1999.833756
[18] W. M. Abdel Wahab, D. Busuioc and S. Safavi-Naeini, “Low cost planar waveguide technology-based dielectric resonator antenna (DRA) for millimeter-wave applications: analysis, design, and fabrication ,”IEEE Transactions on Antennas and Propagation, vol. 58, no. 8, Aug. 2010, pp. 2499-2507.doi: 10.1109/TAP.2010.2050443
[19] I. Afifi, M. M. M. Ali and A. Sebak, “Analysis and design of a wideband coaxial transition to metal and printed ridge gap waveguide,” IEEE Access, vol. 6, 2018, pp. 70698-70706. doi: 10.1109/ACCESS.2018.2881732
[20] C. A. Balanis, Modern Antenna Handbook, John Wiley& Sons, Inc., 2008
[21] S. Hum and J. Perruisseau-Carrier, “Reconfigurable reflect arrays and array lenses for dynamic antenna beam control: a review,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 1, Jan. 2014, pp. 183-198. doi: 10.1109/TAP.2013.2287296
[22] L. Chang, Z. Zhang, Y. Li, S. Wang and Z. Feng, “60-GHz air substrate leaky-wave antenna based on MEMS micromachining technology,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 6, no. 11, Nov. 2016, pp. 1656-1662. doi: 10.1109/TCPMT.2016.2616516
[23] S. Wang, P. Liu, L. Chang and Z. Zhang, “A 60GHz slot antenna based on MEMS bulk micromaching technology,” IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chengdu, 2016, pp. 1-3. doi: 10.1109/IMWS-AMP.2016.7588351
[24] Y. Luo, K. Kikuta, Z. Han, T. Takahashi, A. Hirose and H. Toshiyoshi, “An active metamaterial antenna with mems-modulated scanning radiation beams,” IEEE Electron Device Letters, vol. 37, no. 7, July 2016, pp. 920-923. doi: 10.1109/LED.2016.2565559
[25] J. Kovitz and K. Allen, “Recent developments toward reconfigurable mmWave apertures and components using vanadium dioxide RF switches,” IEEE Wireless and Microwave Technology Conference (WAMICON), Sand Key, FL, 2018, pp. 1-4. doi: 10.1109/WAMICON.2018.8363904
[26] S. Shekhar, K. J. Vinoy and G. K. Ananthasuresh, “Low-voltage high-reliability MEMS switch for millimeter wave 5G applications,” Journal of Micromechanics and Microengineering, vol. 28, no. 7, 2018. doi: 10.1088/1361-6439/aaba3e.
[27] P. Rynkiewicz et al., “Tunable dual-mode ring filter based on BiCMOS embedded MEMS in V-band,” IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, 2017, pp. 124-127. doi: 10.1109/APMC.2017.8251393
[28] D. Wang, F. An and S. W. Yoon, “Advanced EWLB (embedded wafer level ball grid array) solutions for mm-wave applications,” International Wafer Level Packaging Conference (IWLPC), San Jose, CA, 2018, pp. 1-6. doi: 10.23919/IWLPC.2018.8573266
[29] B. Adela, P. Zeijl, U. Johannsen and A. Smolders, “On-Chip antenna integration for millimeter-wave single-chip FMCW Radar, providing high efficiency and isolation,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 8, Aug. 2016, pp. 3281-3291. doi: 10.1109/TAP.2016.2570228
[30] M. Nezhad-Ahmadi, M. Fakharzadeh, B. Biglarbegian and S. Safavi-Naeini, “High-efficiency on-chip dielectric resonator antenna for mmwave transceivers,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 10, Oct. 2010, pp. 3388-3392. doi: 10.1109/TAP.2010.2055802
[31] A. Vorobyov, J. Farserotu and J. Decotignie, “3D printed antennas for mmwave sensing applications,” International Symposium on Medical Information and Communication Technology (ISMICT), Lisbon, 2017, pp. 23-26. doi: 10.1109/ISMICT.2017.7891759
[32] D. C. Lugo, R. A. Ramirez, J. Castro, J. Wang and T. M. Weller, “3D printed multilayer mmWave dielectric rod antenna with enhanced gain,” IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, 2017, pp. 1247-1248.
doi: 10.1109/APUSNCURSINRSM.2017.8072666
[33] J. du Preez and S. Sinha, “Millimeter-wave Antennas: Configurations and Applications,” Signals and Communication Technology, Springer International Publishing Switzerland 2016 doi: 10.1007/978-3-319-35068-4_2
[34] W. Stutzman, G. Thiele, Antenna Theory and Design, Third edition, John Wiley& Sons, Inc., 2013.
