Login | Register

Protective Effects of Zinc Supplementation for Diabetes-Induced Vascular Damage

Title:

Protective Effects of Zinc Supplementation for Diabetes-Induced Vascular Damage

MacKenzie, Stephanie (2020) Protective Effects of Zinc Supplementation for Diabetes-Induced Vascular Damage. Masters thesis, Concordia University.

[thumbnail of MacKenzie_MSc_S2021.pdf]
Preview
Text (application/pdf)
MacKenzie_MSc_S2021.pdf - Accepted Version
1MB

Abstract

ABSTRACT

Protective Effects of Zinc Supplementation for Diabetes-Induced Vascular Damage Diabetes

Stephanie MacKenzie


The leading cause of mortality in diabetic patients is cardiovascular disease developed through the accumulation of damage done by oxidative stress. Hyperglycemic conditions activate pathogenic pathways, including mitochondrial dysfunction, which generate reactive oxygen species. The endogenous antioxidant defense system is unable to adequately mitigate this damage as diabetes is linked with zinc deficiency, and zinc plays a crucial role in the functionality of the antioxidant system. The effects of zinc supplementation in the prevention of diabetic cardiomyopathy have been documented in previous research. However, the protective capacity of zinc supplementation in the vasculature has yet to be established. We hypothesized that a four-week zinc supplementation intervention would enhance mitochondrial respiration, reduce protein oxidation, and increase the expression of several important antioxidants (superoxide dismutase (SOD), zinc-induced metallothionein (MT), catalase, and peroxiredoxin-2 (Prx2)) in the vasculature of streptozotocin-induced diabetic mice when compared to diabetic controls. Results revealed that mitochondrial respiration was significantly more efficient in the zinc-supplemented group. Additionally, it was found that the intervention group experienced significantly reduced levels of protein oxidation as well as a significant upregulation in both SOD and MT expression. No differences were observed among levels of catalase and Prx2. These findings suggest that zinc supplementation may have the potential to prevent deleterious changes in mitochondrial health and act in a protective capacity against oxidative damage in the vasculature.

Divisions:Concordia University > Faculty of Arts and Science > Health, Kinesiology and Applied Physiology
Item Type:Thesis (Masters)
Authors:MacKenzie, Stephanie
Institution:Concordia University
Degree Name:M. Sc.
Program:Health and Exercise Science
Date:15 December 2020
Thesis Supervisor(s):Bergdahl, Andreas
ID Code:987959
Deposited By: STEPHANIE MACKENZIE
Deposited On:29 Jun 2021 21:00
Last Modified:29 Jun 2021 21:00

References:

