Login | Register

Saccharomyces cerevisiae share extracellular vesicles for protection from heat stress


Saccharomyces cerevisiae share extracellular vesicles for protection from heat stress

Oliver, Joshua (2021) Saccharomyces cerevisiae share extracellular vesicles for protection from heat stress. Masters thesis, Concordia University.

[thumbnail of Oliver_MSc_S2021.pdf]
Text (application/pdf)
Oliver_MSc_S2021.pdf - Accepted Version


Proteostasis is partly dependent on quality control mechanisms to detect unfolded proteins and either refold or degrade them. These pathways clear toxic unfolded protein aggregates that appear during aging or under stress for cell survival. However, recent studies suggest that survival of cell populations also rely on extracellular vesicles (EVs) shared under proteotoxic stress. EVs are nanosized lipid membrane-bound carriers of complex biomolecules thought to mediate intercellular communication underlying diverse physiology in humans and across phyla. However, their contributions to proteostasis remain unclear.
Given that the molecular machinery underlying EV biogenesis is conserved in all eukaryotes, I reasoned that Saccharomyces cerevisiae (baker’s yeast) may serve as a simple model to better understand how EVs may circumvent proteotoxicity in molecular detail. I first optimized methods for isolating and characterizing EVs from yeast by tracking GFP-tagged Bro1, the yeast homolog of ALIX, an established EV biomarker in humans. Using fluorescence microscopy, I show that yeast cells readily share EVs during mild heat stress, and characterize morphology, size and protein content using, scanning probe microscopy, dynamic light scattering and mass spectrometry. Adding these isolated EVs to naïve (unstressed) cells protects them from lethal heat stress. This effect is lost when EVs were collected during osmotic stress or from cells lacking HSC82 or SSA2, genes encoding protein chaperones that are abundant in EVs. I conclude that yeast share EVs containing protein chaperones during heat stress to protect against proteotoxicity for survival, and speculate that EVs may help coordinate proteostasis between cells in all organisms.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Thesis (Masters)
Authors:Oliver, Joshua
Institution:Concordia University
Degree Name:M. Sc.
Date:3 March 2021
Thesis Supervisor(s):Brett, Christopher
ID Code:988172
Deposited On:29 Jun 2021 22:32
Last Modified:29 Jun 2021 22:32


Alam, S.L., Sun, J., Payne, M., Welch, B.D., Blake, B.K., Davis, D.R., Meyer, H.H., ... and Sundquist, W.I. (2004) Ubiquitin interactions of NZF zinc fingers. EMBO J. 23, 1411-1421. doi:10.1038/sj.emboj.7600114
Albuquerque, P.C., Nakayasu, E.S., Rodrigues, M.L., Frases, S., Casadeavll, A., Zancope-Oliveira, R.M., Almeida, I.C., and Nosanchuk, J.D. (2008) Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cellular Microbiology. 10(8), 1-16. doi: 10.1111/j.1462-5822.2008.01160.x
Anderson, J., Mihalik, R., and Soll, D.R. (1990) Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J Bacteriol. 172(1), 224-235. doi:10.1128/jb.172.1.224-235.1990
Asai, H., Ikezu, S., Tsunoda, S., Medalla, M., Luebke, J., Haydar, T., Wolozin, B., ... and Ikezu, T. (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nature neuroscience. 18(11), 1584-1593. doi: 10.1038/nn.4132
