Login | Register

Prosthetic mitral valve orientation and its impact on the flow dynamics in the left ventricle


Prosthetic mitral valve orientation and its impact on the flow dynamics in the left ventricle

Maraouch, Ghassan (2021) Prosthetic mitral valve orientation and its impact on the flow dynamics in the left ventricle. Masters thesis, Concordia University.

[thumbnail of Maraouch_MASc_S2021.pdf]
Text (application/pdf)
Maraouch_MASc_S2021.pdf - Accepted Version
Available under License Spectrum Terms of Access.


Severe mitral regurgitation is a complication that reduces the quality of life of those affected and left untreated, it can lead to heart failure and potential death. With the recent success of transcatheter aortic valve replacement surgery reducing the risk associated with open heart surgery, attention has been focused on performing a similar approach for mitral valve replacement. Transcatheter mitral valve replacement has proven to be more challenging; one of the associated complications is the potential misalignment of the mitral valve that alters the flow dynamics occurring in the left ventricle. An in-vitro experiment was performed to study the change in the flow dynamics associated with increasing misalignment severity. Three different valve orientations were investigated: a healthy case to use as a baseline, a slightly angled case such that the valve is aligned with the apical septal wall and a highly angled case that has the valve aligned in the basal septal wall. Each valve orientation was tested over a range of heart rates corresponding to 40, 60, 80, 100 and 120 beats per minute while maintaining a constant stroke volume. A Eulerian analysis was performed on fluid mechanics properties including the kinetic energy, viscous energy dissipation and circulation. The healthy case was determined to minimize viscous energy dissipation and maximize systolic kinetic energy. Circulation in the altered valve orientations had a reversed direction relative to the healthy case. A Lagrangian analysis was completed to quantify the amount of stasis, which was determined to be minimized in the healthy case.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering
Item Type:Thesis (Masters)
Authors:Maraouch, Ghassan
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Mechanical Engineering
Date:27 January 2021
Thesis Supervisor(s):Kadem, Lyes
Keywords:Mitral valve, Transcatheter mitral valve replacement, Left ventricular flow, Cardiac flow, Heart flow, Cardiovascular flow
ID Code:988014
Deposited By: Ghassan Maraouch
Deposited On:29 Jun 2021 20:55
Last Modified:29 Jun 2021 20:55


[1] Waite L, Fine J. Applied Biofluid Mechanics. 1st ed. New York: The McGraw-Hill Companies; 2007.
[2] Guyton AC, Hall JE. Textbook of Medical Physiology. 11th ed. Amsterdam: Elsevier Saunders; 2006.
[3] OpenStax College. Anatomy & Physiology. OpenStax College; 2013. https://doi.org/10.1007/978-3-319-76747-5_1.
[4] Reul H, Talukder N, Müller EW. Fluid mechanics of the natural mitral valve. J Biomech 1981;14:361–72. https://doi.org/10.1016/0021-9290(81)90046-4.
[5] Pedrizzetti G, Domenichini F. Nature Optimizes the Swirling Flow in the Human Left Ventricle. Phys Rev Lett 2005;95:108101. https://doi.org/10.1103/PhysRevLett.95.108101.
[6] Varma P, Krishna N, Jose R, Madkaiker A. Ischemic mitral regurgitation. Ann Card Anaesth 2017;20:432–9. https://doi.org/10.4103/aca.ACA_58_17.
[7] Goode D, Dhaliwal R, Mohammadi H. Transcatheter Mitral Valve Replacement: State of the Art. Cardiovasc Eng Technol 2020;11:229–53. https://doi.org/10.1007/s13239-020-00460-4.
[8] Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet 2006;368:1005–11. https://doi.org/10.1016/S0140-6736(06)69208-8.
[9] Mirabel M, Iung B, Baron G, Messika-Zeitoun D, Detaint D, Vanoverschelde J-L, et al. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J 2007;28:1358–65. https://doi.org/10.1093/eurheartj/ehm001.