Adulcikas, J., Sonda, S., Norouzi, S., Sohal, S. S., & Myers, S. (2019). Targeting the Zinc Transporter ZIP7 in the Treatment of Insulin Resistance and Type 2 Diabetes. Nutrients, 11(2). https://doi.org/10.3390/nu11020408
Ali, S. S., Ahsan, H., Zia, M. K., Siddiqui, T., & Khan, F. H. (2020). Understanding oxidants and antioxidants: Classical team with new players. Journal of Food Biochemistry, 44(3), e13145. https://doi.org/10.1111/jfbc.13145
Alp, N. J., & Channon, K. M. (2004). Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(3), 413–420. https://doi.org/10.1161/01.ATV.0000110785.96039.f6
American Diabetes Association. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37 Suppl 1, S81-90. https://doi.org/10.2337/dc14-S081
American Diabetes Association. (March 2018). Economic costs of diabetes in the U.S. in 2017. Diabetes Care, doi:10.2337/dci18-0007
Anzilotti, C., Swan, D. J., Boisson, B., Deobagkar-Lele, M., Oliveira, C., Chabosseau, P., Engelhardt, K. R., Xu, X., Chen, R., Alvarez, L., Berlinguer-Palmini, R., Bull, K. R., Cawthorne, E., Cribbs, A. P., Crockford, T. L., Dang, T. S., Fearn, A., Fenech, E. J., de Jong, S. J., … Hambleton, S. (2019). An essential role for the Zn2+ transporter ZIP7 in B cell development. Nature Immunology, 20(3), 350–361. https://doi.org/10.1038/s41590-018-0295-8
Arruda, A. P., & Hotamisligil, G. S. (2015). Calcium Homeostasis and Organelle Function in the Pathogenesis of Obesity and Diabetes. Cell Metabolism, 22(3), 381–397. https://doi.org/10.1016/j.cmet.2015.06.010
Aydemir, T. B., & Cousins, R. J. (2018). The Multiple Faces of the Metal Transporter ZIP14 (SLC39A14). The Journal of Nutrition, 148(2), 174–184. https://doi.org/10.1093/jn/nxx041
Bao, B., Prasad, A. S., Beck, F. W. J., Fitzgerald, J. T., Snell, D., Bao, G. W., Singh, T., & Cardozo, L. J. (2010). Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: A potential implication of zinc as an atheroprotective agent. The American Journal of Clinical Nutrition, 91(6), 1634–1641. https://doi.org/10.3945/ajcn.2009.28836
Barman, S., Pradeep, S. R., & Srinivasan, K. (2017). Zinc supplementation mitigates its dyshomeostasis in experimental diabetic rats by regulating the expression of zinc transporters and metallothionein. Metallomics: Integrated Biometal Science, 9(12), 1765–1777. https://doi.org/10.1039/c7mt00210f
Barman, S., Pradeep, S. R., & Srinivasan, K. (2018). Zinc supplementation alleviates the progression of diabetic nephropathy by inhibiting the overexpression of oxidative-stress-mediated molecular markers in streptozotocin-induced experimental rats. The Journal of Nutritional Biochemistry, 54, 113–129. https://doi.org/10.1016/j.jnutbio.2017.11.008
Basaki, M., Saeb, M., Nazifi, S., & Shamsaei, H. A. (2012). Zinc, copper, iron, and chromium concentrations in young patients with type 2 diabetes mellitus. Biological Trace Element Research, 148(2), 161–164. https://doi.org/10.1007/s12011-012-9360-6
Bedard, K., & Krause, K.-H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87(1), 245–313. https://doi.org/10.1152/physrev.00044.2005
