Login | Register

Design and Investigation of High Speed and High Power InGaAs/InP One-Sided Junction Photodiodes

Title:

Design and Investigation of High Speed and High Power InGaAs/InP One-Sided Junction Photodiodes

Xu, Jie (2020) Design and Investigation of High Speed and High Power InGaAs/InP One-Sided Junction Photodiodes. PhD thesis, Concordia University.

[thumbnail of Xu_PhD_F2020.pdf]
Preview
Text (application/pdf)
Xu_PhD_F2020.pdf - Accepted Version
Available under License Spectrum Terms of Access.
13MB

Abstract

Photodiodes convert optical signals into electrical signals and are widely used in optical fiber communication systems, photonics generation of millimeter-wave (MMW) and terahertz (THz) wave signals, radio-over-fiber wireless communication systems, etc. In these applications, photodiodes play a key role. Nowadays, the well known uni-travelling carrier photodiodes (UTC-PDs) have been widely used in the aforementioned applications since its first invention in 1997. Over the past two decades, the performance of UTC-PD and its derivatives has been improved continuously. However, the epitaxial layer structures become more and more complex.

To simplify the structure and improve the performance of photodiodes, a high-speed one-sided junction photodiode (OSJ-PD) with low junction capacitance is proposed for the first time. The OSJ-PD is proposed based on the structure of the InGaAs Shottky barrier photodiode (SB-PD) and UTC-PD. It has been demonstrated that the OSJ-PD has the characteristics of the simple epitaxial layer structure, high speed, high output power, and low junction capacitance. The OSJ-PD with 300 nm absorption layer thickness has achieved a bandwidth of 64 GHz (without considering the external circuit) and a photocurrent density of 2.4×105 A/cm2 under a 10 V bias voltage.

A modified InGaAs/InP one-sided junction photodiode (MOSJ-PD) is further presented for the first time. The MOSJ-PD is proposed from OSJ-PD by inserting a cliff layer into the absorption layer. Compared with the modified uni-travelling carrier photodiode (MUTC-PD), the MOSJ-PD has the advantages of simpler epitaxial layer structure and lower junction capacitance. In MOSJ-PD, the space charge effect at high light intensity is further suppressed. Thus, both 3-dB bandwidth and output current are improved simultaneously.

Based on the newly proposed OSJ-PD structure, an evanescently coupled one-sided junction waveguide photodiode (EC-OSJ-WGPD) is proposed and investigated numerically. The EC-OSJ-WGPD has a simple structure, while the characteristics of high speed and high output power are maintained. The designed EC-OSJ-WGPD with an absorption layer thickness of 350 nm achieves a bandwidth of 44.5 GHz (without considering the external circuit) and a responsivity of 0.98 A/W.

A unique equivalent circuit model (Circuit Model B), which combines the Technology Computer-Aided Design (TCAD) and microwave circuit simulation, is adopted to analyze the frequency response of InGaAs/InP photodiode. This methodology demonstrates high accuracy in the frequency response analysis. The OSJ-PD and MOSJ-PD with a diameter of 5 µm achieve bandwidths of 119 and 120 GHz, which are 5.3% and 6.2% higher than the well known MUTC-PD. The EC-OSJ-WGPD achieves a bandwidth of 65.5 GHz.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (PhD)
Authors:Xu, Jie
Institution:Concordia University
Degree Name:Ph. D.
Program:Electrical and Computer Engineering
Date:May 2020
Thesis Supervisor(s):Zhang, Xiupu and Kishk, Ahmed
Keywords:Photodetector, photodiode, one-sided junction photodiode, modified one-sided junction photodiode, evanescently coupled one-sided junction waveguide photodiode, InGaAs/InP photodiode, equivalent circuit model.
ID Code:987166
Deposited By: JIE XU
Deposited On:01 Sep 2020 14:50
Last Modified:25 Nov 2020 16:32

References:

[1] K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, and T. Ono, "10.92-Tb/s (273 x 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment," Optical Fiber Communication Conference and International Conference on Quantum Information (2001), Paper PD24, Anaheim, California.
