Login | Register

Surface Study of Volatile Organic Compounds (VOCs) Biomarkers Adsorption on Functionalized Graphene and its Application in FET Based Biosensors

Title:

Surface Study of Volatile Organic Compounds (VOCs) Biomarkers Adsorption on Functionalized Graphene and its Application in FET Based Biosensors

Singh, Paramjot ORCID: https://orcid.org/0000-0003-3830-9583 (2021) Surface Study of Volatile Organic Compounds (VOCs) Biomarkers Adsorption on Functionalized Graphene and its Application in FET Based Biosensors. Masters thesis, Concordia University.

[thumbnail of Singh_MASc_S2022.pdf]
Preview
Text (application/pdf)
Singh_MASc_S2022.pdf - Accepted Version
2MB

Abstract

In this work, we have designed and simulated a graphene field-effect transistor, GFET, with the purpose of developing a sensitive biosensor for methanethiol, a biomarker for bacterial infections and ethyl butyrate, a biomarker for COVID-19.
The surface of a graphene layer is engineered by manipulation of its surface structure and best cases are used as the channel of the GFET. Three methods, doping the crystal structure of graphene, decorating the surface with transition metals like Platinum and Palladium and defected graphene nanoribbons are utilized to induce the bandgap in the graphene layers.
The techniques also change the surface chemistry of the graphene by enhancing its adsorption characteristics and make binding between graphene and biomarker possible. All the physical parameters are calculated for various variants of graphene in the absence and presence of the biomarker using counterpoise energy corrected density functional theory in Quantum ATK. The device was modelled using the finite element method in COMSOL Multiphysics. Our studies show that the sensitivity of the device is affected by the structural parameters of the device, the electrical properties of the graphene, and with adsorption of the biomarkers. It was found that the devices made of graphene layers decorated with transition metals show higher sensitivities toward detecting the biomarkers compared with those made by doped graphene layers and nanoribbons.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (Masters)
Authors:Singh, Paramjot
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Electrical and Computer Engineering
Date:22 December 2021
Thesis Supervisor(s):Kahrizi, Mojtaba
Keywords:Graphene; Biosensor; DFT; COMSOL; FET; COVID-19
ID Code:990135
Deposited By: Paramjot Singh
Deposited On:16 Jun 2022 15:13
Last Modified:16 Jun 2022 15:13

References:

[1] S. Talebian, G. G. Wallace, A. Schroeder, F. Stellacci, and J. Conde, “Nanotechnology-based disinfectants and sensors for SARS-CoV-2,” Nat. Nanotechnol., vol. 15, no. 8, pp. 618–621, 2020, doi: 10.1038/s41565-020-0751-0.
[2] X. Gan, H. Zhao, R. Schirhagl, and X. Quan, “Two-dimensional nanomaterial based sensors for heavy metal ions,” Microchimica Acta, vol. 185, no. 10. Springer-Verlag Wien, pp. 1–30, Oct. 01, 2018, doi: 10.1007/s00604-018-3005-1.
[3] C. Zhu, D. Du, and Y. Lin, “Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications,” Biosensors and Bioelectronics, vol. 89. Elsevier Ltd, pp. 43–55, Mar. 15, 2017, doi: 10.1016/j.bios.2016.06.045.
[4] S. Mao et al., “Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing,” Chemical Society Reviews, vol. 46, no. 22. Royal Society of Chemistry, pp. 6872–6904, Nov. 21, 2017, doi: 10.1039/c6cs00827e.
[5] A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, “Buckled two-dimensional Xene sheets,” Nature Materials, vol. 16, no. 2. Nature Publishing Group, pp. 163–169, Feb. 01, 2017, doi: 10.1038/nmat4802.
[6] P. Singh, D. K. K. Randhawa, Tarun, B. C. Choudhary, G. K. Walia, and N. Kaur, “First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors,” J. Mol. Model., vol. 26, no. 1, Jan. 2020, doi: 10.1007/s00894-019-4243-9.
