Login | Register

Measuring, modeling and assessing evaporative fluxes over an integrated lake-wetland system in Southern Quebec

Title:

Measuring, modeling and assessing evaporative fluxes over an integrated lake-wetland system in Southern Quebec

Vieira, Henrique ORCID: https://orcid.org/0000-0002-4928-3668 (2022) Measuring, modeling and assessing evaporative fluxes over an integrated lake-wetland system in Southern Quebec. Masters thesis, Concordia University.

[thumbnail of Vieira_MASc_S2022.pdf]
Preview
Text (application/pdf)
Vieira_MASc_S2022.pdf - Accepted Version
Available under License Spectrum Terms of Access.
3MB

Abstract

Evapotranspiration (ET) is the second largest component of the hydrological cycle globally and a major factor in surface energy balance. Despite its importance, quantifying evapotranspiration presents high uncertainties due to limitations in available data and modeling approaches. This thesis provides – for the first time – a temporally high-resolution ET dataset (30 minutes) using Eddy Covariance method for a lake-wetland duo in Southern Québec during 2020’s growing season, during the Covid-19 pandemic lockdown. In addition, this thesis benchmarks the performance of 40 existing ET models – the largest number of empirical ET models intercompared to date – across different time scales, times of the day and times of the season. The benchmarking effort uses a non-dominated sorting framework with multiple goodness-of-fit measures to rank models. In general, the most non-falsified models in the marsh are Carpenter (aerodynamic), McMillan (aerodynamic), Kimberley-Penman (combination) and Stephens-Stewart (temperature-hybrid). In the lake, Hamon’s (temperature) equation remains non-falsified across most scenarios. Comparing continuous simulations in the two landscapes, the expected Nash-Sutcliffe Efficiency of non-falsified models is consistently higher in the marsh across all timescales from half-hour to one month and different times of the season. Considering different diurnal segments, the performance of non-falsified models becomes comparable in daytime and strictly better in the lake during nighttime. ET was better estimated during daytime and nighttime separately than full days. Overestimation of ET was observed during local temperature peaks preceded by prolonged net radiation peaks without precipitation, which potentially points at models’ inability to capture the effect of stomata closure of the canopy during heatwaves. Capturing evapotranspiration in wetlands and lakes requires more physically-based parameterizations to represent thermal and biological dynamics at weekly and finer scales. This study also provides evidence for the necessity of using multi-objective ranking to benchmark evapotranspiration and points at strategic directions for future developments.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (Masters)
Authors:Vieira, Henrique
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Civil Engineering
Date:February 2022
Thesis Supervisor(s):Nazemi, Ali
Keywords:Evapotranspiration, empirical models, lakes, wetlands, multi-objective sorting, benchmarking.
ID Code:988621
Deposited By: Henrique Fagundes Vieira
Deposited On:16 Jun 2022 15:19
Last Modified:01 May 2023 00:00

References:

AghaKouchak, A., Mirchi, A., Madani, K., Baldassarre, G.D., Nazemi, A., Alborzi, A., Anjileli, H., Azarderakhsh, M., Chiang, F., Hassanzadeh, E., Huning, L.S., Mallakpour, I., Martinez, A., Mazdiyasni, O., Moftakhari, H., Norouzi, H., Sadegh, M., Sadeqi, D., Loon, A.F.V., Wanders, N., 2021. Anthropogenic Drought: Definition, Challenges, and Opportunities. Reviews of Geophysics 59, e2019RG000683. https://doi.org/10.1029/2019RG000683
Alavi, N., Warland, J.S., Berg, A.A., 2006. Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach. Agricultural and Forest Meteorology 141, 57–66. https://doi.org/10.1016/j.agrformet.2006.09.011
Allen, R.G., Pereira, L.S. (Eds.), 1998. Crop evapotranspiration: guidelines for computing crop water requirements, FAO irrigation and drainage paper. FAO, Rome.
Allen, R.G., Pereira, L.S., Howell, T.A., Jensen, M.E., 2011. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management 98, 899–920. https://doi.org/10.1016/j.agwat.2010.12.015
Anderson-Nichols & Company, Inc., 1978. Lake Memphremagog - Vermont - A Hydrologic and Hydraulic Analysis - The Capability and Procedure to Regulate Lake Memphremagog. New York District - Corps of Engineers.
Ashraf, B., Yazdani, R., Mousavi-Baygi, M., Bannayan, M., 2014. Investigation of temporal and spatial climate variability and aridity of Iran. Theor Appl Climatol 118, 35–46. https://doi.org/10.1007/s00704-013-1040-8
Ashraf, S., Nazemi, A., AghaKouchak, A., 2021. Anthropogenic drought dominates groundwater depletion in Iran. Sci Rep 11, 9135. https://doi.org/10.1038/s41598-021-88522-y
Aubinet, M., Vesala, T., Papale, D., 2012. Eddy covariance: a practical guide to measurement and data analysis. Springer Science & Business Media.