[2] A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave Technol. 24(12), 4628–4641 (2006).
[3] T. Nagatsuma, A. Kaino, S. Hisatake, K. Ajito, H.-J. Song, A. Wakatsuki, Y. Muramoto, N. Kukutsu, and Y. Kado, "Continuous-Wave Terahertz Spectroscopy System Based on Photodiodes, " PIERS ONLINE 6(4), 390‐394 (2010).
[4] M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1(2), 97–105 (2007).
[5] T. Nagatsuma, "Terahertz technologies: present and future," IEICE Electron. Express 8(14), 1127–1142 (2011).
[6] T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, "Unitraveling-Carrier Photodiodes for Terahertz Applications," IEEE J. Sel. Top. Quantum Electron. 20(6), 79–88 (2014).
[7] H. J. Song and T. Nagatsuma, "Present and future of Terahertz communications," IEEE Trans. Terahertz Sci. Technol.1(1), 256–263 (2011).
[8] J.-W. Shi, C.-B. Huang and C.-L. Pan, "Millimeter-wave photonic wireless links for very high data rate communication," NPG Asia Mater. 3(4), 41–48 (2011).
[9] S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, "Wireless sub-THz communication system with high data rate," Nat. Photonics 7(12), 977–981 (2013).
[10] T. Nagatsuma, H. Ito, and T. Ishibashi, "High-power RF photodiodes and their applications," Laser Photonics Rev. 3(1-2), 123-137 (2009).
[11] C.-L. Pan, C. W. Chow, C. H. Yeh, C. B. Huang, and J. W. Shi, "Recent advances in millimeter-wave photonic wireless links for very high data rate communication," 2011 Asia Communications and Photonics Conference and Exhibition (ACP), Shanghai, 2011, pp. 1-6.
[12] V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, "Long-haul analog photonics," J. Lightwave Technol. 29(8), 1182–1205 (2011).
[13] K. Li, X. Xie, Q. Li, Y. Shen, M. E. Woodsen, Z. Yang, A. Beling, and J. C. Campbell, "High-power photodiode integrated with coplanar patch antenna for 60-GHz applications," IEEE Photonics Technol. Lett. 27(6), 650-653 (2015).
[14] E. Rouvalis, C. C. Renaud, and A. J. Seeds, "Ultra-fast photodiodes for terahertz generation," https://www.researchgate.net/publication/228879969_Ultra-Fast_Photodiodes_for_Terahertz_Generation.
[15] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, and T. Ishibashi, "Photonic generation of continuous THz wave using uni-traveling-carrier photodiode," J. Lightwave Technol. 23(12), 4016-4021 (2005).
[16] E. Rouvalis, C. C., Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, "Continuous wave terahertz generation from ultra-fast InP-based photodiodes," IEEE Trans. Microwave Theory Tech. 60(3), 509-517 (2012).
[17] A. Beling, J. C. Campbell, K. Li, Q. Li, M. E. Woodson, X. Xie, and Z. Yang, "High-power photodiodes for analog applications," IEICE Trans. Electron. E98.C(8), 764-768 (2015).
[18] T. Nagatsuma, "Photonic measurement technologies for high-speed electronics," Meas. Sci. Technol. 13(11), 1655-1663 (2002).
[19] T. Minotani, A. Hirata, and T. Nagatsuma, "A broadband 120-GHz Schottky-diode receiver for 10-Gbit/s wireless links," IEICE Trans. Electron. E86-C(8), 1501-1505 (2003).
[20] T. Nagatsuma and H. Ito, "High-Power RF Uni-Traveling-Carrier Photodiodes (UTC-PDs) and Their Applications," in Advances in Photodiodes (InTech, 2011).
[21] G. Chattopadhyay, "Technology capabilities and performance of low power terahertz sources," IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 33-53, Sep. 2011.
[22] G. Ghione, Semiconductor Devices for High-Speed Optoelectronics (Cambridge University Press, 2009).