Babst, M., Katzmann, D.J., Estepa-Sabal, E.J., Meerloo, T., and Emr S.D. (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell. 3, 271-282. doi: 10.1016/s1534-5807(02)00220-4
Bacon, K., Blain, A., Burroughs, M., McArthur, N., Rao, B.M., and Menegatti, S. (2020) Isolation of Chemically Cyclized Peptide Binders Using Yeast Surface Display. American Chemical Society Combinatorial Science. 22(10), 519-532. doi: 10.1021/acscombsci.0c00076
Baietti, M.F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., Ivarsson, Y., ... David, G. (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 14, 677-685. doi:10.1038/ncb2502
Baltazar, L.M., Zamith-Miranda, D., Burnet, M.C., Choi, H., Nimrichter, L., Nakayasu, E.S., and Nosanchuk, J.D. (2018) Concentration-dependent protein loading of extracellular vesicles released by Histoplasma capsulatum after antibody treatment and its modulatory action upon macrophages. Scientific Reports. 8 (8065), 1-10. doi: 10.1038/s41598-018-25665-5
Bewicke-Copley, F., Mulcahy, L.A., Jacobs, L.A., Samuel, P., Akbar, N., Pink, R.C., and Carter, D.R.F. (2017) Extracellular vesicles released following heat stress induce bystander effect in unstressed populations. Journal of Extracellular Vesicles. 6(1340746), 1-10. doi: 10.1080/20013078.2017.1340746
Bielska, E., Birch, P.R.J., Buck, A.H., Abreu-Goodger, C., Innes, R.W., Jin.H., Pfaffl, M.W., … Weiberg, A. (2018) Highlights of the mini-symposium on extracellular vesicles in inter-organismal communication. Journal of Extracellular Vesicles. (8)1 1-8. doi: 10.1080/20013078.2019.1590116
Brett, C.L., Plemel, R.L., Lobinger, B.T., Vignali, M., Fields, S., and Merz, A.J. (2008) Efficient termination of vacuolar Rab GTPase signaling requires coordinated action by a GAP and a protein kinase. Journal of Cell Biology. 182(6), 1141-1151. doi: 10.1083/jcb.200801001
Brown, L., Wolf, J.M., Prados-Rosales, R., and Casadevall, A. (2015) Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nature Reviews Microbiology. 1-11. doi: 10.1038/nrmicro3480
Buysse, D., Pfitzner, A.K., West, M,.Roux. A., and Odorizzi, G. (2020) The ubiquitin hydrolase Doa4 directly binds Snf7 to inhibit recruitment of ESCRT-III remodeling factors in S. cerevisiae. J Cell Sci. 133, 1-12. doi:10.1242/jcs.241455
Casadevall, A., Nosanchuk, J.D., Williamson, P., and Rodrigues, M.L. (2009) Vesicular transport across the fungal cell wall. Trends in Microbiology. 17, 158-162. doi: 10.1016/j.tim.2008.12.005
Cervenakova, L., Saa, P., Yakovleva, O., Vasilyeva, I., de Castro, J., Brown, P., and Dodd, R. (2016) Are prions transported by plasma exosomes?. Transfusion and Apheresis Science. 55, 70–83. doi: 10.1016/j.transci.2016.07.013
Chang, Y.C., & Kwon-Chung, K.J. (1998) Isolation of the third capsule-associated gene, CAP60, required for virulence in Cryptococcus neoformans. Infect. Immun. 66, 2230–2236.
Chang, Y.C., and Kwon-Chung, K.J. (1999) Isolation, characterization, and localization of a capsule-associated gene, CAP10, of Cryptococcus neoformans. J. Bacteriol. 181, 5636–5643.
Chargaff, E., & West, R. (1946). The Biological Significance of the Thromboplastic protein of blood. Journal of Biological Chemistry. 166, 189-197.
