Login | Register

High Gain Antenna Array Design for 5G & MIMO Antenna Systems using Microstrip Ridge Gap Waveguide


High Gain Antenna Array Design for 5G & MIMO Antenna Systems using Microstrip Ridge Gap Waveguide

Hassan, Abdelmoniem (2020) High Gain Antenna Array Design for 5G & MIMO Antenna Systems using Microstrip Ridge Gap Waveguide. PhD thesis, concordia university.

[thumbnail of Hassan_PhD_S2021.pdf]
Text (application/pdf)
Hassan_PhD_S2021.pdf - Accepted Version


The demand for high data rates and the unavailability of low-frequency bands have driven the need to explore and develop millimeter-wave (mm-wave) frequency bands. Indeed, the development of mm-wave frequencies has led to smaller radio frequency (RF) components and more compact profiles, creating more design constraints and challenges. Millimeter-wave technologies are the best-suited candidates that meet the requirements of 5G standards; specifically, for indoor communication, which requires higher gain and more directive beams. Gap waveguide technologies can be used to design high-gain antenna arrays and multiple input multiple output antenna systems (MIMO).
In this thesis, we are mainly focusing on Microstrip Ridge Gap Waveguide (MRGW) to design the antenna array systems for the 60 GHz band. Therefore, it is necessary to facilitate the design procedures and propose new design techniques. Here, we propose new design techniques for a large antenna array system using MRGW. The work of this thesis can be divided into two parts. Firstly, developing an efficient modeling and design tool for the MRGW to facilitate the design process. Recently, the use of MRGW has increased due to the need for self-packaged and low loss structures for millimeter-wave applications. The MRGW consists of a grounded textured surface, which is representing an artificial magnetic conductor (AMC) surface. The AMC surface is loaded with a thin low dielectric constant substrate with a printed strip topped with another air-filled or dielectric-filled substrate in which the wave propagates between the strip and the conducting plate covering such a substrate.
Currently, full-wave and optimization tools are usually used to design the MRGW structure, which makes the design slow and computationally expensive. Thus, an efficient modeling and design tool for the MRGW is proposed. Empirical expressions are developed for different MRGW parameters to provide the effective dielectric constant, characteristic impedance, and the dispersion effect. The expressions are verified with the full-wave solution. The results show the potential of the proposed approach in modeling and designing the MRGW structure. Secondly, an efficient procedure to design a large finite planar array and its corporate feeding network is presented. The procedure is verified by an 8 × 8 and 16 ×16 array of magneto-electric (ME) dipoles fed by a network of MRGW. The procedure is based on designing the corporate feeding network by replacing the elements ports with the corresponding effective input impedance of each element that accounts for the mutual coupling between the antenna elements. In addition, the far-field characteristics of the array parameters such as the directivity, gain, and radiation patterns are predicted using pattern multiplication, including the mutual coupling effects. The results are verified with the full-wave numerical solution.
The procedure requires limited resources and speed up the design cycle. The use of the MRGW helps in having the feeding network lines to be titer than using the ridge gap technology. Thus, allowing the distance between the radiating elements becomes smaller than one wavelength to avoid grating lobes. In addition, to avoid undesired bends and very tight lines that cause undesired interaction between the lines, unique power dividers are designed. Furthermore, a transition from waveguide WR-15 to the MRGW is proposed to feed two halves of the array antenna perfect out of phase at all frequencies and rotating each half to form a mirrored array that better radiation pattern symmetry and low cross-polarization. Then, this procedure is implemented to design a circularly polarized antenna array with excellent performance. To further enhance the antenna, gain, and reduce the number of elements, a superstrate dielectric lens with the proper parameters is added. Study of a 4 × 4 MIMO system is studied, where each antenna is a sub-array to achieve the high gain requirements.
Finally, A low-profile, compact, and high-efficiency monopulse array antenna has been presented. The monopulse is built based on a hybrid coupler that has a wideband response for the reflection and the transmission coefficients. Then the monopulse system is used to present a multiplexing antenna system for short-range in the near filed region wireless communication. The multiplexing system works as a MIMO system that has four independent channels. The performance of the system is evaluated through the simulation, which shows that it can be a promising candidate for the next wireless communication systems.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (PhD)
Authors:Hassan, Abdelmoniem
Institution:concordia university
Degree Name:Ph. D.
Program:Electrical and Computer Engineering
Date:September 2020
Thesis Supervisor(s):Kishk, Ahmed
ID Code:987685
Deposited By: Abdelmoniem Tajelsir Mahmoud Hassan
Deposited On:29 Jun 2021 20:45
Last Modified:29 Jun 2021 20:45
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top