Bao, C., Xu, L., Goodman, E.D., Cao, L., 2017. A novel non-dominated sorting algorithm for evolutionary multi-objective optimization. Journal of Computational Science 23, 31–43. https://doi.org/10.1016/j.jocs.2017.09.015
Barry, R.G., Blanken, P.D., 2016. Microclimate and local climate. Cambridge University Press.
Bedient, P.B., Huber, W.C., Vieux, B.E., 2012. Hydrology and Floodplain Analysis, 5th ed. Pearson Upper Saddle River, NJ, USA.
Blanken, P., Rouse, W., Culf, A., Spence, C., Boudreau, L., Jasper, J., Kochtubajda, B., Schertzer, W., Marsh, P., Verseghy, D., 2000. Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. WATER RESOURCES RESEARCH 36, 1069–1077.
Bolund, P., Hunhammar, S., 1999. Ecosystem services in urban areas. Ecological Economics 29, 293–301. https://doi.org/10.1016/S0921-8009(99)00013-0
Bormann, H., Holländer, H.M., Blume, T., Buytaert, W., Chirico, G.B., Exbrayat, J.-F., Gustafsson, D., Hölzel, H., Kraft, P., Krauße, T., others, 2011. Comparative discharge prediction from a small artificial catchment without model calibration: Representation of initial hydrological catchment development. Die Bodenkultur 62, 23–29.
Bourdeau‐Goulet, S.-C., Hassanzadeh, E., 2021. Comparisons Between CMIP5 and CMIP6 Models: Simulations of Climate Indices Influencing Food Security, Infrastructure Resilience, and Human Health in Canada. Earth’s Future 9, e2021EF001995. https://doi.org/10.1029/2021EF001995
Burba, G., 2013. Eddy covariance method for scientific, industrial, agricultural and regulatory applications: A field book on measuring ecosystem gas exchange and areal emission rates. LI-Cor Biosciences.
Campbell Scientific Inc., 2007. LoggerNet Instruction Manual Version 3.4.
Carpenter, 1888. Annual Report - Colorado Agricultural Experiment Station, Colorado State University, Colorado Agricultural Experiment Station. Colorado State University.
Cheng, R., He, C., Jin, Y., Yao, X., 2018. Model-based evolutionary algorithms: a short survey. Complex Intell. Syst. 4, 283–292. https://doi.org/10.1007/s40747-018-0080-1
Chu, R., Li, M., Islam, A.R.M.T., Fei, D., Shen, S., 2019. Attribution analysis of actual and potential evapotranspiration changes based on the complementary relationship theory in the Huai River basin of eastern China. International Journal of Climatology 39, 4072–4090. https://doi.org/10.1002/joc.6060
Clement, R.J., 2004. Mass and energy exchange of a plantation forest in Scotland using micrometeorological methods (PhD Thesis). University of Edinburgh.
Collatz, G.J., Ball, J.T., Grivet, C., Berry, J.A., 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54, 107–136. https://doi.org/10.1016/0168-1923(91)90002-8
Coppola, E., Sobolowski, S., Pichelli, E., Raffaele, F., Ahrens, B., Anders, I., Ban, N., Bastin, S., Belda, M., Belusic, D., Caldas-Alvarez, A., Cardoso, R.M., Davolio, S., Dobler, A., Fernandez, J., Fita, L., Fumiere, Q., Giorgi, F., Goergen, K., Güttler, I., Halenka, T., Heinzeller, D., Hodnebrog, Ø., Jacob, D., Kartsios, S., Katragkou, E., Kendon, E., Khodayar, S., Kunstmann, H., Knist, S., Lavín-Gullón, A., Lind, P., Lorenz, T., Maraun, D., Marelle, L., van Meijgaard, E., Milovac, J., Myhre, G., Panitz, H.-J., Piazza, M., Raffa, M., Raub, T., Rockel, B., Schär, C., Sieck, K., Soares, P.M.M., Somot, S., Srnec, L., Stocchi, P., Tölle, M.H., Truhetz, H., Vautard, R., de Vries, H., Warrach-Sagi, K., 2020. A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim Dyn 55, 3–34. https://doi.org/10.1007/s00382-018-4521-8
Côté, J.-N., Pouliot, J., 2021. Plan d’adaptation aux changements climatiques pour la Ville de Magog. Ville de Magog.
Courault, D., Seguin, B., Olioso, A., 2005. Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrigation and Drainage Systems 19, 223–249. https://doi.org/10.1007/s10795-005-5186-0
Cuxart, J., Verhoef, A., Marthews, T.R., Evans, J., 2019. Current Challenges in Evapotranspiration Determination. GEWEX Quarterly 29.