[35] B. Jeemon, K. Shambavi and Z. Alex, “A multi-fractal planar antenna for wireless applications,” 2013 International Conference on Communication and Signal Processing, Melmaruvathur, 2013, pp. 47-50.
doi: 10.1109/iccsp.2013.6577012
[36] M. Nedil, L. Talbi and T. Denidni, “Design of broadband printed slot antennas for wireless millimeter-wave applications,” IEEE Topical Conference on Wireless Communication Technology, Honolulu, HI, USA, 2003, pp. 23-24. doi: 10.1109/WCT.2003.1321426
[37] S. Sugawara, Y. Maita, K. Adachi, K. Mori and K. Mizuno, “Characteristics of a mm-wave tapered slot antenna with corrugated edges,” IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192), Baltimore, MD, USA, 1998, pp. 533-536 vol.2. doi: 10.1109/MWSYM.1998.705049
[38] P. Gibson, “The Vivaldi aerial,” European Microwave Conference, Brighton, UK, 1979, pp. 101-105. doi: 10.1109/EUMA.1979.332681
[39] Z. Briqech, A. Sebak and T. Denidni, “High gain 60 GHz antipodal fermi tapered slot antenna with sine corrugation.” Microwave and Optical Tech Letters, Vol 57, Jan. 2015, pp. 6-9.doi: 10.1002/mop.28772
[40] Y. Shiau, “Dielectric rod antennas for millimeter-wave integrated circuits (short papers),” IEEE Transactions on Microwave Theory and Techniques, vol. 24, no. 11, Nov. 1976, pp. 869-872. doi: 10.1109/TMTT.1976.1128980
[41] A. Petosa and S. Thirakoune, “Rectangular dielectric resonator antennas with enhanced gain,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 4, April 2011, pp. 1385-1389. doi: 10.1109/TAP.2011.2109690
[42] M. Al-Hasan, T. Denidni and A. Sebak, “Millimeter-wave EBG-based aperture-coupled dielectric resonator antenna,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 8, Aug. 2013, pp. 4354-4357. doi: 10.1109/TAP.2013.2262667
[43] K. Huang and D. Edwards, Millimetre Wave Antennas for Gigabit Wireless Communication, John Wiley and Sons Inc., 2008
[44] Q. Chu, X. Li and M. Ye, “High-gain printed log-periodic dipole array antenna with parasitic cell for 5G communication,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, Dec. 2017, pp. 6338-6344. doi: 10.1109/TAP.2017.2723916
[45] J. Huang and A. C. Densmore, “Microstrip Yagi array antenna for mobile satellite vehicle application,” IEEE Transactions on Antennas and Propagation, vol. 39, no. 7, July 1991, pp. 1024-1030. doi: 10.1109/8.86924
[46] R. Alhalabi and G. Rebeiz, “High-gain Yagi-Uda antennas for millimeter-wave switched-beam systems,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 11, Nov. 2009, pp. 3672-3676. doi: 10.1109/TAP.2009.2026666
[47] B. Park, M. Jeong and S. Park, “A Miniaturized microstrip-to-coplanar-strip transition loaded with artificial transmission lines and 2.4-ghz antenna application,” IEEE Antennas and Wireless Propagation Letters, vol. 13, 2014, pp. 1486-1489. doi: 10.1109/LAWP.2014.2341552
[48] A. Hosseini and F. De Flaviis, “A CPW-fed single-layer printed quasi-Yagia antenna for 60 GHz wireless communication systems,” IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, 2014, pp. 103-104. doi: 10.1109/APS.2014.6904383
[49] H. Kan, R. Waterhouse, A. Abbosh and M. Bialkowski, “Simple broadband planar cpw-fed quasi-Yagi antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 6, 2007, pp. 18-20.