[10] Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 2003;16:777–802. https://doi.org/10.1016/S0894-7317(03)00335-3.
[11] Enriquez-Sarano M, Nkomo VT, Michelena HI. Valvular Heart Disease. In: Wang A, Bashore TM, editors. Valvular Hear. Dis., Totowa, NJ: Humana Press; 2009, p. 221–46. https://doi.org/10.1007/978-1-59745-411-7.
[12] De Backer O, Piazza N, Banai S, Lutter G, Maisano F, Herrmann HC, et al. Percutaneous Transcatheter Mitral Valve Replacement. Circ Cardiovasc Interv 2014;7:400–9. https://doi.org/10.1161/CIRCINTERVENTIONS.114.001607.
[13] Gillinov AM, Wierup PN, Blackstone EH, Bishay ES, Cosgrove DM, White J, et al. Is repair preferable to replacement for ischemic mitral regurgitation? J Thorac Cardiovasc Surg 2001;122:1125–41. https://doi.org/10.1067/mtc.2001.116557.
[14] Senthilnathan V, Treasure T, Grunkemeier G, Starr A. Heart Valves: Which is the Best Choice? Cardiovasc Surg 1999;7:393–7. https://doi.org/https://doi.org/10.1177/096721099900700401.
[15] Rahimtoola SH. Choice of Prosthetic Heart Valve in Adults. J Am Coll Cardiol 2010;55:2413–26. https://doi.org/10.1016/j.jacc.2009.10.085.
[16] Testa L, Popolo Rubbio A, Casenghi M, Pero G, Latib A, Bedogni F. Transcatheter Mitral Valve Replacement in the Transcatheter Aortic Valve Replacement Era. J Am Heart Assoc 2019;8:e013352. https://doi.org/10.1161/JAHA.119.013352.
[17] Thubrikar MJ, Deck JD, Aouad J, Nolan SP. Role of mechanical stress in calcification of aortic bioprosthetic valves. J Thorac Cardiovasc Surg 1983;86:115–25. https://doi.org/10.1016/s0022-5223(19)39217-7.
[18] Modi P, Hassan A, Chitwood WR. Minimally invasive mitral valve surgery: a systematic review and meta-analysis. Eur J Cardio-Thoracic Surg 2008;34:943–52. https://doi.org/10.1016/j.ejcts.2008.07.057.
[19] Webb JG, Wood DA. Current Status of Transcatheter Aortic Valve Replacement. J Am Coll Cardiol 2012;60:483–92. https://doi.org/10.1016/j.jacc.2012.01.071.
[20] Zoghbi WA, Asch FM, Bruce C, Gillam LD, Grayburn PA, Hahn RT, et al. Guidelines for the Evaluation of Valvular Regurgitation After Percutaneous Valve Repair or Replacement: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Angiography and Interventions, Ja. J Am Soc Echocardiogr 2019;32:431–75. https://doi.org/10.1016/j.echo.2019.01.003.
[21] Preston-Maher GL, Torii R, Burriesci G. A Technical Review of Minimally Invasive Mitral Valve Replacements. Cardiovasc Eng Technol 2015;6:174–84. https://doi.org/10.1007/s13239-014-0203-9.
[22] Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO. Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci 2006;103:6305–8. https://doi.org/10.1073/pnas.0600520103.
[23] Kilner PJ, Yang G-Z, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH. Asymmetric redirection of flow through the heart. Nature 2000;404:759–61. https://doi.org/10.1038/35008075.
[24] Kheradvar A, Pedrizzetti G. Vortex Formation in the Cardiovascular System. 1st ed. London: Springer London; 2012. https://doi.org/10.1007/978-1-4471-2288-3.
[25] Bellhouse BJ. Fluid mechanics of a model mitral valve and left ventricle. Cardiovasc Res 1972;6:199–210. https://doi.org/10.1093/cvr/6.2.199.
[26] Di Labbio G, Vétel J, Kadem L. Material transport in the left ventricle with aortic valve regurgitation. Phys Rev Fluids 2018;3:113101. https://doi.org/10.1103/PhysRevFluids.3.113101.