Dalton, J., 1802. Experimental essays on the constitution of mixed gases; on the force of steam or vapor from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation and on the expansion of gases by heat. Mem. Manchester Liter. and Phil. Soc 5, 535–602.
de Bruin, H.A.R., 1978. A Simple Model for Shallow Lake Evaporation. Journal of Applied Meteorology and Climatology 17, 1132–1134. https://doi.org/10.1175/1520-0450(1978)017<1132:ASMFSL>2.0.CO;2
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197. https://doi.org/10.1109/4235.996017
Dingman, S.L., 2015. Physical hydrology, 3rd ed. Waveland press.
Djaman, K., Balde, A.B., Sow, A., Muller, B., Irmak, S., N’Diaye, M.K., Manneh, B., Moukoumbi, Y.D., Futakuchi, K., Saito, K., 2015. Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies 3, 139–159. https://doi.org/10.1016/j.ejrh.2015.02.002
Doorenbos, J., Pruitt, W., 1977. Crop water requirements. Irrigation and drainage paper (FAO) 24.
dos Santos, C.A.C., Mariano, D.A., das Chagas A. do Nascimento, F., da C. Dantas, F.R., de Oliveira, G., Silva, M.T., da Silva, L.L., da Silva, B.B., Bezerra, B.G., Safa, B., de S. Medeiros, S., Neale, C.M.U., 2020. Spatio-temporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in Brazil. International Journal of Applied Earth Observation and Geoinformation 85, 101982. https://doi.org/10.1016/j.jag.2019.101982
Drexler, J., Snyder, R., Spano, D., Paw, K., 2004. A review of models and micrometeorological methods used to estimate wetland evapotranspiration. HYDROLOGICAL PROCESSES 18, 2071–2101. https://doi.org/10.1002/hyp.1462
ECCC, 2020. Historical Climate Data - Climate [WWW Document]. Environment and Climate Change Canada. URL https://climate.weather.gc.ca/index_e.html (accessed 9.29.20).
Emilsson, T., Sang, Å., 2017. Impacts of climate change on urban areas and nature-based solutions for adaptation. Nature-based Solutions to Climate Change Adaptation in Urban Areas.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Lai, C.T., Law, B.E., Meyers, T., Moncrieff, J., Moors, E., Munger, J.W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology 107, 43–69. https://doi.org/10.1016/S0168-1923(00)00225-2
Fan, S.-M., Wofsy, S.C., Bakwin, P.S., Jacob, D.J., Fitzjarrald, D.R., 1990. Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon Forest. Journal of Geophysical Research: Atmospheres 95, 16851–16864. https://doi.org/10.1029/JD095iD10p16851
Finnigan, J.J., Clement, R., Malhi, Y., Leuning, R., Cleugh, H.A., 2003. A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation. Boundary-Layer Meteorology 107, 1–48. https://doi.org/10.1023/A:1021554900225
Fitzgerald, D., 1886. Evaporation. Van Nostrand’s Engineering Magazine (1879-1886) 35, 41.
Foken, T., 2017. Micrometeorology. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25440-6
Foken, T., 2008. The Energy Balance Closure Problem: An Overview. Ecological Applications 18, 1351–1367. https://doi.org/10.1890/06-0922.1
Foken, T., Göockede, M., Mauder, M., Mahrt, L., Amiro, B., Munger, W., 2004. Post-Field Data Quality Control, in: Lee, X., Massman, W., Law, B. (Eds.), Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, Atmospheric and Oceanographic Sciences Library. Springer Netherlands, Dordrecht, pp. 181–208. https://doi.org/10.1007/1-4020-2265-4_9
Foken, Th., Wichura, B., 1996. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology 78, 83–105. https://doi.org/10.1016/0168-1923(95)02248-1
Gan, G., Liu, Y., 2020. Heat Storage Effect on Evaporation Estimates of China’s Largest Freshwater Lake. Journal of Geophysical Research: Atmospheres 125, e2019JD032334. https://doi.org/10.1029/2019JD032334
Gebler, S., Hendricks Franssen, H.-J., Pütz, T., Post, H., Schmidt, M., Vereecken, H., 2015. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket. Hydrology and Earth System Sciences 19, 2145–2161. https://doi.org/10.5194/hess-19-2145-2015
Ghiasi, H., Pasini, D., Lessard, L., 2011. A non-dominated sorting hybrid algorithm for multi-objective optimization of engineering problems. Engineering Optimization 43, 39–59. https://doi.org/10.1080/03052151003739598
Gunawardhana, M., Silvester, E., Jones, O.A.H., Grover, S., 2021. Evapotranspiration and biogeochemical regulation in a mountain peatland: insights from eddy covariance and ionic balance measurements. Journal of Hydrology: Regional Studies 36, 100851. https://doi.org/10.1016/j.ejrh.2021.100851
Guo, D., Westra, S., Maier, H.R., 2016. An R package for modelling actual, potential and reference evapotranspiration. Environmental Modelling & Software 78, 216–224. https://doi.org/10.1016/j.envsoft.2015.12.019
Guo, Y., Zhang, Y., Ma, N., Xu, J., Zhang, T., 2019. Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion. Atmospheric Research 216, 141–150. https://doi.org/10.1016/j.atmosres.2018.10.006
Gurjanov, A., Zubkovskij, S., Fedorov, M., 1984. Mnogokanalnaja avtomatizirovannaja sistema obrabotki signalov na baze EVM (Automatic multi-channel system for signal analysis with electronic data processing). Geod Geophys Veröff 2, 26.