[23] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, 2007).
[24] F. F. Masouleh and N. Das, "Application of Metal-Semiconductor-Metal Photodetector in High-Speed Optical Communication Systems," in Advances in Optical Communication (InTech, 2014).
[25] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, 2012).
[26] M. Bass, V. N. Mahajan, and E. W. Van Stryland, Handbook of Optics. Volume II, Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw-Hill, 2010).
[27] R. S. Tucker, A. J. Taylor, C. A. Burrus, G. Eisenstein, and J. M. Wiesenfeld, "Coaxially mounted 67 GHz bandwidth InGaAs PIN photodiode," Electron. Lett. 22(17), 917 (1986).
[28] D. G. Parker, "The theory, fabrication and assessment of ultra high speed photodiodes," GEC J. Res. 6, 106-117 (1988).
[29] Tien-Pei Lee, C. Burrus, and A. Dentai, "InGaAs/InP p-i-n photodiodes for lightwave communications at the 0.95-1.65 µm wavelength," IEEE J. Quantum Electron. 17(2), 232–238 (1981).
[30] M. Makiuchi, M. Norimatsu, C. Sakurai, K. Kondo, N. Yamamoto, and M. Yano, "Flip-chip planar GaInAs/InP p-i-n photodiodes-fabrication and characteristics," J. Light. Technol. 13(11), 2270–2275 (1995).
[31] K. Li, E. Rezek, and H. D. Law, "InGaAs pin photodiode fabricated on semi-insulating InP substrate for monolithic integration," Electron. Lett. 20(5), 196 (1984).
[32] K. Kato, S. Hata, K. Kawano, A. Kozen, "Design of Ultrawide-Band, High-Sensitivity p-i-n Protodetectors," IEICE Trans. Electron. E76–C(2), 214–221 (1993).
[33] T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, "Uni-traveling-carrier photodiodes," OSA Ultrafast Electronics and Optoelectronics Topical Meeting (1997), Paper UC3, Incline Village, Nevada.
[34] ATLAS Users Manual, Silvaco International, Santa Clara, 2016.
[35] S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs and InGaAsP, 1 edition, Wiley Interscience, New York, 1992.
[36] J.-P. Weber, "Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters," IEEE J. Quantum Electron. 30(8), 1801–1816 (1994).
[37] S. Seifert and P. Runge, "Revised refractive index and absorption of In1-xGaxAsyP1-y lattice-matched to InP in transparent and absorption IR-region," Opt. Mater. Express 6(2), 629 (2016).
[38] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes, IEEE J. Sel. Top. Quantum Electron. 10 (2004) 709–727.
[39] H. Ito, T. Furuta, Y. Hirota, T. Ishibashi, A. Hirata, T. Nagatsuma, H. Matsuo, T. Noguchi, M. Ishiguro, Photonic millimeter-wave emission at 300 GHz using an antenna-integrated uni-travelling-carrier photodiode, Electron. Lett. 38 (2002) 989–990.
[40] Z. Li, H. Pan, H. Chen, A. Beling, J.C. Campbell, High-Saturation-Current Modified Uni-Traveling-Carrier Photodiode with Cliff Layer, IEEE J. Quantum Electron. 46 (2010) 626–632.
[41] J.W. Shi, F.M. Kuo, M.Z. Chou, A linear cascade near-ballistic uni-traveling-carrier photodiodes with extremely high saturation-current bandwidth product (6825mA-GHz, 75mA/91GHz) under a 50Ω load, Optical Fiber Communication, 2010: pp. 1–3.
[42] Y.S. Wu, J.W. Shi, Dynamic Analysis of High-Power and High-Speed Near-Ballistic Unitraveling Carrier Photodiodes at W-Band, IEEE Photonics Technol. Lett. 20 (2008) 1160–1162.
[43] J.W. Shi, F.M. Kuo, C.J. Wu, C.L. Chang, C.Y. Liu, C.Y. Chen, J.I. Chyi, Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode With a Flip-Chip Bonding Structure, IEEE J. Quantum Electron. 46 (2010) 80–86.