doi: 10.1109/LAWP.2006.890751
[50] P. Wang and C. Cui, “Small-size cpw-fed quasi-Yagi antenna with round-ended bow-tie cpw-to-slotline transition,” IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3. doi: 10.1109/RFIT.2016.7578136
[51] J. Wu, Z. Zhao, Z. Nie and Q. Liu, “Bandwidth enhancement of a planar printed quasi-Yagi antenna with size reduction,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 1, Jan. 2014, pp. 463-467. doi: 10.1109/TAP.2013.2287286
[52] S. Ta, J. Han, H. Choo and I. Park, “A wideband double dipole quasi-Yagi antenna using a microstrip-slotline transition feed,” IEEE International Workshop on Antenna Technology (iWAT), Tucson, AZ, 2012, pp. 84-87. doi: 10.1109/IWAT.2012.6178404
[53] H. Lu, L. Si and Y. Liu, “Compact planar microstrip-fed quasi-Yagi antenna,” Electronics Letters, vol. 48, no. 3, February 2012, pp. 140-141. doi: 10.1049/el.2011.3458
[54] Y. Lo, S. Wu, N. Liu and J. Tarng, “A compact planar 60-GHz cpw-fed pattern reconfigurable quasi-yagi antenna,” European Conference on Antennas and Propagation (EuCAP 2018), London, 2018, pp. 1-3. doi: 10.1049/cp.2018.0895
[55] J. Tao, Q. Feng and T. Liu, “Dual-wideband magnetoelectric dipole antenna with director loaded,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 10, Oct. 2018, pp. 1885-1889,.
doi: 10.1109/LAWP.2018.2869034
[56]  H. Wang, S.-F. Liu, W.-T. Li, and X.-W. Shi, “Design of a wideband planar microstrip-fed quasi-yagi antenna,” Progress In Electromagnetics Research Letters, vol. 46, 2014, pp. 19-24. doi:10.2528/PIERL14031702.
[57] M. Tang, T. Shi and R. Ziolkowski, “Flexible efficient quasi-Yagi printed uniplanar antenna,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 12, Dec. 2015, pp. 5343-5350. doi: 10.1109/TAP.2015.2486807
[58] D. Liu, W. Hong, T. Rappaport, C. Luxey and W. Hong, “What will 5G antennas and propagation be?,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, Dec. 2017, pp. 6205-6212.
doi: 10.1109/TAP.2017.2774707
[59] L. Lu, K. Ma, F. Meng and K. Yeo, “Design of a 60GHz quasi-Yagi antenna with novel ladder-like directors for gain and bandwidth enhancements,” IEEE Antennas and Wireless Propagation Letters, vol. 15 , 2016, pp. 682-685. doi: 10.1109/LAWP.2015.2469139.
[60] L. Xue, V. Fusco, “ Patch fed planar dielectric slab extended hemi-elliptical lens antenna,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 3, March. 2008, pp. 661-666. doi:10.1109/TAP.2008.916974.
[61] L. Xue, V. Fusco, “ Patch-fed planar dielectric slab waveguide Luneburg lens,” IET Microwaves, Antennas & Propagation, vol. 2, no. 2, March. 2008, pp. 109-114. doi: 10.1049/iet-map:20070146.