Harding, K.J., Snyder, P.K., 2012a. Modeling the Atmospheric Response to Irrigation in the Great Plains. Part I: General Impacts on Precipitation and the Energy Budget. Journal of Hydrometeorology 13, 1667–1686. https://doi.org/10.1175/JHM-D-11-098.1
Harding, K.J., Snyder, P.K., 2012b. Modeling the Atmospheric Response to Irrigation in the Great Plains. Part II: The Precipitation of Irrigated Water and Changes in Precipitation Recycling. Journal of Hydrometeorology 13, 1687–1703. https://doi.org/10.1175/JHM-D-11-099.1
Hartmann, D.L., Tank, A.M.G.K., Rusticucci, M., Alexander, L.V., Brönnimann, S., Charabi, Y.A.R., Dentener, F.J., Dlugokencky, E.J., Easterling, D.R., Kaplan, A., Soden, B.J., Thorne, P.W., Wild, M., Zhai, P., 2013. Observations: Atmosphere and surface. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 159–254. https://doi.org/10.1017/CBO9781107415324.008
Harwell, G.R., 2012. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas (Report No. 2012–5202), Scientific Investigations Report. USGS, Reston, VA. https://doi.org/10.3133/sir20125202
Hassanzadeh, E., Elshorbagy, A., Nazemi, A., Jardine, T.D., Wheater, H., Lindenschmidt, K.-E., 2017. The ecohydrological vulnerability of a large inland delta to changing regional streamflows and upstream irrigation expansion. Ecohydrology 10, e1824. https://doi.org/10.1002/eco.1824
Hassanzadeh, E., Elshorbagy, A., Wheater, H., Gober, P., Nazemi, A., 2016. Integrating Supply Uncertainties from Stochastic Modeling into Integrated Water Resource Management: Case Study of the Saskatchewan River Basin. Journal of Water Resources Planning and Management 142, 05015006. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000581
Heinesch, B., Yernaux, M., Aubinet, M., 2007. Some methodological questions concerning advection measurements: a case study. Boundary-Layer Meteorol 122, 457–478. https://doi.org/10.1007/s10546-006-9102-4
Herman, M.R., Nejadhashemi, A.P., Abouali, M., Hernandez-Suarez, J.S., Daneshvar, F., Zhang, Z., Anderson, M.C., Sadeghi, A.M., Hain, C.R., Sharifi, A., 2018. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. Journal of Hydrology 556, 39–49. https://doi.org/10.1016/j.jhydrol.2017.11.009
Hojstrup, J., 1993. A statistical data screening procedure. Meas. Sci. Technol. 4, 153–157. https://doi.org/10.1088/0957-0233/4/2/003
Hostetler, S.W., Bartlein, P.J., 1990. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resour. Res. 26, 2603–2612. https://doi.org/10.1029/WR026i010p02603
International Joint Commission (IJC), 2019. International Joint Commission Lake Memphremagog Study Science and Policy Workshop.
Jansen, F.A., Teuling, A.J., 2020. Evaporation from a large lowland reservoir – (dis)agreement between evaporation models from hourly to decadal timescales. Hydrology and Earth System Sciences 24, 1055–1072. https://doi.org/10.5194/hess-24-1055-2020
Jensen, M.E., Burman, R.D., Allen, R.G., 1990. Evapotranspiration and Irrigation Water Requirements. American Society of Civil Engineers.
Jia, W., Yin, L., Zhang, M., Zhang, J., Zhang, X., Gu, X., Dong, J., 2021. Modified method for the estimation of groundwater evapotranspiration under very shallow water table conditions based on diurnal water table fluctuations. Journal of Hydrology 597, 126193. https://doi.org/10.1016/j.jhydrol.2021.126193
Kaimal, J., Finnigan, J., Derbyshire, S., 1994. Atmospheric boundary layer flows–Their structure and measurement. Oxford University Press.
Karimi, P., Bastiaanssen, W.G.M., 2015. Spatial evapotranspiration, rainfall and land use data in water accounting - Part 1: Review of the accuracy of the remote sensing data. Hydrology and Earth System Sciences 19, 507–532. https://doi.org/10.5194/hess-19-507-2015
Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P., 2015. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development 8, 3695–3713. https://doi.org/10.5194/gmd-8-3695-2015
Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P., 2004. A Simple Parameterisation for Flux Footprint Predictions. Boundary-Layer Meteorology 112, 503–523. https://doi.org/10.1023/B:BOUN.0000030653.71031.96
Köppen, W., Geiger, R., 1936. Handbuch der klimatologie. Verlag von Gebrüder Borntraeger, Berlin.