Bellomo, E. A., Meur, G., & Rutter, G. A. (2011). Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet β-cells. The Journal of Biological Chemistry, 286(29), 25778–25789. https://doi.org/10.1074/jbc.M111.246082
Brownlee, M. (2005). The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 54(6), 1615–1625. https://doi.org/10.2337/diabetes.54.6.1615
Cai, L., Wang, Y., Zhou, G., Chen, T., Song, Y., Li, X., & Kang, Y. J. (2006). Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. Journal of the American College of Cardiology, 48(8), 1688–1697. https://doi.org/10.1016/j.jacc.2006.07.022
Chabosseau, P., & Rutter, G. A. (2016). Zinc and diabetes. Archives of Biochemistry and Biophysics, 611, 79–85. https://doi.org/10.1016/j.abb.2016.05.022
Chabosseau, P., Woodier, J., Cheung, R., & Rutter, G. A. (2018). Sensors for measuring subcellular zinc pools. Metallomics: Integrated Biometal Science, 10(2), 229–239. https://doi.org/10.1039/c7mt00336f
Chiaverini, N., & De Ley, M. (2010). Protective effect of metallothionein on oxidative stress-induced DNA damage. Free Radical Research, 44(6), 605–613. https://doi.org/10.3109/10715761003692511
Chilelli, N. C., Burlina, S., & Lapolla, A. (2013). AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: A “glycoxidation-centric” point of view. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 23(10), 913–919. https://doi.org/10.1016/j.numecd.2013.04.004
Choi, S., Liu, X., & Pan, Z. (2018). Zinc deficiency and cellular oxidative stress: Prognostic implications in cardiovascular diseases. Acta Pharmacologica Sinica, 39(7), 1120–1132. https://doi.org/10.1038/aps.2018.25
Cooper-Capetini, V., de Vasconcelos, D. A. A., Martins, A. R., Hirabara, S. M., Donato, J., Carpinelli, A. R., & Abdulkader, F. (2017). Zinc Supplementation Improves Glucose Homeostasis in High Fat-Fed Mice by Enhancing Pancreatic β-Cell Function. Nutrients, 9(10). https://doi.org/10.3390/nu9101150
Cruz, K. J. C., de Oliveira, A. R. S., & Marreiro, D. do N. (2015). Antioxidant role of zinc in diabetes mellitus. World Journal of Diabetes, 6(2), 333–337. https://doi.org/10.4239/wjd.v6.i2.333
Devasagayam, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: Current status and future prospects. The Journal of the Association of Physicians of India, 52, 794–804.
Diabetes Canada. (2019). Types of diabetes. Retrieved from https://www.diabetes.ca/about-diabetes/types-of-diabetes
Diers, A. R., Broniowska, K. A., & Hogg, N. (2013). Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells. Redox Biology, 1, 1–7. https://doi.org/10.1016/j.redox.2012.11.003
DiMeglio, L. A., Evans-Molina, C., & Oram, R. A. (2018). Type 1 diabetes. Lancet (London, England), 391(10138), 2449–2462. https://doi.org/10.1016/S0140-6736(18)31320-5
Domingueti, C. P., Dusse, L. M. S., Carvalho, M. das G., de Sousa, L. P., Gomes, K. B., & Fernandes, A. P. (2016). Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. Journal of Diabetes and Its Complications, 30(4), 738–745. https://doi.org/10.1016/j.jdiacomp.2015.12.018
Faria, A., & Persaud, S. J. (2017). Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacology & Therapeutics, 172, 50-62. doi:S0163-7258(16)30239-X [pii]