[7] T. Tarun, D. K. K. Randhawa, P. Singh, B. C. Choudhary, G. K. Walia, and N. Kaur, “Analysis of uric acid adsorption on armchair silicene nanoribbons: a DFT study,” J. Mol. Model., vol. 26, no. 3, Mar. 2020, doi: 10.1007/s00894-020-4313-z.
[8] T. Tarun, P. Singh, H. Kaur, G. K. Walia, D. K. K. Randhawa, and B. C. Choudhary, “Defective GaAs nanoribbon–based biosensor for lung cancer biomarkers: a DFT study,” J. Mol. Model. 2021 279, vol. 27, no. 9, pp. 1–13, Aug. 2021, doi: 10.1007/S00894-021-04889-9.
[9] L. J. Carter et al., “Assay Techniques and Test Development for COVID-19 Diagnosis,” ACS Cent. Sci., vol. 6, no. 5, pp. 591–605, May 2020, doi: 10.1021/acscentsci.0c00501.
[10] A. Bolotsky et al., “Two-Dimensional Materials in Biosensing and Healthcare: From in Vitro Diagnostics to Optogenetics and beyond,” ACS Nano, vol. 13, no. 9, pp. 9781–9810, May 2019, doi: 10.1021/acsnano.9b03632.
[11] R. Vargas-Bernal, “Graphene against Other Two‐Dimensional Materials: A Comparative Study on the Basis of Electronic Applications,” in Two-dimensional Materials - Synthesis, Characterization and Potential Applications, InTech, 2016.
[12] E. W. Hill, A. Vijayaragahvan, and K. Novoselov, “Graphene sensors,” IEEE Sens. J., vol. 11, no. 12, pp. 3161–3170, 2011, doi: 10.1109/JSEN.2011.2167608.
[13] A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics, vol. 6, no. 11, pp. 749–758, 2012, doi: 10.1038/nphoton.2012.262.
[14] K. Nomura and A. H. MacDonald, “Quantum transport of massless dirac fermions,” Phys. Rev. Lett., vol. 98, no. 7, pp. 1–4, 2007, doi: 10.1103/PhysRevLett.98.076602.
[15] Y. Kanai et al., “Graphene Field Effect Transistor-Based Immunosensor for Ultrasensitive Noncompetitive Detection of Small Antigens,” ACS Sensors, vol. 5, no. 1, pp. 24–28, 2020, doi: 10.1021/acssensors.9b02137.
[16] A. Salehi-Khojin et al., “Graphene Sensors: Polycrystalline Graphene Ribbons as Chemiresistors (Adv. Mater. 1/2012),” Adv. Mater., vol. 24, no. 1, pp. 52–52, 2012, doi: 10.1002/adma.201190200.
[17] A. Soltani et al., “Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor,” Light Sci. Appl., vol. 9, no. 1, 2020, doi: 10.1038/s41377-020-0321-0.
[18] M. Salehirozveh, P. Dehghani, M. Zimmermann, V. A. L. Roy, and H. Heidari, “Graphene Field Effect Transistor Biosensors based on Aptamer for Amyloid-β Detection,” IEEE Sens. J., vol. 20, no. 21, pp. 1–1, 2020, doi: 10.1109/jsen.2020.3000583.
[19] I. Fakih et al., “Selective ion sensing with high resolution large area graphene field effect transistor arrays,” Nat. Commun., vol. 11, no. 1, pp. 1–12, 2020, doi: 10.1038/s41467-020-16979-y.
[20] F. De Nicola et al., “Graphene Plasmonic Fractal Metamaterials for Broadband Photodetectors,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020, doi: 10.1038/s41598-020-63099-0.
[21] F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol., vol. 4, no. 12, pp. 839–843, 2009, doi: 10.1038/nnano.2009.292.