LAMRAC, 2021. Conservation & mise en valeur [WWW Document]. L’Association du Marais de la Rivière aux Cerises. URL https://maraisauxcerises.com/conservation/o-conservation.php (accessed 6.11.21).
Lee, X., Massman, W., Law, B., 2004. Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer Science & Business Media.
Legates, D.R., McCabe Jr, G.J., 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water resources research 35, 233–241. https://doi.org/10.1029/1998WR900018
Lenters, J.D., Kratz, T.K., Bowser, C.J., 2005. Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, northern Wisconsin (USA). Journal of Hydrology 308, 168–195. https://doi.org/10.1016/j.jhydrol.2004.10.028
Li, Z.-L.( 1, 2 ), Tang, R.( 1, 2,3 ), Zhou, C.( 1 ), Tang, B.( 1 ), Bi, Y.( 2, 5 ), Wan, Z.( 4 ), Yan, G.( 6 ), Zhang, X.( 7 ), 2009. A review of current methodologies for regional Evapotranspiration estimation from remotely sensed data. Sensors 9, 3801–3853. https://doi.org/10.3390/s90503801
LI-COR Inc., 2019. EddyPro Software Instruction Manual V.07. LI-Cor Biosciences, Nebraska.
Liou, Y.-A., Kar, S.K., 2014. Evapotranspiration estimation with remote sensing and various surface energy balance algorithms-a review. Energies 7, 2821–2849. https://doi.org/10.3390/en7052821
Liu, H., Blanken, P.D., Weidinger, T., Nordbo, A., Vesala, T., 2011. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA. Environ. Res. Lett. 6, 024022. https://doi.org/10.1088/1748-9326/6/2/024022
Liu, X., Xu, C., Zhong, X., Li, Y., Yuan, X., Cao, J., 2017. Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement. Agricultural Water Management 184, 145–155. https://doi.org/10.1016/j.agwat.2017.01.017
Liu, X., Xu, J., Yang, S., Zhang, J., Wang, Y., 2018. Vapor Condensation in Rice Fields and Its Contribution to Crop Evapotranspiration in the Subtropical Monsoon Climate of China. Journal of Hydrometeorology 19, 1043–1057. https://doi.org/10.1175/JHM-D-17-0201.1
Liu, X., Zhang, D., 2013. Trend analysis of reference evapotranspiration in Northwest China: The roles of changing wind speed and surface air temperature. Hydrological Processes 27, 3941–3948. https://doi.org/10.1002/hyp.9527
Lobell, D.B., Bala, G., Duffy, P.B., 2006. Biogeophysical impacts of cropland management changes on climate. Geophysical Research Letters 33. https://doi.org/10.1029/2005GL025492
Lott, R.B., Hunt, R.J., 2001. Estimating evapotranspiration in natural and constructed wetlands. Wetlands 21, 614–628. https://doi.org/10.1672/0277-5212(2001)021[0614:EEINAC]2.0.CO;2
Ma, N., Zhang, Y., Xu, C.-Y., Szilagyi, J., 2015. Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications. Journal of Geophysical Research: Biogeosciences 120, 1638–1657. https://doi.org/10.1002/2015JG003006
Marie-Victorin, F., 1964. Flore Laurentienne. Les Presses de l’Université de Montréal, Montréal.
Mauder, M., Foken, T., 2006. Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische Zeitschrift 597–609. https://doi.org/10.1127/0941-2948/2006/0167
McColl, K.A., 2020. Practical and Theoretical Benefits of an Alternative to the Penman-Monteith Evapotranspiration Equation. Water Resources Research 56, e2020WR027106. https://doi.org/10.1029/2020WR027106
Metcalfe, R.A., Petzold, H., Luce, J.J., Buttle, J.M., 2019. Evaluating seasonal and regional calibration of temperature-based methods for estimating potential evaporation in Ontario. Canadian Water Resources Journal / Revue canadienne des ressources hydriques 44, 2–21. https://doi.org/10.1080/07011784.2018.1493399
Minville, M., Cartier, D., Guay, C., Leclaire, L.-A., Audet, C., Le Digabel, S., Merleau, J., 2014. Improving process representation in conceptual hydrological model calibration using climate simulations. Water Resources Research 50, 5044–5073.
Moncrieff, J., Clement, R., Finnigan, J., Meyers, T., 2004. Averaging, Detrending, and Filtering of Eddy Covariance Time Series, in: Lee, X., Massman, W., Law, B. (Eds.), Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, Atmospheric and Oceanographic Sciences Library. Springer Netherlands, Dordrecht, pp. 7–31. https://doi.org/10.1007/1-4020-2265-4_2
Moncrieff, J.B., Massheder, J.M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., Verhoef, A., 1997. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, HAPEX-Sahel 188–189, 589–611. https://doi.org/10.1016/S0022-1694(96)03194-0
Monteith, J.L., 1965. Evaporation and environment. Symposia of the Society for Experimental Biology 19, 205–234.