Farooq, M. (2019). Zinc Deficiency is Associated with Poor Glycemic Control. Journal of the College of Physicians and Surgeons--Pakistan: JCPSP, 29(3), 253–257. https://doi.org/10.29271/jcpsp.2019.03.253
Fernández-Cao, J. C., Warthon-Medina, M., H Moran, V., Arija, V., Doepking, C., Serra-Majem, L., & Lowe, N. M. (2019). Zinc Intake and Status and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients, 11(5). https://doi.org/10.3390/nu11051027
Fiorentino, T. V., Prioletta, A., Zuo, P., & Folli, F. (2013). Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Current Pharmaceutical Design, 19(32), 5695–5703. https://doi.org/10.2174/1381612811319320005
Fukunaka, A., & Fujitani, Y. (2018). Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. International Journal of Molecular Sciences, 19(2). https://doi.org/10.3390/ijms19020476
Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058-1070. doi:10.1161/CIRCRESAHA.110.223545 [doi]
Hu, L., Dai, S.-C., Luan, X., Chen, J., & Cannavicci, A. (2018). Dysfunction and Therapeutic Potential of Endothelial Progenitor Cells in Diabetes Mellitus. Journal of Clinical Medicine Research, 10(10), 752–757. https://doi.org/10.14740/jocmr3581w
Huang, Q., Du, J., Merriman, C., & Gong, Z. (2019). Genetic, Functional, and Immunological Study of ZnT8 in Diabetes. International Journal of Endocrinology, 2019, 1524905. https://doi.org/10.1155/2019/1524905
Incalza, M. A., D’Oria, R., Natalicchio, A., Perrini, S., Laviola, L., & Giorgino, F. (2018). Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascular Pharmacology, 100, 1–19. https://doi.org/10.1016/j.vph.2017.05.005
Inzucchi, S. E. (2012). Clinical practice. Diagnosis of diabetes. The New England Journal of Medicine, 367(6), 542–550. https://doi.org/10.1056/NEJMcp1103643
Jansen, J., Rosenkranz, E., Overbeck, S., Warmuth, S., Mocchegiani, E., Giacconi, R., Weiskirchen, R., Karges, W., & Rink, L. (2012). Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc. The Journal of Nutritional Biochemistry, 23(11), 1458–1466. https://doi.org/10.1016/j.jnutbio.2011.09.008
Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K., & Librowski, T. (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 25(1), 11–24. https://doi.org/10.1007/s10787-017-0309-4
Jayawardena, R., Ranasinghe, P., Galappatthy, P., Malkanthi, R., Constantine, G., & Katulanda, P. (2012). Effects of zinc supplementation on diabetes mellitus: A systematic review and meta-analysis. Diabetology & Metabolic Syndrome, 4(1), 13. https://doi.org/10.1186/1758-5996-4-13
Johansen, J. S., Harris, A. K., Rychly, D. J., & Ergul, A. (2005). Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovascular Diabetology, 4, 5. https://doi.org/10.1186/1475-2840-4-5
Kang, Y. J., Li, Y., Sun, X., & Sun, X. (2003). Antiapoptotic effect and inhibition of ischemia/reperfusion-induced myocardial injury in metallothionein-overexpressing transgenic mice. The American Journal of Pathology, 163(4), 1579–1586. https://doi.org/10.1016/S0002-9440(10)63514-6
Katakami, N. (2018). Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. Journal of Atherosclerosis and Thrombosis, 25(1), 27–39. https://doi.org/10.5551/jat.RV17014
Kim, Y.-W., & Byzova, T. V. (2014). Oxidative stress in angiogenesis and vascular disease. Blood, 123(5), 625–631. https://doi.org/10.1182/blood-2013-09-512749
Kuznetsov, A. V., Javadov, S., Margreiter, R., Grimm, M., Hagenbuchner, J., & Ausserlechner, M. J. (2019). The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury. Antioxidants (Basel, Switzerland), 8(10). https://doi.org/10.3390/antiox8100454
Larsen, S., Scheede-Bergdahl, C., Whitesell, T., Boushel, R., & Bergdahl, A. (2015). Increased intrinsic mitochondrial respiratory capacity in skeletal muscle from rats with streptozotocin-induced hyperglycemia. Physiological Reports, 3(7). https://doi.org/10.14814/phy2.12467
Li, Hu, Malyar, R. M., Zhai, N., Wang, H., Liu, K., Liu, D., Pan, C., Gan, F., Huang, K., Miao, J., & Chen, X. (2019). Zinc supplementation alleviates OTA-induced oxidative stress and apoptosis in MDCK cells by up-regulating metallothioneins. Life Sciences, 234, 116735. https://doi.org/10.1016/j.lfs.2019.116735