Chernoff, Y.O., Newman, G.P., Kumar, J., Allen, K., & Zink, A.D. (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Molecular and cellular biology. 19(12), 8103-8112. doi: 10.1128/mcb.19.12.8103
Choi, D.S., Kim, K.D., Kim, Y-.K., and Gho, Y.S. (2014) Proteomics of extracellular vesicles: Exosomes and ectosomes. Mass Spectrometry Reviews. 34, 474-490. doi: 10.1002/mas.21420
Coelho, C., & Casadevall, A. (2019) Answers to naysayers regarding microbial extracellular vesicles. Biochemical Society Transactions. 47, 1005-1012. doi: 10.1042/BST20180252
Colombo, M., Moita, C., van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., Manel, N., ... Raposo, G. (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 126, 5553-5565. doi:10.1242/jcs.128868
Cordero, R.J.B., Camacho, E., and Casadevall, A. (2020) Melanization in Cryptococcus neoformans requires complex regulation. mBio. 11, 1-4. doi: 10.1128/mBio.03313-19
De Maio, A., and Vazquez, D. (2013) Extracellular heat shock proteins: A new location, a new function. Shock. 40(4), 239-246. doi: 10.1097/SHK.0b013e3182a185ab
Delenclos, M., Trendafilova, T., Mahesh, D., Baine, A.M., Moussaud, S., Yan, I.K., Patel, T., and McLean, P.J. (2017) Investigation of Endocytic Pathways for the Internalization of Exosome-Associated Oligomeric Alpha-Synuclein. Front Neurosci. 11(172), 1-10. doi: 10.3389/fnins.2017.00172
Di Liegro, C.M., Schiera, G., and Di Liegro, I. (2017) Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information. Genes. 8(10), 1-23. doi: 10.3390/genes8100240
Didiasova, M., Schaefer, L., and Wygrecka, M. (2019) When Place Matters: Shuttling of Enolase-1 Across Cellular Compartments. Frontiers in Cell and Developmental Biology. 7(61), 1-11. doi: 10.3389/fcell.2019.00061
Dozio, V., and Sanchez, J.C. (2017) Characterisation of extracellular vesicle-subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure. Journal of Extracellular Vesicles. 6(1), 1-14. doi: 10.1080/20013078.2017.1302705
Feyder, S., De Craene, J., Bar, S., Bertazzi, D.L., and Friant, S. (2015) Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model. International Journal of Molecular Sciences. 16, 1509-1525. doi: 10.3390/ijms16011509
Freitas, M.S., Bonato, V.L.D., Pessoni, A.M., Rodrigues, M.L., Casadevall, A., and Almeida, F. (2019) Fungal Extracellular Vesicles as Potential Targets for Immune Interventions. mSphere. 4(6), 1-9. doi: 10.1128/mSphere.00747-19
Fulda, S., Gorman, A.M., Hori, O., and Samali, A. (2009) Cellular Stress Responses: Cell Survival and Cell Death. International Journal of Cell Biology. 2010, 1-23. doi: 10.1155/2010/214074

Gatti, J.L., Métayer, S., Belghazi, M., Dacheux, F., and Dacheux, J.L. (2005) Identification, Proteomic Profiling, and Origin of Ram Epididymal Fluid Exosome-Like Vesicles. Biology of Reproduction. 72, 1452-1465. doi: 10.1095/biolreprod.104.036426
Giardina, B.J., Stein, K., and Chiang, H. (2014) The endocytosis gene END3 is essential for the glucose-induced rapid decline of small vesicles in the extracellular fraction in Saccharomyces cerevisiae. Journal of Extracellular Vesicles. 3, 1-11. doi: 10.3402/jev.v3.23497
Giri, P.K., and Schorey, J.S. (2008) Exosomes Derived from M. Bovis BCG Infected Macrophages Activate Antigen-Specific CD4+ and CD8+ T Cells In Vitro and In Vivo. Plos One. 3(6), 1-10. doi: 10.1371/journal.pone.0002461
Harmati, M., Gyukity-Sebestyen, E., Dobra, G., Janovak, L., Dekany, I., Saydam, O., Hunyadi-Gulyas, E., … Buzas, K. (2019) Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells. Scientific Reports. 9(15329), 1-20. doi: 10.1038/s41598-019-51778-6
Hessvik, N.P., and Llorente, A. (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 75, 193-208. doi:10.1007/s00018-017-2595-9
Huang, S.H., Wu, C.H., Chang, Y.C (2012) Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection. PLoS One. 7, 1-12. doi: 10.1371/ journal.pone.0048570
Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman J.S., and O’Shea, E.K. (2003) Global analysis of protein localization in budding yeast. Nature. 425, 686-691. doi: 10.1038/nature 02026
Hurley, J.H., and Hanson, P.I. (2010) Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat Rev Mol Cell Biol. 11, 556-566. doi:10.1038/nrm2937
Johansson, H.J., Vallhov, H., Holm, T., Gehrmann, U., Andersson A., Johansson, C., Blom, H., Carroni, M., … Scheynius, A. (2018) Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin. Scientific Reports. 8(9182), 1-11. doi: 10.1038/s41598-018-27451-9
Johnson, N., West, M., and Odorizzi, G. (2017) Regulation of yeast ESCRT-III membrane scission activity by the Doa4 ubiquitin hydrolase. Mol Biol Cell. 28, 661-672. doi:10.1091/mbc.E16-11-0761
Johnston, G. C., Singer, R. A., and McFarlane, S. E. (1977) Growth and cell division during nitrogen starvation of the yeast Saccharomyces cerevisiae. Journal of Bacteriology. 132(2), 723-730.