Nakayama, T., Shankman, D., 2013. Evaluation of uneven water resource and relation between anthropogenic water withdrawal and ecosystem degradation in Changjiang and Yellow River basins. Hydrological Processes 27, 3350–3362. https://doi.org/10.1002/hyp.9835
Nazemi, A., Chan, A.H., Yao, X., 2008. Selecting representative parameters of rainfall-runoff models using multi-objective calibration results and a fuzzy clustering algorithm, in: BHS 10th National Hydrology Symposium, Exeter, UK. pp. 13–20.
Nazemi, A., Wheater, H.S., 2015a. On inclusion of water resource management in Earth system models - Part 1: Problem definition and representation of water demand. Hydrology and Earth System Sciences 19, 33–61. https://doi.org/10.5194/hess-19-33-2015
Nazemi, A., Wheater, H.S., 2015b. On inclusion of water resource management in Earth system models - Part 2: Representation of water supply and allocation and opportunities for improved modeling. Hydrology and Earth System Sciences 19, 63–90. https://doi.org/10.5194/hess-19-63-2015
Nazemi, A., Yao, X., Chan, A.H., 2006. Extracting a set of robust Pareto-optimal parameters for hydrologic models using NSGA-II and SCEM, in: 2006 IEEE International Conference on Evolutionary Computation. IEEE, pp. 1901–1908.
Nazemi, A., Zaerpour, M., Hassanzadeh, E., 2020. Uncertainty in Bottom-Up Vulnerability Assessments of Water Supply Systems due to Regional Streamflow Generation under Changing Conditions. Journal of Water Resources Planning and Management 146, 04019071. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001149
Nazemi, A.-R., Akbarzadeh, M.-R., Hosseini, S.-M., 2002. Fuzzy-stochastic linear programming in water resources engineering, in: 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622). Presented at the 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622), pp. 227–232. https://doi.org/10.1109/NAFIPS.2002.1018060
Nordbo, A., Launiainen, S., Mammarella, I., Leppäranta, M., Huotari, J., Ojala, A., Vesala, T., 2011. Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. Journal of Geophysical Research: Atmospheres 116. https://doi.org/10.1029/2010JD014542
Novick, K.A., Biederman, J.A., Desai, A.R., Litvak, M.E., Moore, D.J.P., Scott, R.L., Torn, M.S., 2018. The AmeriFlux network: A coalition of the willing. Agricultural and Forest Meteorology 249, 444–456. https://doi.org/10.1016/j.agrformet.2017.10.009
Oke, T.R., 1987. Boundary Layer Climates, 2nd ed. Taylor & Francis.
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V.K., Haverd, V., Jain, A.K., Kato, E., Lienert, S., Lombardozzi, D., Nabel, J.E.M.S., Ottlé, C., Poulter, B., Zaehle, S., Running, S.W., 2020. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences 24, 1485–1509. https://doi.org/10.5194/hess-24-1485-2020
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., Yakir, D., 2006. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571–583. https://doi.org/10.5194/bg-3-571-2006
Paul-Limoges, E., Wolf, S., Schneider, F.D., Longo, M., Moorcroft, P., Gharun, M., Damm, A., 2020. Partitioning evapotranspiration with concurrent eddy covariance measurements in a mixed forest. Agricultural and Forest Meteorology 280, 107786. https://doi.org/10.1016/j.agrformet.2019.107786
Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
Peleg, N., Marra, F., Fatichi, S., Molnar, P., Morin, E., Sharma, A., Burlando, P., 2018. Intensification of Convective Rain Cells at Warmer Temperatures Observed from High-Resolution Weather Radar Data. Journal of Hydrometeorology 19, 715–726. https://doi.org/10.1175/JHM-D-17-0158.1
Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 193, 120–145. https://doi.org/10.1098/rspa.1948.0037
Peterson, T.C., Golubev, V.S., Groisman, P.Y., 1995. Evaporation losing its strength. Nature 377, 687–688. https://doi.org/10.1038/377687b0
Pilegaard, K., Mikkelsen, T.N., Beier, C., Jensen, N.O., Ambus, P., Ro-Poulsen, H., 2003. Field measurements of atmosphere-biosphere interactions in a Danish beech forest. Boreal Environment Research 8, 315–334.