[22] J. Guo et al., “High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm,” Light Sci. Appl., vol. 9, no. 1, 2020, doi: 10.1038/s41377-020-0263-6.
[23] V. Mišeikis et al., “Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides,” ACS Nano, vol. 14, no. 9, pp. 11190–11204, 2020, doi: 10.1021/acsnano.0c02738.
[24] L. Zhuo et al., “A broadband all-fiber integrated graphene photodetector with CNT-enhanced responsivity,” Nanoscale, vol. 12, no. 26, pp. 14188–14193, 2020, doi: 10.1039/d0nr00139b.
[25] J. Gosciniak, M. Rasras, and J. B. Khurgin, “Ultrafast Plasmonic Graphene Photodetector Based on the Channel Photothermoelectric Effect,” ACS Photonics, vol. 7, no. 2, pp. 488–498, 2020, doi: 10.1021/acsphotonics.9b01585.
[26] G. Konstantatos et al., “Hybrid grapheneĝquantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol., vol. 7, no. 6, pp. 363–368, 2012, doi: 10.1038/nnano.2012.60.
[27] R. Pan et al., “Excellent performance in vertical graphene-C60-graphene heterojunction phototransistors with a tunable bi-directionality,” Carbon N. Y., vol. 162, pp. 375–381, 2020, doi: 10.1016/j.carbon.2020.02.030.
[28] J. Han et al., “Light-modulated vertical heterojunction phototransistors with distinct logical photocurrents,” Light Sci. Appl., vol. 9, no. 1, 2020, doi: 10.1038/s41377-020-00406-4.
[29] Z. Sun et al., “Graphene mode-locked ultrafast laser,” ACS Nano, vol. 4, no. 2, pp. 803–810, 2010, doi: 10.1021/nn901703e.
[30] G. Yang, L. Li, and M. C. Ng, “Science and Technology of Advanced Materials Structure of graphene and its disorders: a review Structure of graphene and its disorders: a review,” 2018, doi: 10.1080/14686996.2018.1494493.
[31] M. I. Katsnelson, “The electronic structure of ideal graphene,” in The Physics of Graphene, Cambridge University Press, 2020, pp. 1–23.
[32] M. I. Katsnelson, “Graphene: carbon in two dimensions,” Materials Today, vol. 10, no. 1–2. Elsevier, pp. 20–27, Jan. 01, 2007, doi: 10.1016/S1369-7021(06)71788-6.
[33] H. Raza and E. C. Kan, “Armchair graphene nanoribbons: Electronic structure and electric-field modulation,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 24, pp. 1–5, 2008, doi: 10.1103/PhysRevB.77.245434.
[34] V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and I. A. Shovkovy, “Edge states, mass and spin gaps, and quantum Hall effect in graphene,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 20, May 2008, doi: 10.1103/PhysRevB.77.205409.
[35] M. Zoghi, A. Y. Goharrizi, and M. Saremi, “Band Gap Tuning of Armchair Graphene Nanoribbons by Using Antidotes,” J. Electron. Mater., vol. 46, no. 1, pp. 340–346, 2017, doi: 10.1007/s11664-016-4940-4.
[36] Y. W. Son, M. L. Cohen, and S. G. Louie, “Energy gaps in graphene nanoribbons,” Phys. Rev. Lett., vol. 97, no. 21, pp. 1–4, 2006, doi: 10.1103/PhysRevLett.97.216803.
[37] G. Wang, “Effect of edge-hydrogen passivation and saturation on the carrier mobility of armchair graphene nanoribbons,” Chem. Phys. Lett., vol. 533, pp. 74–77, Apr. 2012, doi: 10.1016/j.cplett.2012.03.029.
[38] K. K. Jha, N. Tyagi, N. K. Jaiswal, and P. Srivastava, “Structural and electronic properties of armchair graphene nanoribbons functionalized with fluorine,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 383, no. 32, p. 125949, Nov. 2019, doi: 10.1016/j.physleta.2019.125949.