[27] Seo JH, Mittal R. Effect of diastolic flow patterns on the function of the left ventricle. Phys Fluids 2013;25:110801. https://doi.org/10.1063/1.4819067.
[28] Nakashima K, Itatani K, Kitamura T, Oka N, Horai T, Miyazaki S, et al. Energy dynamics of the intraventricular vortex after mitral valve surgery. Heart Vessels 2017;32:1123–9. https://doi.org/10.1007/s00380-017-0967-6.
[29] Akiyama K, Nakamura N, Itatani K, Naito Y, Kinoshita M, Shimizu M, et al. Flow-dynamics assessment of mitral-valve surgery by intraoperative vector flow mapping. Interact Cardiovasc Thorac Surg 2017;24:869–75. https://doi.org/10.1093/icvts/ivx033.
[30] Watanabe H, Sugiura S, Hisada T. The looped heart does not save energy by maintaining the momentum of blood flowing in the ventricle. Am J Physiol Circ Physiol 2008;294:H2191–6. https://doi.org/10.1152/ajpheart.00041.2008.
[31] De Vecchi A, Marlevi D, Nordsletten DA, Ntalas I, Leipsic J, Bapat V, et al. Left ventricular outflow obstruction predicts increase in systolic pressure gradients and blood residence time after transcatheter mitral valve replacement. Sci Rep 2018;8:15540. https://doi.org/10.1038/s41598-018-33836-7.
[32] Warner HR, Toronto AF. Effect of Heart Rate on Aortic Insufficiency as Measured by a Dye-Dilution Technique. Circ Res 1961;9:413–7. https://doi.org/10.1161/01.RES.9.2.413.
[33] Di Labbio G. On Left Ventricular Fluid Dynamics associated with Progressive Chronic Aortic Regurgitation. Concordia University, 2019.
[34] Glycerine Producers’ Association. Physical properties of glycerine and its solutions. New York: 1963.
[35] Yousif MY, Holdsworth DW, Poepping TL. Deriving a blood-mimicking fluid for particle image velocimetry in sylgard-184 vascular models. 2009 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., vol. 50, Miinneapolis: IEEE; 2009, p. 1412–5. https://doi.org/10.1109/IEMBS.2009.5334175.
[36] Yousif MY, Holdsworth DW, Poepping TL. A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp Fluids 2011;50:769–74. https://doi.org/10.1007/s00348-010-0958-1.
[37] Kheradvar A, Houle H, Pedrizzetti G, Tonti G, Belcik T, Ashraf M, et al. Echocardiographic Particle Image Velocimetry: A Novel Technique for Quantification of Left Ventricular Blood Vorticity Pattern. J Am Soc Echocardiogr 2010;23:86–94. https://doi.org/10.1016/j.echo.2009.09.007.
[38] Wang J, Gao Q, Wei R, Wang J. Experimental study on the effect of an artificial cardiac valve on the left ventricular flow. Exp Fluids 2017;58:126. https://doi.org/10.1007/s00348-017-2409-8.
[39] Novakova L. Deformation correction algorithm for PIV data. AIP Conf. Proc., vol. 1768, Šamorín: 2016, p. 020008. https://doi.org/10.1063/1.4963030.
[40] Voorneveld J, Saaid H, Schinkel C, Radeljic N, Lippe B, Gijsen FJH, et al. 4-D Echo-Particle Image Velocimetry in a Left Ventricular Phantom. Ultrasound Med Biol 2020;46:805–17. https://doi.org/10.1016/j.ultrasmedbio.2019.11.020.
[41] Kheradvar A, Gharib M. On Mitral Valve Dynamics and its Connection to Early Diastolic Flow. Ann Biomed Eng 2009;37:1–13. https://doi.org/10.1007/s10439-008-9588-7.