Kabani, M., and Melki, R. (2015) More than just trash bins? Potential roles for extracellular vesicles in the vertical and horizontal transmission of yeast prions. Current Genetics. 62, 265-270. doi: 10.1007/s00294-015-0534-6
Kapila, N., Sharma, A., Kishore, A., Sodhi, M., Tripathi, P.K., Mohanty, A.K., and Munesh, M (2016) Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis). PLoS One. 11(9), 1-28. doi: 10.1371/journal.pone.0157237
Karim, M.A., Samyn, D.R., Mattie, S., and Brett, C.L. (2018) Distinct features of multivesicular body-lysosome fusion revealed by a new cell-free content-mixing assay. Traffic. 19(2), 138-149. doi: 10.1111/tra.12543
Katzmann, D.J., Babstm M., and Emr, S.D. (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell. 106, 145-155. doi:10.1016/s0092-8674(01)00434-2
Klohn, P., Castro-Seoane, R., and Collinge, J. (2013) Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery?. The Journal of infection. 67(5), 359-368. doi: 10.1016/j.jinf.2013.07.024
Knight, R.S.G and Will, R.G. (2004) Prion Diseases. Journal of Neurology, Neurosurgery & Psychiatry. 75, 36-42. doi: 10.1136/jnnp.2004.036137
Konoshenko, M.Y., Lekchnov, E.A., Vlassov, A.V., and Laktionov, P.P. (2018) Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Hindawi. 1-27. doi: 10.1155/2018/8545347
Kostelansky, M.S., Schluter, C., Tam, Y.Y., Lee, S., Ghirlando, R., Beach, B., Conibear, E., and Hurley, J.H. (2007) Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell. 129, 485-498. doi:10.1016/j.cell.2007.03.016
Kutralam-Muniasamy,G., Flores-Cotera, L.B., and Perez-Guevara,F. (2015) Potential of yeast secretory vesicles in biodelivery systems. Drug Discovery Today. 20(6), 659-666. doi: 10.1016/j.drudis.2015.03.014
Lauwers, E., Wang, Y., Gallardo, R., Van der Kant, R., Michiels, E., Swerts, J., Baatsen, P., ... Verstreken, P. (2018) Hsp90 Mediates Membrane Deformation and Exosome Release. Cell Press. 71, 689-702. doi: 10.1016/j.molcel.2018.07.016
Lindquist, S., Craig, E.A. (1988) The Heat-Shock Proteins. Annual Review of Genetics. 22, 631-677. doi: 10.1146/annurev.ge.22.120188.003215
Li,S., Lin, Z., Jiang, X., and Yu, X. (2018) Exosomal cargo-loading and synthetic exosome mimics as potential therapeutic tools. Acta Pharmologica Sinica. 39, 542-551. doi: 10.1038/aps.2017.178
Liu, S., Hossinger, A., Hofmann, J.P., Denner, P., and Vorberg, I.M. (2016) Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles. MBio. 7(4), 1-12. doi 10.1128/mBio.00915-16.