[44] N. Shimizu, N. Watanabe, T. Furuta, T. Ishibashi, InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz, IEEE Photonics Technol. Lett. 10 (1998) 412–414.
[45] J.M. Wun, C.H. Lai, N.W. Chen, J.E. Bowers, J.W. Shi, Flip-Chip Bonding Packaged THz Photodiode With Broadband High-Power Performance, IEEE Photonics Technol. Lett. 26 (2014) 2462–2464.
[46] H. Ito, T. Furuta, S. Kodama, T. Ishibashi, InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth, Electron. Lett. 36 (2000) 1809–1810.
[47] J.-W. Shi, C.-L. Pan, C.-B. Huang, J.-M. Wun, H.-Y. Liu, Y.-L. Zeng, High-Power THz-Wave Generation by Using Ultra-Fast (315 GHz) Uni-Traveling Carrier Photodiode with Novel Collector Design and Photonic Femtosecond Pulse Generator, Optical Fiber Communication Conference (2015), Paper M3C.6, Optical Society of America, 2015: p. M3C.6.
[48] V. Rymanov, A. Stöhr, S. Dülme, T. Tekin, Triple transit region photodiodes (TTR-PDs) providing high millimeter wave output power, Opt. Express. 22 (2014) 7550–7558.
[49] A. Davidson, K. L. Dessau, Photodiode-based detector operates at 60 GHz. http://assets.newport.com/webDocuments-EN/images/Photodiode-Based_Detector.PDF, Undated (accessed Feb. 2018).
[50] S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D.Y. Kim, D.H. Lee, K.H. Park, InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner, Opt. Express. 21 (2013) 25874–25882.
[51] S.S. Li, Development of a high speed InGaAs/InP Schottky barrier photodetector for millimeter-wave fiber optical links. https://apps.dtic.mil/dtic/tr/fulltext/u2/a188594.pdf, 1987, (accessed Oct. 2018).
[52] N. Emeis, H. Schumacher, H. Beneking, High-speed GaInAs Schottky photodetector, Electron. Lett. 21 (1985) 180–181.
[53] J.-H. Kim, S.S. Li, L. Figueroa, T.F. Carruthers, R.S. Wagner, High-speed Ga0.47In0.53As/InP infra-red Schottky-barrier photodiodes, Electron. Lett. 24 (1988) 1067–1068.
[54] L. He, M.J. Costello, K.Y. Cheng, D.E. Wohlert, Enhanced Schottky barrier on InGaAs for high performance photodetector application, J. Vac. Sci. Technol., A. 16 (1998) 1646–1649.
[55] H.J. Lee, W.A. Anderson, H. Hardtdegen, H. Lüth, Barrier height enhancement of Schottky diodes on n-In0.53Ga0.47As by cryogenic processing, Appl. Phys. Lett. 63 (1993) 1939–1941.
[56] K.C. Hwang, S.S. Li, C. Park, T.J. Anderson, Schottky barrier height enhancement of n- In0.53Ga0.47As by a novel chemical passivation technique, J. Appl. Phys. 67 (1990) 6571–6573.
[57] J.B.D. Soole, H. Schumacher, H.P. LeBlanc, R. Bhat, M.A. Koza, High-speed performance of OMCVD grown InAlAs/InGaAs MSM photodetectors at 1.5 µm and 1.3 µm wavelengths, IEEE Photonics Technol. Lett. 1 (1989) 250–252.
[58] J.B.D. Soole, H. Schumacher, InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications, IEEE J. Quantum Electron. 27 (1991) 737–752.
[59] D. Kuhl, F. Hieronymi, E.H. Bottcher, T. Wolf, A. Krost, D. Bimberg, Very high-speed metal-semiconductor-metal InGaAs: Fe photodetectors with InP: Fe barrier enhancement layer grown by low pressure metalorganic chemical vapour deposition, Electron. Lett. 26 (1990) 2107–2109.