[42] Doenst T, Spiegel K, Reik M, Markl M, Hennig J, Nitzsche S, et al. Fluid-Dynamic Modeling of the Human Left Ventricle: Methodology and Application to Surgical Ventricular Reconstruction. Ann Thorac Surg 2009;87:1187–95. https://doi.org/10.1016/j.athoracsur.2009.01.036.
[43] Domenichini F, Pedrizzetti G, Baccani B. Three-dimensional filling flow into a model left ventricle. J Fluid Mech 2005;539:179. https://doi.org/10.1017/S0022112005005550.
[44] Espa S, Badas MG, Fortini S, Querzoli G, Cenedese A. A Lagrangian investigation of the flow inside the left ventricle. Eur J Mech - B/Fluids 2012;35:9–19. https://doi.org/10.1016/j.euromechflu.2012.01.015.
[45] Groves EM, Falahatpisheh A, Su JL, Kheradvar A. The Effects of Positioning of Transcatheter Aortic Valves on Fluid Dynamics of the Aortic Root. ASAIO J 2014;60:545–52. https://doi.org/10.1097/MAT.0000000000000107.
[46] Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J. Particle Image Velocimetry: A Practical Guide. 3rd ed. Cham: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-68852-7.
[47] Scharnowski S, Kähler CJ. Particle image velocimetry - Classical operating rules from today’s perspective. Opt Lasers Eng 2020;135:106185. https://doi.org/10.1016/j.optlaseng.2020.106185.
[48] Grant I. Particle image velocimetry: A review. Proc Inst Mech Eng Part C J Mech Eng Sci 1997;211:55–76. https://doi.org/10.1243/0954406971521665.
[49] Cierpka C, Hain R, Buchmann NA. Flow visualization by mobile phone cameras. Exp Fluids 2016;57:108. https://doi.org/10.1007/s00348-016-2192-y.
[50] Chung CS, Karamanoglu M, Kovács SJ. Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am J Physiol Circ Physiol 2004;287:H2003–8. https://doi.org/10.1152/ajpheart.00404.2004.
[51] Lourenco L, Krothapalli A. On the accuracy of velocity and vorticity measurements with PIV. Exp Fluids 1995;18:421–8. https://doi.org/10.1007/BF00208464.
[52] Etebari A, Vlachos PP. Improvements on the accuracy of derivative estimation from DPIV velocity measurements. Exp Fluids 2005;39:1040–50. https://doi.org/10.1007/s00348-005-0037-1.
[53] Foucaut JM, Stanislas M. Some considerations on the accuracy and frequency response of some derivative filters applied to particle image velocimetry vector fields. Meas Sci Technol 2002;13:1058–71. https://doi.org/10.1088/0957-0233/13/7/313.
[54] Lele SK. Compact finite difference schemes with spectral-like resolution. J Comput Phys 1992;103:16–42. https://doi.org/10.1016/0021-9991(92)90324-R.
[55] Di Labbio G, Kadem L. Jet collisions and vortex reversal in the human left ventricle. J Biomech 2018;78:155–60. https://doi.org/10.1016/j.jbiomech.2018.07.023.
[56] Kim I-C, Hong G-R. Intraventricular Flow: More than Pretty Pictures. Heart Fail Clin 2019;15:257–65. https://doi.org/10.1016/j.hfc.2018.12.005.
[57] Suh G, Les AS, Tenforde AS, Shadden SC, Spilker RL, Yeung JJ, et al. Quantification of Particle Residence Time in Abdominal Aortic Aneurysms Using Magnetic Resonance Imaging and Computational Fluid Dynamics. Ann Biomed Eng 2011;39:864–83. https://doi.org/10.1007/s10439-010-0202-4.
[58] Evin M, Guivier-Curien C, Pibarot P, Kadem L, Rieu R. Are the Current Doppler Echocardiography Criteria Able to Discriminate Mitral Bileaflet Mechanical Heart Valve Malfunction? An In Vitro Study. Artif Organs 2016;40:E52–60. https://doi.org/10.1111/aor.12653.
[59] Pedrizzetti G, Domenichini F, Tonti G. On the left ventricular vortex reversal after mitral valve replacement. Ann Biomed Eng 2010;38:769–73. https://doi.org/10.1007/s10439-010-9928-2.