[62] P. Yadav, S. Mukherjee and A. Biswas, “Design of planar substrate integrated waveguide (SIW) phase shifter using air holes,” IEEE Applied Electromagnetics Conference (AEMC), Guwahati, 2015, pp. 1-2. doi: 10.1109/AEMC.2015.7509117
[63] Y. He, Z. Gao, D. Jia, W. Zhang, B. Du and Z. N. Chen, “Dielectric metamaterial-based impedance-matched elements for broadband reflect array,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, Dec. 2017, pp. 7019-7028. doi: 10.1109/TAP.2017.2763176
[64] Y. Cai, Y. Zhang, Z. Qian, W. Cao and L. Wang, “Design of compact air-vias-perforated siw horn antenna with partially detached broad walls,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 6, June 2016, pp. 2100-2107. doi: 10.1109/TAP.2016.2542841
[65] Y. Li and K. Luk, “Wideband perforated dense dielectric patch antenna array for millimeter-wave applications,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, Aug. 2015, pp. 3780-3786. doi: 10.1109/TAP.2015.2441118
[66] M. Hassanien, R. Hahnel and D. Plettemeier, “A novel electronically wideband steering system using Rotman lens for 5G applications at 28 GHz,” European Conference on Antennas and Propagation (EuCAP 2018), London, 2018, pp. 1-5. doi: 10.1049/cp.2018.1001
[67] T. K. Vo Dai, T. Nguyen and O. Kilic, “Compact multi-layer microstrip Rotman lens design using coupling slots to support millimetre wave devices,” IET Microwaves, Antennas & Propagation, vol. 12, no. 8, 4 7 2018, pp. 1260-1265. doi: 10.1049/iet-map.2017.0817
[68] J. Pourahmadazar and T. Denidni, “X-band substarte integrated rotman Lens with ±24° scanning capability,” IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, 2015, pp. 232-233. doi: 10.1109/APS.2015.7304502
[69] S. Hosseini, H. Firouzeh and M. Maddahali. “Design of Rotman lens antenna at Ku-band based on substrate integrated technology,” Journal of Communication Engineering, vol. 3, no. 1, 2014, pp. 33-44.
[70] K. Tekkouk, M. Ettorre, L. Coq and R. Sauleau, “Multibeam siw slotted waveguide antenna system fed by a compact dual-layer Rotman lens,” IEEE Transactions on Antennas and Propagation, vol. 64, no.2, Feb. 2016, pp. 504-514. doi: 10.1109/TAP.2015.2499752
[71] K. Tekkouk, M. Ettorre and R. Sauleau, “SIW Rotman lens antenna with ridged delay lines and reduced footprint,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 6, June 2018, pp. 3136-3144. doi: 10.1109/TMTT.2018.2825374
[72] L. Suárez, D. Méndez, M. Baquero-Escudero, B. Bernardo-Clemente and S. Giner, “Transitions between gap waveguides for use in a phased array antenna fed by a Rotman lens,” European Conference on Antennas and Propagation (EuCAP 2014), The Hague, 2014, pp. 774-777. doi: 10.1109/EuCAP.2014.6901875
[73]  F. Suárez, D. Méndez and M. Baquero-Escudero, “Rotman lens with ridge gap waveguide technology for millimeter wave applications,” European Conference on Antennas and Propagation (EuCAP), Gothenburg, 2013, pp. 4006-4009.
[74] J. Pourahmadazar, M. Farahani and T. Denidni, “Printed ridge gap waveguide Rotman Lens for millimetre-wave applications,” International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Waterloo, ON, 2018, pp. 1-2. doi: 10.1109/ANTEM.2018.8572972
[75] A. Rahimian, A. Alomainy and Y. Alfadhl, “A flexible printed millimetre-wave beamforming network for WiGig and 5G wireless subsystems,” Loughborough Antennas & Propagation Conference (LAPC), Loughborough, 2016, pp. 1-5. doi: 10.1109/LAPC.2016.7807565
[76] Available [Online].: https://www.itu.int/en/ITU-D/Documents/ITU_5G_REPORT-2018.pdf, last access on Nov. 18, 2019.
[77] R. C. Hansen, “Design trades for Rotman lenses,” IEEE Transactions on Antennas and Propagation, vol. 39, no. 4, April 1991, pp. 464-472. doi: 10.1109/8.81458
[78] E. Rajo-Iglesias and P. Kildal, “Cut-off bandwidth of metamaterial-based parallel plate gap waveguide with one textured metal pin surface,” European Conference on Antennas and Propagation, Berlin, 2009, pp. 33-36.