Liu, S., Hossinger, A., Gobbels, S., and Vorberg, I.M. (2017) Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates. Prion. 11, 98–112. doi: 10.1080/19336896.2017.1306162
Lysangela, A.R., da Silva, R.P., Sanchez, D.A., Zamith-Miranda, D., Rodrigues, M.L., Goldenberg, S., Puccia, R., and Nosanchuk, J.D. (2019) Extracellular Vesicle-Mediated RNA Release in Histoplasma capsulatum. mSphere. 4(2), 1-17. doi: 10.1128/mSphere.00176-19
Maas, S.L.N., Breakefield, X.O., ans Weaver, A.M. (2018) Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Bio. 27(3), 172-188. doi: 10.1016/j.tcb.2016.11.003
McNally, E.K., and Brett, C.L. (2017) ILF and vReD pathways cooperate to control lysosomal transporter protein lifetimes. eLife. 1-34. doi: 10.1101/20439
McNally, E.K., and Brett, C.L. (2018) The intralumenal fragment pathway mediates ESCRT-independent surface transporter down-regulation. Nature communications, 1-15. doi: 10.1038/s41467-018-07734-5
Mears, R., Craven, R.A., Hanrahan, S., Totty, N., Upton, C., Young, S.L., Patel, P., ... Banks, R.E. (2004) Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics. 4, 4019-4031. doi: 10.1002/pmic.200400876
Morano, K.A., Grant, C.M., and Moye-Rowley, W.S. (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics. 190(4), 1157-1195. doi: 10.1534/genetics.111.128033.
Morishita, M., Takahashi, Y., Nishikawa, M., and Takakura, Y. (2017) Pharmacokinetics of Exosomes-An Important Factor for Elucidating the Biological Roles of Exosomes and for the Development of Exosome-Based Therapeutics. Journal of Pharmaceutical Sciences. 106, 2265-2269. doi: 10.1016/j.xphs.2017.02.030
Monari, C., Pericolini, E., Bistoni, G., Casadevall, A., Kozel, T.R., and Vecchiarelli, A. (2005) Cryptococcus neoformans Capsular Glucuroxylommanan Induces Expression of Fas Ligand in Macrophages. The Journal of Immunology. 174(6) 3461-3468. doi: 10.4049/jimmunol.174.6.3461
Nimrichter, L., and Rodrigues, M.L. (2011) Fungal glucosylceramides: from structural components to biologically active targets of new antimicrobials. Front Microbiol. 2(212), 1-7. doi: 10. 3389/fmicb.2011.00212
Nimrichter, L., de Souza, M.M., Del Poeta, M., Nosanchuk, J.D., Joffe, L., Tavares, P.M., and Rodrigues, M.L. (2016) Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells. Frontiers in Microbiology. 7 (1034), 1-11. doi: 10.3389/fmicb.2016.01034
Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimaraes, A.J., Sobreira, T.J.P, Nosanchuk, J.D, Cordero, R.J.B., … Rodrigues, M.L. (2010) Characterization of Yeast Extracellular Vesicles: Evidence for the Participation of Different Pathways of Cellular Traffic in Vesicle Biogenesis. Plos One. 5(6), 1-13. doi: 10.1371/journal.pone.0011113
Oliveira, D.L., Nakayasu, E.S., Joffe, L.S., Guimaraes, A.J., Sobreira, T.J.P, Nosanchuk, J.D, Cordero, R.J.B., … Rodrigues, M.L. (2010) Biogenesis of extracellular vesicles in yeast: many questions with few answers. Communicative & Integrative Biology. 3(6), 533-535. doi: 01371/journal.pone.0011113
Oliveira, D.B.L., Nimrichter, L., Miranda, K., Frases, S., Faull, K.F., Casadevall, A., and Rodrigues, M.L. (2009) Cryptococcus neoformans cryoultramicrotomy and vesicle fractionation reveals an intimate association between membrane lipids and glucuronoxylomannan. Fungal Genet. Biol. 46, 956–963. doi: 10.1016/j.fgb.2009.09.001
Oliveira, D.L., Friere-de-Lima, C.G., Nosanchuk, J.D., Csadevall, A., Rodrigues, M.L., and Nimrichter, L. (2010) Extracellular Vesicles from Cryptococcus neoformans Modulate Macrophage Functions. Infection and Immunity. 1601-1609. doi: 10.1128/IAI.01171-09