Li, Huige, & Forstermann, U. (2014). Pharmacological prevention of eNOS uncoupling. Current Pharmaceutical Design, 20(22), 3595–3606. https://doi.org/10.2174/13816128113196660749
Li, X., & Zhao, J. (2019). The influence of zinc supplementation on metabolic status in gestational diabetes: A meta-analysis of randomized controlled studies. The Journal of Maternal-Fetal & Neonatal Medicine: The Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 1–6. https://doi.org/10.1080/14767058.2019.1659769
Liang, T., Zhang, Q., Sun, W., Xin, Y., Zhang, Z., Tan, Y., Zhou, S., Zhang, C., Cai, L., Lu, X., & Cheng, M. (2015). Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: Important role of metallothionein. Toxicology Letters, 233(2), 114–124. https://doi.org/10.1016/j.toxlet.2015.01.010
Liu, Y., Batchuluun, B., Ho, L., Zhu, D., Prentice, K. J., Bhattacharjee, A., Zhang, M., Pourasgari, F., Hardy, A. B., Taylor, K. M., Gaisano, H., Dai, F. F., & Wheeler, M. B. (2015). Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic β Cells: ROLES IN REGULATING CYTOSOLIC ZINC HOMEOSTASIS AND INSULIN SECRETION. The Journal of Biological Chemistry, 290(30), 18757–18769. https://doi.org/10.1074/jbc.M115.640524
Lu, Y., Liu, Y., Li, H., Wang, X., Wu, W., & Gao, L. (2015). Effect and mechanisms of zinc supplementation in protecting against diabetic cardiomyopathy in a rat model of type 2 diabetes. Bosnian Journal of Basic Medical Sciences, 15(1), 14–20. https://doi.org/10.17305/bjbms.2015.63
Marreiro, D. do N., Cruz, K. J. C., Morais, J. B. S., Beserra, J. B., Severo, J. S., & de Oliveira, A. R. S. (2017). Zinc and Oxidative Stress: Current Mechanisms. Antioxidants (Basel, Switzerland), 6(2). https://doi.org/10.3390/antiox6020024
Miao, X., Wang, Y., Sun, J., Sun, W., Tan, Y., Cai, L., Zheng, Y., Su, G., Liu, Q., & Wang, Y. (2013). Zinc protects against diabetes-induced pathogenic changes in the aorta: Roles of metallothionein and nuclear factor (erythroid-derived 2)-like 2. Cardiovascular Diabetology, 12, 54. https://doi.org/10.1186/1475-2840-12-54
Mondragon & Bergdhal. (2018). Metallothionein expression in slow- vs. Fast-twitch muscle fibers following 4 weeks of streptozotocin-induced type 1 diabetes. https://www.facetsjournal.com/doi/10.1139/facets-2017-0058
Moris, D., Spartalis, M., Spartalis, E., Karachaliou, G. S., Karaolanis, G. I., Tsourouflis, G., . . . Theocharis, S. (2017). The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Annals of Translational Medicine, 5(16), 326. doi:10.21037/atm.2017.06.27 [doi]
Myers, S. A., Nield, A., Chew, G.-S., & Myers, M. A. (2013). The zinc transporter, Slc39a7 (Zip7) is implicated in glycaemic control in skeletal muscle cells. PloS One, 8(11), e79316. https://doi.org/10.1371/journal.pone.0079316
Myers, S. A., Nield, A., & Myers, M. (2012). Zinc transporters, mechanisms of action and therapeutic utility: Implications for type 2 diabetes mellitus. Journal of Nutrition and Metabolism, 2012, 173712. https://doi.org/10.1155/2012/173712
Norouzi, S., Adulcikas, J., Sohal, S. S., & Myers, S. (2017). Zinc transporters and insulin resistance: Therapeutic implications for type 2 diabetes and metabolic disease. Journal of Biomedical Science, 24(1), 87. https://doi.org/10.1186/s12929-017-0394-0
Olechnowicz, J., Tinkov, A., Skalny, A., & Suliburska, J. (2018). Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. The Journal of Physiological Sciences: JPS, 68(1), 19–31. https://doi.org/10.1007/s12576-017-0571-7
Oteiza, P. I. (2012). Zinc and the modulation of redox homeostasis. Free Radical Biology & Medicine, 53(9), 1748–1759. https://doi.org/10.1016/j.freeradbiomed.2012.08.568
Özcelik, D., Nazıroglu, M., Tunçdemir, M., Çelik, Ö., Öztürk, M., & Flores-Arce, M. F. (2012). Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biological Trace Element Research, 150(1–3), 342–349. https://doi.org/10.1007/s12011-012-9508-4
Panth, N., Paudel, K. R., & Parajuli, K. (2016). Reactive Oxygen Species: A Key Hallmark of Cardiovascular Disease. Advances in Medicine, 2016, 9152732. https://doi.org/10.1155/2016/9152732