[60] Akiyama K, Maeda S, Matsuyama T, Kainuma A, Ishii M, Naito Y, et al. Vector flow mapping analysis of left ventricular energetic performance in healthy adult volunteers. BMC Cardiovasc Disord 2017;17:21. https://doi.org/10.1186/s12872-016-0444-7.
[61] Bolger A, Heiberg E, Karlsson M, Wigström L, Engvall J, Sigfridsson A, et al. Transit of Blood Flow Through the Human Left Ventricle Mapped by Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson 2007;9:741–7. https://doi.org/10.1080/10976640701544530.
[62] Eriksson J, Bolger AF, Ebbers T, Carlhäll C-J. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur Hear J - Cardiovasc Imaging 2013;14:417–24. https://doi.org/10.1093/ehjci/jes159.
[63] Garg P, Crandon S, Swoboda PP, Fent GJ, Foley JRJ, Chew PG, et al. Left ventricular blood flow kinetic energy after myocardial infarction - insights from 4D flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2018;20:61. https://doi.org/10.1186/s12968-018-0483-6.
[64] Wong J, Chabiniok R, DeVecchi A, Dedieu N, Sammut E, Schaeffter T, et al. Age-related changes in intraventricular kinetic energy: a physiological or pathological adaptation? Am J Physiol Circ Physiol 2016;310:H747–55. https://doi.org/10.1152/ajpheart.00075.2015.
[65] Kanski M, Arvidsson PM, Töger J, Borgquist R, Heiberg E, Carlsson M, et al. Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data. J Cardiovasc Magn Reson 2015;17:111. https://doi.org/10.1186/s12968-015-0211-4.
[66] Tanaka T, Asami R, Kawabata K, Hashiba K, Okada T, Nishiyama T. A posteriori accuracy estimation of ultrasonic vector-flow mapping (VFM). J Vis 2017;20:607–23. https://doi.org/10.1007/s12650-016-0413-3.
[67] Hong G-R, Pedrizzetti G, Tonti G, Li P, Wei Z, Kim JK, et al. Characterization and Quantification of Vortex Flow in the Human Left Ventricle by Contrast Echocardiography Using Vector Particle Image Velocimetry. JACC Cardiovasc Imaging 2008;1:705–17. https://doi.org/10.1016/j.jcmg.2008.06.008.
[68] Faludi R, Szulik M, D’hooge J, Herijgers P, Rademakers F, Pedrizzetti G, et al. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: An in vivo study using echocardiographic particle image velocimetry. J Thorac Cardiovasc Surg 2010;139:1501–10. https://doi.org/10.1016/j.jtcvs.2009.07.060.
[69] Rossini L, Martinez-Legazpi P, Vu V, Fernández-Friera L, Pérez del Villar C, Rodríguez-López S, et al. A clinical method for mapping and quantifying blood stasis in the left ventricle. J Biomech 2016;49:2152–61. https://doi.org/10.1016/j.jbiomech.2015.11.049.
[70] Reza MMS, Arzani A. A critical comparison of different residence time measures in aneurysms. J Biomech 2019;88:122–9. https://doi.org/10.1016/j.jbiomech.2019.03.028.
[71] Hendabadi S, Bermejo J, Benito Y, Yotti R, Fernández-Avilés F, del Álamo JC, et al. Topology of Blood Transport in the Human Left Ventricle by Novel Processing of Doppler Echocardiography. Ann Biomed Eng 2013;41:2603–16. https://doi.org/10.1007/s10439-013-0853-z.
[72] Svalbring E, Fredriksson A, Eriksson J, Dyverfeldt P, Ebbers T, Bolger AF, et al. Altered Diastolic Flow Patterns and Kinetic Energy in Subtle Left Ventricular Remodeling and Dysfunction Detected by 4D Flow MRI. PLoS One 2016;11:e0161391. https://doi.org/10.1371/journal.pone.0161391.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top