Oliveira, D.L., Rizzo, J., Joffe, L.S., Godinho, R.M., and Rodrigues. M.L. (2013) Where do they come from and where do they go: candidates for regulating extracellular vesicle formation in fungi. Int J Mol Sci. 14, 9581-9603. doi:10.3390/ijms14059581
Pan, B., and Johnstone, R.M. (1983) Fate of the Transferrin Receptor during Maturation of Sheep Reticulocytes In Vitro: Selective Externalization of the Receptor. Cell. 33, 967-977. doi: 1016/0092-8674(83)90040-510
Panepinto, J., Komperda, K., Frases, S., Park, Y., Djordjevic, J.T., Casadevall, A., and Williamson, P.R. (2009) Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol. 71, 1165-1176. doi: 10.1111/j.1365-2958.2008.06588.x
de Souza Pereira, R., and Geibel, J. (1999) Direct observation of oxidative stress on the cell wall of Saccharomyces cerevisiae strains with atomic force microscopy. Molecular and cellular biochemistry. 201 (2), 17-24. doi: 10.1023/a:1007007704657
Perfect, J.R., and Bicanic, T. (2014) Cryptococcosis Diagnosis and Treatment: What Do We Know Now. Fungal Genetic Bio. 78, 49-54. doi: 10.1016/j.fgb.2014.10.003
Pillet, F., Lemonier, S., Schiavone, M., Formosa. C., Martin-Yken, H., Francois, J.M., and Dague, E. (2014) Uncovering by Atomic Force Microscopy of an original circular structure at the yeast cell surface in response to heat shock. BMC Biology. 12(6), 1-11. doi: 10.1186/1741-7007-12-6
Reddy, V.S., Madala, S.K., Trinath, S., and Reddy, G.B. (2018) Extracellular small heat shock proteins: exosomal biogenesis and function. Cell Stress and Chaperones. 23, 441-454. doi: 10.1007/s12192-017-0856-z
Reis, F.C.G., Borges, B.S., Jozefowicz, L.J., Sena, B.A.G., Garcia, A.W.A., Medeiros, L.C., Martins, S.T., ...Rodrigues, M.L. (2019) A Novel Protocol for the Isolation of Fungal Extracellular Vesicles Reveals the Participation of a Putative Scramblase in Polysaccharide Export and Capsule Construction in Cryptococcus gattii. mSphere. 4(2), 1-15. doi: 10.1128/mSphere.00080-19
Retini, C., Kozel, T. R., Pietrella, D., Monari, C., Bistoni, F., and Vecchiarelli, A. (2001) Interdependency of Interleukin-10 and Interleukin-12 in Regulation of T-Cell Differentiation and Effector Function of Monocytes in Response to Stimulation with Cryptococcus neoformans. Infection and Immunity, 69(10), 6064–6073. doi:10.1128/iai.69.10.6064-6073.2001
Rice, G.E., Scholz-Romero, K., Sweeney, E., Peiris, H., Kobayashi, M., Duncombe, G., Mitchell, M.D., and Salomon, C. (2015) The Effect of Glucose on the Release and Bioactivity of Exosomes From First Trimester Trophoblast Cells. The Journal of clinical endocrinology and metabolism. 100(10), 1280-1288. doi: 10.1210/jc.2015-2270
Rider, M.A., Hurwitz, S.N., and Meckes, D.G. (2016) ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Scientific Reports. 6, 1-14. doi: 10.1038/srep23978 (2016)
Rittershaus, P. C., Kechichian, T. B., Allegood, J. C., Merrill, A. H., Jr, Hennig, M., Luberto, C., and Del Poeta, M. (2006) Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. The Journal of clinical investigation, 116(6), 1651–1659. doi: 10.1172/JCI27890
Rodrigues, M.L., Nimrichter, L., Oliveira, D.L., Nosanchuk, J.D., and Casadevall, A. (2008) Vesicular Trans-Cell Wall Transport in Fungi: A Mechanism for the Delivery of Virulence- Associated Macromolecules? Lipid Insights. 2, 27-40. doi: 10.4137/lpi.s1000
Rodrigues, M.L., Nakayasu, E.S., Oliveira, D.L., Nimrichter, L., Nosanchuk, J.D., Almeida, I.C., and Casadevall, A. (2007) Extracellular Vesicles Produced by Cryptococcus neoformans Contain Protein Components Associated with Virulence. Eukaryotic Cell. 7(1), 58-67. doi: 10.1128/EC.00370-07