Prein, A.F., Liu, C., Ikeda, K., Bullock, R., Rasmussen, R.M., Holland, G.J., Clark, M., 2020. Simulating North American mesoscale convective systems with a convection-permitting climate model. Clim Dyn 55, 95–110. https://doi.org/10.1007/s00382-017-3993-2
Prein, A.F., Liu, C., Ikeda, K., Trier, S.B., Rasmussen, R.M., Holland, G.J., Clark, M.P., 2017. Increased rainfall volume from future convective storms in the US. Nature Clim Change 7, 880–884. https://doi.org/10.1038/s41558-017-0007-7
Priestley, C.H.B., Taylor, R.J., 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review 100, 81–92. https://doi.org/10.1175/1520-0493
Rasmussen, A.H., Hondzo, M., Stefan, H.G., 1995. A Test of Several Evaporation Equations for Water Temperature Simulations in Lakes. JAWRA Journal of the American Water Resources Association 31, 1023–1028. https://doi.org/10.1111/j.1752-1688.1995.tb03418.x
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini, R., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
Rimmer, A., Samuels, R., Lechinsky, Y., 2009. A comprehensive study across methods and time scales to estimate surface fluxes from Lake Kinneret, Israel. Journal of Hydrology 379, 181–192. https://doi.org/10.1016/j.jhydrol.2009.10.007
Roderick, M.L., Rotstayn, L.D., Farquhar, G.D., Hobbins, M.T., 2007. On the attribution of changing pan evaporation. Geophysical Research Letters 34. https://doi.org/10.1029/2007GL031166
Rosenberry, D.O., Stannard, D.I., Winter, T.C., Martinez, M.L., 2004. Comparison of 13 equations for determining evapotranspiration from a prairie wetland, Cottonwood Lake Area, North Dakota, USA. Wetlands 24, 483–497. https://doi.org/10.1672/0277-5212
Rosenberry, D.O., Winter, T.C., Buso, D.C., Likens, G.E., 2007. Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. Journal of Hydrology 340, 149–166. https://doi.org/10.1016/j.jhydrol.2007.03.018
Roulet, N.T., Woo, M.-K., 1986. Wetland and Lake Evaporation in the Low Arctic. Arctic and Alpine Research 18, 195–200. https://doi.org/10.1080/00040851.1986.12004077
Rouse, W.R., 1998. A water balance model for a subarctic sedge fen and its application to climatic change. Climatic change 38, 207–234.
Sartori, E., 2000. A critical review on equations employed for the calculation of the evaporation rate from free water surfaces. Solar Energy 68, 77–89. https://doi.org/10.1016/S0038-092X(99)00054-7
Schmid, H.P., Grimmond, C.S.B., Cropley, F., Offerle, B., Su, H.-B., 2000. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agricultural and Forest Meteorology 103, 357–374. https://doi.org/10.1016/S0168-1923(00)00140-4
Seiller, G., Anctil, F., 2016. How do potential evapotranspiration formulas influence hydrological projections? Hydrological Sciences Journal 61, 2249–2266. https://doi.org/10.1080/02626667.2015.1100302
Seneviratne, S.I., Lüthi, D., Litschi, M., Schär, C., 2006. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209. https://doi.org/10.1038/nature05095
Sharma, A., Hamlet, A.F., Fernando, H.J.S., Catlett, C.E., Horton, D.E., Kotamarthi, V.R., Kristovich, D. a. R., Packman, A.I., Tank, J.L., Wuebbles, D.J., 2018. The Need for an Integrated Land-Lake-Atmosphere Modeling System, Exemplified by North America’s Great Lakes Region. Earth’s Future 6, 1366–1379. https://doi.org/10.1029/2018EF000870
Shuttleworth, W.J., 2007. Putting the “vap” into evaporation. Hydrology and Earth System Sciences 11, 210–244. https://doi.org/10.5194/hess-11-210-2007
Sigut, L., 2017. [Toolbox] - A rolling list of software/packages for flux-related data processing [WWW Document]. FLUXNET. URL https://fluxnet.org/2017/10/10/toolbox-a-rolling-list-of-softwarepackages-for-flux-related-data-processing/ (accessed 5.26.21).
Sillmann, J., Thorarinsdottir, T., Keenlyside, N., Schaller, N., Alexander, L.V., Hegerl, G., Seneviratne, S.I., Vautard, R., Zhang, X., Zwiers, F.W., 2017. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather and Climate Extremes 18, 65–74. https://doi.org/10.1016/j.wace.2017.10.003
Singh, V., Xu, C.-Y., 1997. Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrological Processes 11, 311–323.
Stannard, D.I., Rosenberry, D.O., 1991. A comparison of short-term measurements of lake evaporation using eddy correlation and energy budget methods. Journal of Hydrology 122, 15–22. https://doi.org/10.1016/0022-1694(91)90168-H
Tanny, J., Cohen, S., Assouline, S., Lange, F., Grava, A., Berger, D., Teltch, B., Parlange, M.B., 2008. Evaporation from a small water reservoir: Direct measurements and estimates. Journal of Hydrology 351, 218–229. https://doi.org/10.1016/j.jhydrol.2007.12.012
Tasumi, M., 2005. A Review of Evaporation Research on Japanese Lakes, in: Impacts of Global Climate Change. Presented at the World Water and Environmental Resources Congress, ASCE, pp. 1–10. https://doi.org/10.1061/40792(173)555
Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical review 38, 55–94. https://doi.org/10.2307/210739
Trenberth, K.E., Asrar, G.R., 2014. Challenges and Opportunities in Water Cycle Research: WCRP Contributions, in: Bengtsson, L., Bonnet, R.-M., Calisto, M., Destouni, G., Gurney, R., Johannessen, J., Kerr, Y., Lahoz, W.A., Rast, M. (Eds.), The Earth’s Hydrological Cycle. Springer Netherlands, Dordrecht, pp. 515–532. https://doi.org/10.1007/978-94-017-8789-5_3
Valipour, M., 2015. Temperature analysis of reference evapotranspiration models. Meteorological Applications.