[60] R. Wang, M. Xu, P.D. Ye, R. Huang, Schottky-barrier height modulation of metal/In0.53Ga0.47As interfaces by insertion of atomic-layer deposited ultrathin Al2O3, J. Vac. Sci. Technol. B. 29 (2011) 041206.
[61] P. Kordoš, M. Marso, R. Meyer, H. Lüth, Schottky barrier height enhancement on n-In0.53Ga0.47As, J. Appl. Phys. 72 (1992) 2347–2355.
[62] C.Y. Chen, A.Y. Cho, K.Y. Cheng, P.A. Garbinski, Quasi-Schottky barrier diode on n-Ga0.47In0.53As using a fully depleted p+-Ga0.47In0.53As layer grown by molecular beam epitaxy, Appl. Phys. Lett. 40 (1982) 401–403.
[63] P. Kordos, M. Marso, R. Meyer, H. Luth, Schottky contacts on n-In0.53Ga0.47As with enhanced barriers by counter-doped interfacial layers, IEEE Trans. Electron Devices. 39 (1992) 1970–1972.
[64] C. Hu, Modern Semiconductor Devices for Integrated Circuits, Prentice Hall, 2010.
[65] S. Srivastava, K.P. Roenker, Numerical modeling study of the InP/InGaAs uni-travelling carrier photodiode, Solid-State Electron. 48 (2004) 461–470.
[66] T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, Y. Miyamoto, InP/InGaAs Uni-Traveling-Carrier Photodiodes, IEICE Trans. Electron. E83–C (2000) 938–949.
[67] J.W. Parks, A.W. Smith, K.F. Brennan, L.E. Tarof, Theoretical study of device sensitivity and gain saturation of separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes, IEEE Trans. Electron Devices. 43 (1996) 2113–2121.
[68] S. Datta, S. Shi, K.P. Roenker, M.M. Cahay, W.E. Stanchina, Simulation and design of InAlAs/InGaAs PNP heterojunction bipolar transistors, IEEE Trans. Electron Devices. 45 (1998) 1634–1643.
[69] S. Srivastava, Simulation study of InP-based uni-traveling carrier photodiode (Master's Thesis), University of Cincinnati, 2003.
[70] P.A. Balaraman, Design, simulation and modeling of InP/GaAsSb/InP double heterojunction bipolar transistors (Master's Thesis), University of Cincinnati, 2003.
[71] Y.R. Shrestha, Numerical simulation of GaAsSb/InP uni-traveling carrier photodiode (Master's Thesis), University of Cincinnati, 2005.
[72] New semiconductor materials, characteristics and properties, http://www.ioffe.rssi.ru/SVA/NSM/ (accessed Feb. 2018).
[73] R.K. Ahrenkiel, R. Ellingson, S. Johnston, M. Wanlass, Recombination lifetime of In0.53Ga0.47As as a function of doping density, Appl. Phys. Lett. 72 (1998) 3470–3472.
[74] E. Rouvalis, F. N. Baynes, X. Xie, K. Li, Q. Zhou, F. Quinlan, T. M. Fortier, S. A. Diddams, A. G. Steffan, A. Beling, and J. C. Campbell, "High-Power and High-Linearity Photodetector Modules for Microwave Photonic Applications," J. Lightwave Technol. 32(20), 3810–3816 (2014).
[75] Xiaowei Li, Ning Li, Xiaoguang Zheng, S. Demiguel, J. C. Campbell, D. A. Tulchinsky, and K. J. Williams, "High-saturation-current InP-InGaAs photodiode with partially depleted absorber," IEEE Photonics Technol. Lett. 15(9), 1276–1278 (2003).
[76] M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, "High-performance uni-traveling-carrier photodiodes with a new collector design," IEEE Photonics Technol. Lett. 20(13), 1163–1165 (2008).
[77] M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, "High responsivity and high power utc and mutc gainas-inp photodiodes," IEEE Photonics Technol. Lett. 24(4), 318–320 (2012).