[39] C. Patel, R. Yogi, and N. K. Jaiswal, “First-principles study for I-V characteristics of halogen functionalized zigzag graphene nanoribbons,” in AIP Conference Proceedings, Jul. 2019, vol. 2115, no. 1, p. 030451, doi: 10.1063/1.5113290.
[40] A. Kumar et al., “Nitrogen-terminated semiconducting zigzag gnr fet with negative differential resistance,” IEEE Trans. Nanotechnol., vol. 13, no. 1, pp. 16–22, 2014, doi: 10.1109/TNANO.2013.2279035.
[41] B. Mandal, S. Sarkar, A. Pramanik, and P. Sarkar, “Electronic structure and transport properties of sulfur-passivated graphene nanoribbons,” J. Appl. Phys., vol. 112, no. 11, 2012, doi: 10.1063/1.4768524.
[42] G. Lee and K. Cho, “Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 79, no. 16, pp. 20–24, 2009, doi: 10.1103/PhysRevB.79.165440.
[43] S.-M. Choi, S.-H. Jhi, and Y.-W. Son, “Effects of strain on electronic properties of graphene,” 2010, doi: 10.1103/PhysRevB.81.081407.
[44] I. Y. Sahalianov, T. M. Radchenko, V. A. Tatarenko, G. Cuniberti, and Y. I. Prylutskyy, “Straintronics in graphene: Extra large electronic band gap induced by tensile and shear strains,” J. Appl. Phys., vol. 126, no. 5, Aug. 2019, doi: 10.1063/1.5095600.
[45] H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem., vol. 21, no. 10, pp. 3335–3345, Mar. 2011, doi: 10.1039/c0jm02922j.
[46] R. Deji, B. C. Choudhary, and R. K. Sharma, “Novel hydrogen cyanide gas sensor: A simulation study of graphene nanoribbon doped with boron and phosphorus,” Phys. E Low-dimensional Syst. Nanostructures, vol. 134, p. 114844, Oct. 2021, doi: 10.1016/j.physe.2021.114844.
[47] V. Georgakilas et al., “Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications,” Chem. Rev., vol. 112, no. 11, pp. 6156–6214, 2012, doi: 10.1021/cr3000412.
[48] V. Georgakilas et al., “Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications,” Chemical Reviews, vol. 112, no. 11. American Chemical Society, pp. 6156–6214, Nov. 14, 2012, doi: 10.1021/cr3000412.
[49] H. Zhang et al., “Aryl functionalization as a route to band gap engineering in single layer graphene devices,” Nano Lett., vol. 11, no. 10, pp. 4047–4051, Oct. 2011, doi: 10.1021/nl200803q.
[50] M. Di Giovannantonio et al., “On-Surface Growth Dynamics of Graphene Nanoribbons: The Role of Halogen Functionalization,” ACS Nano, vol. 12, no. 1, pp. 74–81, Jan. 2018, doi: 10.1021/acsnano.7b07077.
[51] S. Yang et al., “A DFT study of CO adsorption on the pristine, defective, In-doped and Sb-doped graphene and the effect of applied electric field,” Appl. Surf. Sci., vol. 480, no. November 2018, pp. 205–211, 2019, doi: 10.1016/j.apsusc.2019.02.244.
[52] F. Chekin et al., “MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum,” Biosens. Bioelectron., vol. 85, pp. 807–813, 2016, doi: 10.1016/j.bios.2016.05.095.
[53] P. K. Basu et al., “Graphene based E. coli sensor on flexible acetate sheet,” Sensors Actuators, B Chem., vol. 190, pp. 342–347, 2014, doi: 10.1016/j.snb.2013.08.080.
[54] Y. H. Kwak et al., “Flexible glucose sensor using CVD-grown graphene-based field effect transistor,” Biosens. Bioelectron., vol. 37, no. 1, pp. 82–87, 2012, doi: 10.1016/j.bios.2012.04.042.