[79] D. M. Pozar, “Microwave Engineering”. John Wiley and Sons Inc. 4th Edition, 2011
[80] M. S. Smith, “Design considerations for Ruze and Rotman lenses,” Radio and Electronic Engineer, vol. 52, no. 4, April 1982, pp. 181-187. doi: 10.1049/ree.1982.0027
[81] W. Rotman and R.F. Turner, “Wide angle microwave lens for line source applications,” IEEE Transaction on Antennas and Propagation, vol. 11, no. 6, Nov. 1963, pp. 623-632. doi: 10.1109/TAP.1963.1138114
[82] P. Simon, “Analysis and synthesis of Rotman lenses,” in Proceedings of the 22nd AIAA International Communications Satellite Systems Conference & Exhibit, Monterey, Calif, USA, May 2004. doi: 10.2514/6.2004-3196.
[83] E. O. Rausch and A. F. Peterson, “Rotman lens design issues,” IEEE Antennas and Propagation Society International Symposium, Washington, DC, 2005, pp. 35-38 vol. 2B. doi: 10.1109/APS.2005.1551928
[84] C. W. Penney, “Rotman lens design and simulation in software [Application Notes],” IEEE Microwave Magazine, vol. 9, no. 6, December 2008, pp. 138-149. doi: 10.1109/MMM.2008.929774
[85] E. Sbarra, L. Marcaccioli, R. V. Gatti and R. Sorrentino, “A novel Rotman lens in siw technology,” European Radar Conference, Munich, 2007, pp. 236-239. doi: 10.1109/EURAD.2007.4404980
[86] A. Rahimian, “Design and Performance of a KU-Band Rotman lens beamforming network for satellite Systems,” Progress In Electromagnetics Research B, vol. 28, 2013, pp. 41-55.
[87] P. Kildal, “Definition of artificially soft and hard surfaces for electromagnetic waves,” Electronics Letters, vol. 24, no. 3, 4 Feb. 1988, pp. 168-170.
[88] P. Kildal, A. Kishk, “EM modeling of surfaces with STOP or GO Characteristics - artificial magnetic conductors and soft and hard surfaces”. Applied Computational Electromagnetics Society Journal. vol. 18, 2003, pp. 32-40.
[89] P. Kildal, “Artificially soft and hard surfaces in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 38, no. 10, Oct. 1990, pp. 1537-1544. doi: 10.1109/8.59765
[90] C. A. Balanis, “Advance Engineering Electromagnetics,” 2nd edition, John Wiley& Sons, Inc., 2012
[91] C. A. Balanis, “Antenna Theory Analysis and Design,” Third edition, John Wiley& Sons, Inc., 2005
[92] R. Elliott, “On the theory of corrugated plane surfaces,” Transactions of the IRE Professional Group on Antennas and Propagation, vol. 2, no.2, April 1954, pp.71-81. doi: 10.1109/T-AP.1954.27975
[93] C. Palmer, “Diffraction Gratings Handbook,” Seventh edition, Newport Corporation, 2014.
[94] Erwin G. Loewen, Evgeny Popov, “Diffraction Gratings and Applications,” Seventh edition, Marcel Dekker, Inc, 1997.
[95] E. Popov, “Gratings: Theory and Numeric Applications,” First Edition, Presses universitaires de Provence (PUP), 2012.
[96] T. Inoue, “5G standards progress and challenges,” 2017 IEEE Radio and Wireless Symposium (RWS), Phoenix, AZ, 2017, pp. 1-4. doi: 10.1109/RWS.2017.8048566.
[97] T. Katagi, S. Mano and S. Sato, “An improved design method of Rotman lens antennas,” in IEEE Transactions on Antennas and Propagation, vol. 32, no. 5, May 1984, pp. 524-527. doi: 10.1109/TAP.1984.1143353
[98] M. Yunita, G. Hadi, Y. Isvara, and A. Budiyarto, “Analysis of Vivaldi rectangular bow-tie and quasi-Yagi antenna performance for S-band FMCW-SAR on UAV platform”, J. Unmanned Syst. Technol., vol. 5, no. 3, 2018, pp. 76-79.doi:10.21535/just.v5i3.976.