[78] Q. Li, K. Li, Y. Fu, X. Xie, Z. Yang, A. Beling, and J. C. Campbell, "High-power flip-chip bonded photodiode with 110 GHz bandwidth," J. Lightwave Technol. 34(9), 2139–2144 (2016).
[79] Y. Hu, B. S. Marks, C. R. Menyuk, V. J. Urick, and K. J. Williams, "Modeling sources of nonlinearity in a simple p-i-n photodetector," J. Lightwave Technol. 32(20), 3710–3720 (2014).
[80] C. Gardes, J. Justice, F. Gity, H. Yang, and B. Corbett, "Numerical simulations with energy balance model for unitraveling-carrier photodiode," IEEE International Conference on Nanotechnology (2015), Rome, Italy
[81] S. M. Mahmudur Rahman, Hans Hjelmgren, Josip Vukusic, Jan Stake, Peter A. Andrekson, and Herbert Zirath, "Hydrodynamic simulations of unitraveling-carrier photodiodes," IEEE J. Quantum Electron. 43(11), 1088–1094 (2007).
[82] Q. Zhou, A. S. Cross, A. Beling, Y. Fu, Z. Lu, and J. C. Campbell, "High-power V-band InGaAs/InP photodiodes," IEEE Photonics Technol. Lett. 25(10), 907–909 (2013).
[83] A. Beling, Q. Zhou, J. H. Sinsky, A. S. Cross, A. Gnauck, L. Buhl, and J. C. Campbell, "30 GHz fully packaged modified uni-traveling carrier photodiodes for high-power applications," IEEE Avionics Fiber Optics and Photonics Conf. (2013), San Diego, CA
[84] Y. Muramoto and T. Ishibashi, "InP/InGaAs pin photodiode structure maximising bandwidth and efficiency," Electron. Lett. 39(24), 1749 (2003).
[85] K. Kato, S. Hata, K. Kawano, J. Yoshida, and A. Kozen, "A High-Efficiency 50 GHz InGaAs Multimode Waveguide Photodetector," IEEE J. Quantum Electron. 28(12), 2728–2735 (1992).
[86] V. Magnin, L. Giraudet, J. Harari, J. Decobert, P. Pagnot, E. Boucherez, and D. Decoster, "Design, optimization, and fabrication of side-illuminated p-i-n photodetectors with high responsivity and high alignment tolerance for 1.3- and 1.55-μm wavelength use," J. Light. Technol. 20(3), 477–488 (2002).
[87] J. W. Park, "High-responsivity and high-speed waveguide photodiode with a thin absorption region," IEEE Photonics Technol. Lett. 22(13), 975–977 (2010).
[88] H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, "InP-based waveguide-integrated photodetector with 100-GHz bandwidth," IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[89] J. Harari, F. Journet, O. Rabii, G. Jin, J. P. Vilcot, and D. Decoster, "Modeling of Waveguide PIN Photodetectors Under Very High Optical Power," IEEE Trans. Microw. Theory Tech. 43(9), 2304–2310 (1995).
[90] J. W. Park, H. S. Ko, E. D. Sim, and Y. S. Baek, "Optimization of high responsivity waveguide photodiode with a thin absorption layer," Appl. Phys. Lett. 90(9), 091101 (2007).
[91] J.-W. Park, "Waveguide Photodiode (WGPD) with a Thin Absorption Layer," in Advances in Optical and Photonic Devices (InTech, 2012).
[92] S. Demiguel, X. Li, N. Li, H. Chen, J. C. Campbell, J. Wei, and A. Anselm, "Analysis of partially depleted absorber waveguide photodiodes," J. Light. Technol. 23(8), 2505–2512 (2005).
[93] S. Q. Liu, X. H. Yang, Y. Liu, B. Li, and Q. Han, "Design and fabrication of a high-performance evanescently coupled waveguide photodetector," Chinese Phys. B 22(10), 108503 (2013).