Park, Y., Zhang, J., & Cai, L. (2018). Reappraisal of metallothionein: Clinical implications for patients with diabetes mellitus. Journal of Diabetes, 10(3), 213–231. https://doi.org/10.1111/1753-0407.12620
Prasad, A. S. (2014). Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Frontiers in Nutrition, 1, 14. https://doi.org/10.3389/fnut.2014.00014
Ranasinghe, P., Pigera, S., Galappatthy, P., Katulanda, P., & Constantine, G. R. (2015). Zinc and diabetes mellitus: Understanding molecular mechanisms and clinical implications. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 23, 44. https://doi.org/10.1186/s40199-015-0127-4
Ranasinghe, P., Wathurapatha, W. S., Galappatthy, P., Katulanda, P., Jayawardena, R., & Constantine, G. R. (2018). Zinc supplementation in prediabetes: A randomized double-blind placebo-controlled clinical trial. Journal of Diabetes, 10(5), 386–397. https://doi.org/10.1111/1753-0407.12621
Rocha, M., Diaz-Morales, N., Rovira-Llopis, S., Escribano-Lopez, I., Bañuls, C., Hernandez-Mijares, A., Diamanti-Kandarakis, E., & Victor, V. M. (2016). Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Diabetes. Current Pharmaceutical Design, 22(18), 2640–2649. https://doi.org/10.2174/1381612822666160209152033
Rochette, L., Zeller, M., Cottin, Y., & Vergely, C. (2014). Diabetes, oxidative stress and therapeutic strategies. Biochimica Et Biophysica Acta, 1840(9), 2709–2729. https://doi.org/10.1016/j.bbagen.2014.05.017
Rolo, A. P., & Palmeira, C. M. (2006). Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology, 212(2), 167-178. doi:S0041-008X(06)00028-7 [pii]
Saberzadeh-Ardestani, B., Karamzadeh, R., Basiri, M., Hajizadeh-Saffar, E., Farhadi, A., Shapiro, A. M. J., . . . Baharvand, H. (2018). Type 1 diabetes mellitus: Cellular and molecular pathophysiology at A glance. Cell Journal, 20(3), 294-301. doi:10.22074/cellj.2018.5513 [doi]
Saharia, G. K., & Goswami, R. K. (2013). Evaluation of serum zinc status and glycated hemoglobin of type 2 diabetes mellitus patients in a tertiary care hospital of assam. Journal of Laboratory Physicians, 5(1), 30–33. https://doi.org/10.4103/0974-2727.115923
Sailaja, Y. R., Baskar, R., & Saralakumari, D. (2003). The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radical Biology & Medicine, 35(2), 133–139. https://doi.org/10.1016/s0891-5849(03)00071-6
Santilli, F., D’Ardes, D., & Davì, G. (2015). Oxidative stress in chronic vascular disease: From prediction to prevention. Vascular Pharmacology, 74, 23–37. https://doi.org/10.1016/j.vph.2015.09.003
Scheede-Bergdahl, C., & Bergdahl, A. (2017). Adaptation of mitochondrial expression and ATP production in dedifferentiating vascular smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 95(12), 1473–1479. https://doi.org/10.1139/cjpp-2017-0227
Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology : CB, 24(10), R453-62. doi:10.1016/j.cub.2014.03.034 [doi]
Sena, C. M., Leandro, A., Azul, L., Seiça, R., & Perry, G. (2018). Vascular Oxidative Stress: Impact and Therapeutic Approaches. Frontiers in Physiology, 9, 1668. https://doi.org/10.3389/fphys.2018.01668
Sena, C. M., Pereira, A. M., & Seica, R. (2013). Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochimica Et Biophysica Acta, 1832(12), 2216-2231. doi:10.1016/j.bbadis.2013.08.006 [doi]
Shan, Z., Bao, W., Zhang, Y., Rong, Y., Wang, X., Jin, Y., Song, Y., Yao, P., Sun, C., Hu, F. B., & Liu, L. (2014). Interactions between zinc transporter-8 gene (SLC30A8) and plasma zinc concentrations for impaired glucose regulation and type 2 diabetes. Diabetes, 63(5), 1796–1803. https://doi.org/10.2337/db13-0606
Sotler, R., Poljšak, B., Dahmane, R., Jukić, T., Pavan Jukić, D., Rotim, C., Trebše, P., & Starc, A. (2019). PROOXIDANT ACTIVITIES OF ANTIOXIDANTS AND THEIR IMPACT ON HEALTH. Acta Clinica Croatica, 58(4), 726–736. https://doi.org/10.20471/acc.2019.58.04.20
Steck, A. K., & Rewers, M. J. (2011). Genetics of type 1 diabetes. Clinical Chemistry, 57(2), 176–185. https://doi.org/10.1373/clinchem.2010.148221
Sturtzel, C. (2017). Endothelial Cells. Advances in Experimental Medicine and Biology, 1003, 71–91. https://doi.org/10.1007/978-3-319-57613-8_4
Sun, Q., van Dam, R. M., Willett, W. C., & Hu, F. B. (2009). Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care, 32(4), 629–634. https://doi.org/10.2337/dc08-1913