[99] A. Darvazehban, O. Manoochehri, M. A. Salari, P. Dehkhoda, and A. Tavakoli, “Ultra-wideband scanning antenna array with Rotmanl lens,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 9, Sept. 2017, pp. 3435-3442. doi: 10.1109/TMTT.2017.2666810
[100] M. Sorkherizi and A. Kishk, “Self-packaged, low-loss, planar bandpass filters for millimeter-wave application based on printed gap waveguide Technology,” in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, no. 9, Sept. 2017, pp. 1419-1431. doi: 10.1109/TCPMT.2017.2702753
[101] M. Farahani, T. Denidni and M. Nedi, “Design of a Low Output-Phase Error Ridge-Gap Coupler for Antenna Arrays Applications,” 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, 2018, pp. 1099-1100. doi: 10.1109/APUSNCURSINRSM.2018.8608322
[102] S. I. Shams and A. A. Kishk, “Design of 3-dB hybrid coupler based on rgw technology,” in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 10, Oct. 2017, pp. 3849-3855. doi: 10.1109/TMTT.2017.2690298 doi: 10.1109/APUSNCURSINRSM.2018.8608322
[103] M. M. M. Ali and A. Sebak, “2-D scanning magnetoelectric dipole antenna array fed by RGW Butler Matrix,” in IEEE Transactions on Antennas and Propagation, vol. 66, no. 11, pp. 6313-6321, Nov. 2018. doi: 10.1109/TAP.2018.2869228
[104] M. M. M. Ali and A. Sebak, “Compact printed ridge gap waveguide crossover for future 5g wireless communication system,” in IEEE Microwave and Wireless Components Letters, vol. 28, no. 7, July 2018, pp. 549-551. doi: 10.1109/LMWC.2018.2835149
[105] E. Pucci, A. U. Zaman, E. Rajo-Iglesias, P. Kildal and A. Kishk, “Losses in ridge gap waveguide compared with rectangular waveguides and microstrip transmission lines,” Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, 2010, pp. 1-4.
[106] P. Kildal, A. Zaman, E. Rajo-Iglesias, E. Alfonso and A. Valero-Nogueira, “Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression,” in IET Microwaves, Antennas & Propagation, vol. 5, no. 3, pp. 262-270, 21 Feb. 2011. doi: 10.1049/iet-map.2010.0089
[107] Protolabs, [Online]. Available: https://www.protolabs.com/materials/comparison-guide/, last access on Nov. 17, 2019.
[J1] E. Mujammami and A. Sebak, “Wideband high gain printed quasi-yagi diffraction gratings-based antenna for 5G applications,” in IEEE Access, vol. 7, 2019, pp. 18089-18100. doi: 10.1109/ACCESS.2019.2897092
[J2] E. Mujammami, I. Afifi and A. Sebak, “Optimum wideband high gain analog beamforming network for 5G applications,” in IEEE Access, vol. 7, 2019, pp. 52226-52237. doi: 10.1109/ACCESS.2019.2912119
[J3] E. Mujammami and A. Sebak, “ Wideband high gain low-distortion ridge gap waveguide rotman lens-based analog beamforming network for 5g applications,” submitted to IEEE Transactions on Antennas and Propagation, September 2019.
[C1] E. Mujammami and A. Sebak, “Design of a 30-GHz high gain quasi-Yagi antenna,” 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, Canada, 2017, pp. 1-3. doi: 10.23919/URSIGASS.2017.8105181
[C2] E. Mujammami and A. Sebak, “Signal and system approach for designing planar wideband high gain endfire millimeter wave antennas,” 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 1-5.
[C3] E. Mujammami and A. Sebak, “A High gain broadband quasi-yagi dielectric lens antenna for 5g and millimeter wave applications,” 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 2019, pp. 1911-1912. doi: 10.1109/APUSNCURSINRSM.2019.8888866
[C4] E. Mujammami and A. Sebak, “Analog beamforming system using rotman lens for 5G applications at 28 GHz,” 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 2019, pp. 153-154. doi: 10.1109/APUSNCURSINRSM.2019.8888493
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top