[94] S. Demiguel, L. Giraudet, L. Joulaud, J. Decobert, F. Blache, V. Coupe, F. Jorge, E. Boucherez, M. Achouche, and F. Devaux, "Evanescently coupled photodiodes integrating a double-stage taper for 40-Gb/s applications-compared performance with side-illuminated photodiodes," J. Light. Technol. 20(12), 2004–2014 (2002).
[95] M. Achouche, V. Magnin, J. Harari, F. Lelarge, E. Derouin, C. Jany, D. Carpentier, F. Blache, and D. Decoster, "High Performance Evanescent Edge Coupled Waveguide Unitraveling-Carrier Photodiodes for >40-Gb/s Optical Receivers," IEEE Photonics Technol. Lett. 16(2), 584–586 (2004).
[96] Y. S. Wu, J. W. Shi, J. Y. Wu, F. H. Huang, Y. J. Chan, Y. L. Huang, and R. Xuan, "High-performance evanescently edge coupled photodiodes with partially p-doped photoabsorption layer at 1.55-μm wavelength," IEEE Photonics Technol. Lett. 17(4), 878–880 (2005).
[97] L. Giraudet, J. Harari, V. Magnin, P. Pagnod, E. Boucherez, J. Decobert, J. Bonnet-Gamard, D. Carpentier, C. Jany, F. Blache, and D. Decoster, "High speed evanescently coupled PIN photodiodes for hybridisation on silicon platform optimised with genetic algorithm," Electron. Lett. 37(15), 973–975 (2001).
[98] N. Michel, V. Magnin, J. Harari, A. Marceaux, O. Parillaud, D. Decoster, and N. Vodjdani, "High-power evanescently-coupled waveguide photodiodes," IEE Proceedings of Optoelectron. 153(4), 199–204 (2006).
[99] J.-W. Shi, Y.-S. Wu, F.-H. Huang, and Y.-J. Chan, "High-responsivity, high-speed, and high-saturation-power performances of evanescently coupled photodiodes with partially p-doped photo-absorption layer," in IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004. (IEEE, 2005), pp. 351–354.
[100] J. W. Shi, Y. S. Wu, C. Y. Wu, P. H. Chiu, and C. C. Hong, "High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength," IEEE Photonics Technol. Lett. 17(9), 1929–1931 (2005).
[101] A. Beling, H. Bach, and D. Schmidt, "InP-Based Waveguide Integrated Photodetectors for High-Speed Optical Communication Systems," https://www.researchgate.net/publication/228512250.
[102] M. Achouche, S. Demiguel, E. Derouin, D. Carpentier, F. Barthe, F. Blache, V. Magnin, J. Harari, D. Decoster, "New all 2-inch manufacturable high performance evanescent coupled waveguide photodiodes with etched mirrors for 40 Gb/s optical receivers", Proc. Optical Fiber Communications (OFC, 2003), pp. 23-24, 2003.
[103] L. Giraudet, "Optical design of evanescently coupled, waveguide-fed photodiodes for ultrawide-band applications," IEEE Photonics Technol. Lett. 11(1), 111–113 (1999).
[104] S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, "Very High-Responsivity Evanescently Coupled Photodiodes Integrating a Short Planar Multimode Waveguide for High-Speed Applications," IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
[105] A. Alping, "Waveguide pin photodetectors: theoretical analysis and design criteria," IEE Proceedings J - Optoelectronics 136(3), 177–182 (1989).
[106] H. Jiang, D.-S. Shin, T.-S. Liao, P. Mages, A. R. Clawson, P. K. L. Yu, T. A. Vang, and D. C. Scott, "Waveguide photodiodes for high-speed detection," in Terahertz and Gigahertz Electronics and Photonics II, R. J. Hwu and K. Wu, eds. (International Society for Optics and Photonics, 2003), 4111, pp. 259–266.
[107] G. Zhou, P. Runge, S. Keyvaninia, S. Seifert, W. Ebert, S. Mutschall, A. Seeger, Q. Li, and A. Beling, "High-Power InP-Based Waveguide Integrated Modified Uni-Traveling-Carrier Photodiodes," J. Light. Technol. 35(4), 717-721 (2017).