[55] N. S. Green and M. L. Norton, “Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review,” Anal. Chim. Acta, vol. 853, no. 1, pp. 127–142, 2015, doi: 10.1016/j.aca.2014.10.023.
[56] L. Wu, L. Feng, J. Ren, and X. Qu, “Electrochemical detection of dopamine using porphyrin-functionalized graphene,” Biosens. Bioelectron., vol. 34, no. 1, pp. 57–62, Apr. 2012, doi: 10.1016/j.bios.2012.01.007.
[57] P. Singh, P. Abedini Sohi, and M. Kahrizi, “Finite Element Modelling of Bandgap Engineered Graphene FET with the Application in Sensing Methanethiol Biomarker,” Sensors, vol. 21, no. 2, p. 580, Jan. 2021, doi: 10.3390/s21020580.
[58] F. Schedin et al., “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater., vol. 6, no. 9, pp. 652–655, 2007, doi: 10.1038/nmat1967.
[59] B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, and J. Wojtas, “Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques,” Bioanalysis, vol. 5, no. 18. Bioanalysis, pp. 2287–2306, Sep. 2013, doi: 10.4155/bio.13.183.
[60] K. E. van Keulen, M. E. Jansen, R. W. M. Schrauwen, J. J. Kolkman, and P. D. Siersema, “Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer,” Aliment. Pharmacol. Ther., vol. 51, no. 3, pp. 334–346, Feb. 2020, doi: 10.1111/apt.15622.
[61] J. Pawliszyn, “Development of SPME Devices and Coatings,” in Handbook of Solid Phase Microextraction, Elsevier Inc., 2012, pp. 61–97.
[62] H. Chen, X. Qi, J. Ma, C. Zhang, H. Feng, and M. Yao, “Breath-borne VOC Biomarkers for COVID-19,” medRxiv, p. 2020.06.21.20136523, Jan. 2020, doi: 10.1101/2020.06.21.20136523.
[63] I. H. Cho, D. H. Kim, and S. Park, “Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis,” Biomaterials Research, vol. 24, no. 1. BioMed Central Ltd., pp. 1–12, Feb. 04, 2020, doi: 10.1186/s40824-019-0181-y.
[64] V. T. Le, Y. Vasseghian, E. N. Dragoi, M. Moradi, and A. Mousavi Khaneghah, “A review on graphene-based electrochemical sensor for mycotoxins detection,” Food Chem. Toxicol., vol. 148, p. 111931, Feb. 2021, doi: 10.1016/j.fct.2020.111931.
[65] J. Peña-Bahamonde, H. N. Nguyen, S. K. Fanourakis, and D. F. Rodrigues, “Recent advances in graphene-based biosensor technology with applications in life sciences,” Journal of Nanobiotechnology, vol. 16, no. 1. BioMed Central Ltd., p. 75, Sep. 22, 2018, doi: 10.1186/s12951-018-0400-z.
[66] A. Agharazy Dormeny, P. Abedini Sohi, and M. Kahrizi, “Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures,” Results Phys., vol. 16, p. 102869, Mar. 2020, doi: 10.1016/j.rinp.2019.102869.
[67] P. A. Sohi and M. Kahrizi, “Principles and Applications of Nanoplasmonics in Biological and Chemical Sensing: A Review,” in Recent Advances in Nanophotonics - Fundamentals and Applications, IntechOpen, 2020.
[68] Y. Bai, T. Xu, and X. Zhang, “Graphene-based biosensors for detection of biomarkers,” Micromachines, vol. 11, no. 1. MDPI AG, Jan. 01, 2020, doi: 10.3390/mi11010060.
[69] M. B. Hossain, M. M. Rana, L. F. Abdulrazak, S. Mitra, and M. Rahman, “Graphene-MoS2 with TiO2[sbnd]SiO2 layers based surface plasmon resonance biosensor: Numerical development for formalin detection,” Biochem. Biophys. Reports, vol. 18, p. 100639, Jul. 2019, doi: 10.1016/j.bbrep.2019.100639.