Thakur, P., Kumar, A., & Kumar, A. (2018). Targeting oxidative stress through antioxidants in diabetes mellitus. Journal of Drug Targeting, 26(9), 766–776. https://doi.org/10.1080/1061186X.2017.1419478
Tuncay, E., Bitirim, C. V., Olgar, Y., Durak, A., Rutter, G. A., & Turan, B. (2019). Zn2+-transporters ZIP7 and ZnT7 play important role in progression of cardiac dysfunction via affecting sarco(endo)plasmic reticulum-mitochondria coupling in hyperglycemic cardiomyocytes. Mitochondrion, 44, 41–52. https://doi.org/10.1016/j.mito.2017.12.011
van der Schaft, N., Schoufour, J. D., Nano, J., Kiefte-de Jong, J. C., Muka, T., Sijbrands, E. J. G., Ikram, M. A., Franco, O. H., & Voortman, T. (2019). Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: The Rotterdam Study. European Journal of Epidemiology, 34(9), 853–861. https://doi.org/10.1007/s10654-019-00548-9
Wada, J., & Nakatsuka, A. (2016). Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes. Acta Medica Okayama, 70(3), 151–158. https://doi.org/10.18926/AMO/54413
Wang, J., Song, Y., Elsherif, L., Song, Z., Zhou, G., Prabhu, S. D., Saari, J. T., & Cai, L. (2006). Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation, 113(4), 544–554. https://doi.org/10.1161/CIRCULATIONAHA.105.537894
Wang, S., Wang, B., Wang, Y., Tong, Q., Liu, Q., Sun, J., Zheng, Y., & Cai, L. (2017). Zinc Prevents the Development of Diabetic Cardiomyopathy in db/db Mice. International Journal of Molecular Sciences, 18(3). https://doi.org/10.3390/ijms18030580
Widlansky, M. E., & Hill, R. B. (2018). Mitochondrial regulation of diabetic vascular disease: An emerging opportunity. Translational Research: The Journal of Laboratory and Clinical Medicine, 202, 83–98. https://doi.org/10.1016/j.trsl.2018.07.015
Williams, C. L., & Long, A. E. (2019). What has zinc transporter 8 autoimmunity taught us about type 1 diabetes? Diabetologia, 62(11), 1969–1976. https://doi.org/10.1007/s00125-019-04975-x
Wood, Z. A., Schröder, E., Robin Harris, J., & Poole, L. B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends in Biochemical Sciences, 28(1), 32–40. https://doi.org/10.1016/s0968-0004(02)00003-8
Woodruff, G., Bouwkamp, C. G., de Vrij, F. M., Lovenberg, T., Bonaventure, P., Kushner, S. A., & Harrington, A. W. (2018). The Zinc Transporter SLC39A7 (ZIP7) Is Essential for Regulation of Cytosolic Zinc Levels. Molecular Pharmacology, 94(3), 1092–1100. https://doi.org/10.1124/mol.118.112557
Yadao, D. R., Bergdahl, A., & MacKenzie, S. (Manuscript in preparation). Aerobic training increases respiratory capacity in vascular mitochondria. (Unpublished Master's of Science). Concorida University.
Yu, E., Mercer, J., & Bennett, M. (2012). Mitochondria in vascular disease. Cardiovascular Research, 95(2), 173–182. https://doi.org/10.1093/cvr/cvs111
Zaccardi, F., Webb, D. R., Yates, T., & Davies, M. J. (2016). Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgraduate Medical Journal, 92(1084), 63–69. https://doi.org/10.1136/postgradmedj-2015-133281
Zalewski, P. D., Beltrame, J. F., Wawer, A. A., Abdo, A. I., & Murgia, C. (2019). Roles for endothelial zinc homeostasis in vascular physiology and coronary artery disease. Critical Reviews in Food Science and Nutrition, 59(21), 3511–3525. https://doi.org/10.1080/10408398.2018.1495614
Zhao, T., Huang, Q., Su, Y., Sun, W., Huang, Q., & Wei, W. (2019). Zinc and its regulators in pancreas. Inflammopharmacology, 27(3), 453–464. https://doi.org/10.1007/s10787-019-00573-w
Zhao, Y., Tan, Y., Dai, J., Li, B., Guo, L., Cui, J., Wang, G., Shi, X., Zhang, X., Mellen, N., Li, W., & Cai, L. (2011). Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicology Letters, 200(1–2), 100–106. https://doi.org/10.1016/j.toxlet.2010.11.001
Zhu, K., Nie, S., Li, C., Huang, J., Hu, X., Li, W., Gong, D., & Xie, M. (2013). Antidiabetic and pancreas-protective effects of zinc threoninate chelate in diabetic rats may be associated with its antioxidative stress ability. Biological Trace Element Research, 153(1–3), 291–298. https://doi.org/10.1007/s12011-013-9675-y
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top