Saa, P., Yakovleva, O., de Castro, J., Vasilyeva, I., De Paoli, S.H., Simak, J., and Cervenakova, L. (2014) First Demonstration of Transmissible Spongiform Encephalopathy-associated Prion Protein (PrPTSE) in Extracellular Vesicles from Plasma of Mice Infected with Mouse-adapted Variant Creutzfeldt-Jakob Disease by in Vitro Amplification. The Journal of Biological Chemistry. 289(42), 29247- 29260. doi: 10.1074/jbc.M114.589564
Sharma, S., LeClaire, M., and Gimzewski, J.K. (2018) Ascent of atomic force microscopy as a nanoanalytical tool for exosomes and other extracellular vesicles. Nanotechnology. 29(13), 1-14. doi: 10.1088/1361-6528/aaab06
da Silva, T.A., Roque-Barreira, M.C., Casadevall, A., and Almeida, F. (2016) Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization. Scientific Reports. 6(35867), 1-10. doi: 10.1038/srep35867
Skliar, M., and Chernyshev, V.S. (2019) Imaging of Extracellular Vesicles by Atomic Force Microscopy. Journal of Visualized Experiments. 151, 1-13. doi: 10.379159254
Sork, H., Corso, G., Krjutskov, K., Johansson, H.J., Nordin, J.Z., Wiklander, O.P.B., Lee, Y.X.F., ... Andaloussi, S.E. (2018) Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Scientific Reports. 8(10813), 1-12. doi: 10.1038/s41598-018-28485-9
Subra, C., Laulagnier, K., Perret, B., and Record, M. (2007) Exosome lipidomics unravel lipid sorting at the level of multivesicular bodies. Biochimie. 89, 205-212. doi: 10.1016/j.biochi.2006.10.014
Takahashi, A., Okada, R., Nagao, K., Kawamata, Y., Hanyu, A., Yoshimoto, S., Takasugi, M., … Hara, E. (2017) Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nature Communications. 8(15287), 1-14. doi: 10.1038/ncomms15287
Takeo, K., Uesaka, I., Nishiura, M. (1974) The Wall Particle of the Genus Cryptococcus: Large Size and Characteristic Distribution. Journal of General Microbiology. 84, 223-225. doi: 10.1099/00221287-84-1-223
Teis, D., Saksena, S., and Emr, S.D. (2008) Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell. 15, 578-589. doi:10.1016/j.devcel.2008.08.013
Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., Antoniou, A., ... Zuba-Surma, E.K. (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles. 7(1), 1-43. doi: 10.1080/20013078.2018.1535750
Torralba, D., Baixauli, F., and Villarroya-Beltri. (2018) Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun 9, 1-17. doi: 10.1038/s41467-018-05077-9
Toribio V., Morales, S., Lopez-Martin, S., Cardenas, B., Cabanas, C., and Yanez-Mo, M. (2019) Development of a quantitative method to measure EV uptake. Scientific Reports. 9, 1-14. doi: 10.1038/s41598-019-47023-9
de Toledo Martins, S., Szwarc, P., Goldenberg, S., and Alves, L.R. (2019) Extracellular Vesicles in Fungi: Composition and Functions. Current Topics in Microbiology Immunology. 422, 45-59. doi: 10.1007/82_2018_141
Valadi,H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. 9(6), 654-659. doi: 10.1038/ncb1596
Vallejo, M. C., Nakayasu, E. S., Matsuo, A. L., Sobreira, T. J. P., Longo, L. V. G., Ganiko, L., … Puccia, R. (2012) Vesicle and Vesicle-Free Extracellular Proteome of Paracoccidioides brasiliensis: Comparative Analysis with Other Pathogenic Fungi. Journal of Proteome Research. 11(3), 1676–1685. doi:10.1021/pr200872s
Vargas, G., Rocha, J.D.B., Oliveira, D.L., Albuquerque, P.C., Frases, S., Santos, S.S., and Nosanchuk, J.D. (2015) Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cellular Microbiology. 17(3), 389–407. doi: 10.1111/cmi.12374