Valipour, Mohammad, 2015. Evaluation of radiation methods to study potential evapotranspiration of 31 provinces. Meteorol Atmos Phys 127, 289–303. https://doi.org/10.1007/s00703-014-0351-3
van Emmerik, T.H.M., Rimmer, A., Lechinsky, Y., Wenker, K.J.R., Nussboim, S., van de Giesen, N.C., 2013. Measuring heat balance residual at lake surface using Distributed Temperature Sensing. Limnology and Oceanography Methods 11, 79–90. https://doi.org/10.4319/lom.2013.11.79
Verhoef, A., Cuxart, J., Marthews, T., Evans, J., van Oevelen, P., 2020. Report on the First Determining Evapotranspiration Workshop. GEWEX Quarterly 30.
Vickers, D., Mahrt, L., 1997. Quality Control and Flux Sampling Problems for Tower and Aircraft Data. Journal of Atmospheric and Oceanic Technology 14, 512–526. https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
Vieira, H., Nazemi, A., 2020. The cooling function of the Cherry River Marsh. Memphrémagog Conservation Inc. 7.
Ville de Magog, 2021. Environnement - Protection des sources d’eau potable [WWW Document]. Ville de Magog. URL https://www.ville.magog.qc.ca/informations-services/environnement/ (accessed 7.16.21).
Wang, H., Olhofer, M., Jin, Y., 2017. A mini-review on preference modeling and articulation in multi-objective optimization: current status and challenges. Complex Intell. Syst. 3, 233–245. https://doi.org/10.1007/s40747-017-0053-9
Wang, K., Dickinson, R.E., 2012. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics 50. https://doi.org/10.1029/2011RG000373
Wang, W., Xiao, W., Cao, C., Gao, Z., Hu, Z., Liu, S., Shen, S., Wang, L., Xiao, Q., Xu, J., Yang, D., Lee, X., 2014. Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China. Journal of Hydrology 511, 811–824. https://doi.org/10.1016/j.jhydrol.2014.02.012
Webb, E.K., Pearman, G.I., Leuning, R., 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society 106, 85–100. https://doi.org/10.1002/qj.49710644707
Wei, Z., Yoshimura, K., Wang, L., Miralles, D.G., Jasechko, S., Lee, X., 2017. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters 44, 2792–2801. https://doi.org/10.1002/2016GL072235
Wilczak, J.M., Oncley, S.P., Stage, S.A., 2001. Sonic Anemometer Tilt Correction Algorithms. Boundary-Layer Meteorology 99, 127–150. https://doi.org/10.1023/A:1018966204465
Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., O’Donnell, J., Rowe, C.M., 1985. Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans 90, 8995–9005. https://doi.org/10.1029/JC090iC05p08995
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B.E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., Verma, S., 2002. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, FLUXNET 2000 Synthesis 113, 223–243. https://doi.org/10.1016/S0168-1923(02)00109-0
Winter, T.C., Rosenberry, D.O., Sturrock, A.M., 1995. Evaluation of 11 Equations for Determining Evaporation for a Small Lake in the North Central United States. Water Resources Research 31, 983–993. https://doi.org/10.1029/94WR02537
Yin, J., Gentine, P., Zhou, S., Sullivan, S.C., Wang, R., Zhang, Y., Guo, S., 2018. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat Commun 9, 4389. https://doi.org/10.1038/s41467-018-06765-2
Yuling, F., 2005. Energy balance closure at ChinaFLUX sites. Sci. China Earth Sci 48, 2005.
Zandmoghaddam, S., Nazemi, A., Hassanzadeh, E., Hatami, S., 2019. Representing Local Dynamics of Water Resource Systems through a Data-Driven Emulation Approach. Water Resour Manage 33, 3579–3594. https://doi.org/10.1007/s11269-019-02319-3
Zhang, W., Zhu, Y., Jiang, J., 2016. Effect of the urbanization of wetlands on microclimate: a case study of Xixi Wetland, Hangzhou, China. Sustainability.
Zhang, Y., Peña-Arancibia, J.L., McVicar, T.R., Chiew, F.H.S., 2016. Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific reports. https://doi.org/10.1038/srep19124
Zhou, L., Zhou, G., 2009. Measurement and modelling of evapotranspiration over a reed (Phragmites australis) marsh in Northeast China. Journal of Hydrology 372, 41–47. https://doi.org/10.1016/j.jhydrol.2009.03.033
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top