[108] Q. Li, K. Sun, K. Li, Q. Yu, P. Runge, W. Ebert, A. Beling, and J. C. Campbell, "High-Power Evanescently Coupled Waveguide MUTC Photodiode With >105-GHz Bandwidth," J. Light. Technol. 35(21), 4752-4757 (2017).
[109] S. Sun, S. Liang, X. Xie, J. Xu, L. Guo, H. Zhu, and W. Wang, "Zero-bias 32 Gb/s evanescently coupled InGaAs/InP UTC-PDs," Opt. Laser Technol. 101, 457–461 (2018).
[110] J. Xu, X. Zhang, and A. Kishk, "Design of high speed InGaAs/InP one-sided junction photodiodes with low junction capacitance," Opt. Commun. 437, 321–329 (2019).
[111] J. Xu, X. Zhang, and A. Kishk, "Design of modified InGaAs/InP one-sided junction photodiodes with improved response at high light intensity," Appl. Opt. 57(31), 9365–9374 (2018).
[112] J. Xu, X. Zhang, and A. Kishk, “Numerical study of the evanescently coupled one-sided junction waveguide photodiode,” Proceedings of the 19th International Conference on Numerical Simulation of Optoelectronic Devices (2019), Ottawa, Canada.
[113] J. Xu, X. Zhang, and A. Kishk, “InGaAs/InP evanescently coupled one-sided junction waveguide photodiode design,” Opt. Quant. Electron. 52, 266 (2020).
[114] J. W. Shi, F. M. Kuo, and E. J. Bowers, "Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Ω Load for High-Power Performance," IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[115] Y. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GalnAs/InP Double Heterostructure p-i-n Photodetectors,” J. Light. Technol. 13(7), 1490–1499 (1995).
[116] M. Natrella, C.-P. Liu, C. Graham, F. van Dijk, H. Liu, C. C. Renaud, and A. J. Seeds, “Accurate equivalent circuit model for millimetre-wave UTC photodiodes,” Optics Express, 24(5), 4698–4713 (2016).
[117] G. Zhou, and P. Runge, " Nonlinearities of high-speed p-i-n photodiodes and MUTC-PD photodiode," IEEE Trans. Microw. Theory Tech. 65(6), 2063–2072 (2017).
[118] Naseem, Zohauddin Ahmad, Rui-Lin Chao, Hsiang-Szu Chang, C.-J. Ni, H.-S. Chen, Jack Jia-Sheng Huang, Emin Chou, Yu-Heng Jan, and Jin-Wei Shi, “The enhancement in speed and responsivity of uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers,” Optics Express, vol. 27, no. 11, pp. 15495-15504, May 2019.
[119] J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, “Photonic high-power 160-GHz signal generation by using ultrafast photodiode and a high-repetition-rate femtosecond optical pulse train generator,” IEEE J. Sel. Top. Quantum Electron. 20, 3803507 (2014).
[120] J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
[121] K. Kato, S. Hata, K. Kawano, and A. Kozen, “Design of ultrawideband, high-sensitivity p-i-n photodetectors,” IEICE Trans. Electron, vol. E76-C, pp. 214–221, Feb. 1993.
[122] K.N.Z. Ariffin, PHYSICAL MODELLING OF TUNNEL DIODES FOR TERAHERTZ FREQUENCY APPLICATIONS (Doctoral Dissertation), The University of Manchester, 2019.
[123] Planar Electromagnetic (EM) Simulation in ADS, https://www.keysight.com/us/en/assets/7018-05192/technical-overviews/5992-1479.pdf (accessed Nov. 2019).
[124] S. Kassim and F. Malek, "The Emerging Role of EM Simulation in IEEE 802.16e Mobile WiMAX Power Amplifier Design," 2011 Second International Conference on Intelligent Systems, Modelling and Simulation, Kuala Lumpur, 2011, pp. 404-409.
[125] I.J. Bahl, Lumped Elements for RF and Microwave Circuits, Artech House, Boston, 2003, pp. 171-172.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top