Verghese, J., Abrams, J., Wang, Y., and Morano, K.A. (2012) Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System. Microbiology and Molecular Biology Reviews. 76(2), 115-158. doi: 10.1128/MMBR.05018-11
Wang, S., Kojima, K., Mobley, J.A., and West, A.B. (2019) Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. E Bio Medicine. 45, 351-361. doi: 10.1016/j.ebiom.2019.06.021
Wemmer, M., Azmi, I., West, M., Davies, B., Katzmann, D., and Odorizzi, G. (2011) Bro1 binding to Snf7 regulates ESCRT-III membrane scission activity in yeast. J Cell Biol.192, 295-306. doi: 10.1083/jcb.201007018
Wickner, R.B. (2016) Yeast and Fungal Prions. Cold Spring Harbor Laboratory Press. 8, 1-15. doi: 10.1101/cshperspect.a023531
Williams, C., Pazos, R., Royo, F., Gonzalez, E., Roura-Ferrer, M., Martinez, A., Gamiz, J., ... Falcon-Perez, J.M. (2019) Assessing the role of surface glycans of extracellular vesicles on cellular uptake. Scientific Reports. 9, 1-14. doi: 10.1038/s41598-019-48499-1
Wolf, P. (1967) The Nature and Significance of Platelet Products in Human Plasma. British Journal of Haemotology. 13(3), 269-288. doi: 10.1111/j.1365-2141.1967.tb08741.x
Wollert, T., and Hurley, J.H. (2010) Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature. 464, 864-869. doi:10.1038/nature08849
Wollert, T., Wunder, C., Lippincott-Schwartz, J., Hurley, J.H. (2009) Membrane scission by the ESCRT-III complex. Nature. 458, 172-177. doi:10.1038/nature07836
Wubbolts, R., Leckie, R.S., Veenhuizen, P.T.M., Schwarzmann, G., Mobius, W., Hoernschemeyer, J., Slot, J., ... Stoorvogel,W. (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem. 278(13), 10963-10972. doi:10.1074/jbc.M207550200
Wu, K., Xing, F., Wu, S.Y., and Watabe, K. (2017) Extracellular vesicles as emerging targets in cancer: recent development from bench to bedside. Biochim Biophys Acta. 1868(2), 538-563. doi: 10.1016éj.bbcan.2017.10.001
Wyciszkiewicz, A., Kalinowska-Łyszczarz, A., Nowakowski, B., Kaźmierczak, K., Osztynowicz, K., and Sławomir Michalak. (2019) Expression of small heat shock proteins in exosomes from patients with gynecologic cancers. Scientific Reports. 9(9817). doi : 10.1038/s41598-019-46221-9
Yang, Y., Boza-Serrano, A., Dunning, C.J.R., Clausen, B.H., Lambertsen, K.L., and Deierborg, T. (2018) Inflammation leads to distinct populations of extracellular vesicles from microglia. Journal of Neuroinflammation. 15, 1-19. doi: 10.1186/s12974-018-1204-7
Yang, C., Guo, W.B., Zhang, W.S., Bian, J., Yang, J.K., Zhou, Q.Z., Chen, M.K., ... C.D, Liu. (2017) Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology. 5, 1007-1015. doi:10.1111/andr.12412
Yoneda, A., and Doering, T.L. (2006) A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis. Mol. Biol. Cell. 17, 5131–5140. doi: 10.1091/mbc.E06-08-0701
Zarnowski, R., Sanchez, H., Covelli, A.S., Dominguez, E., Jaromin, A., Bernhardt, J., Mitchell, K.F., … Andes, D.R. (2018) Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol. 16(10), 1-18. doi:10.1371/journal.pbio.2006872
Zhang, Y., Jin, X., Liang, J., Guo, Y., Sun, G., Zeng, X., and Yin, H. (2019) Extracellular vesicles derived from ODN-stimulatedmacrophages transfer and activate Cdc42 in recipient cells and thereby increase cellular permissiveness to EV uptake. Cell Biology. 5, 1-10. doi: 10.1126/sciadv.aav1564
Zhao, K., Bleackley,M., Chisanga, D., Gangoda, L., Fonseka, P., Liem, M., Kalra, H., … Mathivanan, S. (2019) Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Communications Biology. 2(305), 1-13. doi: 10.1038/s42003-019-0538-8
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top