[70] Q. Wang, J. Y. Jing, and B. T. Wang, “Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein A Co-Modified TFBG for Human IgG Detection,” IEEE Trans. Instrum. Meas., 2018, doi: 10.1109/TIM.2018.2875961.
[71] M. B. Hossain, M. M. Islam, L. F. Abdulrazak, M. M. Rana, T. B. A. Akib, and M. Hassan, “Graphene-Coated Optical Fiber SPR Biosensor for BRCA1 and BRCA2 Breast Cancer Biomarker Detection: a Numerical Design-Based Analysis,” Photonic Sensors, vol. 10, no. 1, pp. 67–79, Mar. 2020, doi: 10.1007/s13320-019-0556-7.
[72] M. B. Hossain and M. M. Rana, “DNA Hybridization Detection Based on Resonance Frequency Readout in Graphene on Au SPR Biosensor,” J. Sensors, vol. 2016, 2016, doi: 10.1155/2016/6070742.
[73] M. K. Anvarifard, Z. Ramezani, and I. S. Amiri, “Label-free detection of DNA by a dielectric modulated armchair-graphene nanoribbon FET based biosensor in a dual-nanogap setup,” Mater. Sci. Eng. C, vol. 117, p. 111293, Dec. 2020, doi: 10.1016/j.msec.2020.111293.
[74] F. DJEFFAL, A. BENHAYA, K. TAMERSIT, and M. MEGUELLATI, “NEW DIELECTRIC MODULATED GRAPHENE (DMG) FETBASED SENSOR FOR HIGH-PERFORMANCE BIOMOLECULE SENSING APPLICATIONS,” Apr. 2015, pp. 401–414, doi: 10.1142/9789814667364_0030.
[75] G. Wadhwa and B. Raj, “Label Free Detection of Biomolecules Using Charge-Plasma-Based Gate Underlap Dielectric Modulated Junctionless TFET,” J. Electron. Mater., vol. 47, no. 8, pp. 4683–4693, Aug. 2018, doi: 10.1007/s11664-018-6343-1.
[76] Ajay, R. Narang, M. Saxena, and M. Gupta, “Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors,” Superlattices Microstruct., vol. 85, pp. 557–572, Jun. 2015, doi: 10.1016/j.spmi.2015.04.040.
[77] P. Singh, P. A. Sohi, and M. Kahrizi, “In silico design and analysis of Pt functionalized graphene-based FET sensor for COVID-19 biomarkers: A DFT coupled FEM study,” Phys. E Low-dimensional Syst. Nanostructures, vol. 135, no. April 2021, p. 114972, 2021, doi: 10.1016/j.physe.2021.114972.
[78] S. T. Epstein and C. M. Rosenthal, “The Hohenberg-Kohn theorem,” J. Chem. Phys., vol. 64, no. 1, pp. 247–249, 1976, doi: 10.1063/1.431969.
[79] E. J. Bylaska, M. Holst, and J. H. Weare, “Adaptive finite element method for solving the exact kohn-sham equation of density functional theory,” J. Chem. Theory Comput., vol. 5, no. 4, pp. 937–948, 2009, doi: 10.1021/ct800350j.
[80] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996, doi: 10.1103/PhysRevLett.77.3865.
[81] M. Bokdam, P. A. Khomyakov, G. Brocks, and P. J. Kelly, “Field effect doping of graphene in metal|dielectric|graphene heterostructures: A model based upon first-principles calculations,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 87, no. 7, pp. 1–13, 2013, doi: 10.1103/PhysRevB.87.075414.
[82] “Semiconductors,” in Solid State Physics, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 293–351.
[83] M. A. Green, “Intrinsic concentration, effective densities of states, and effective mass in silicon,” J. Appl. Phys., vol. 67, no. 6, pp. 2944–2954, Mar. 1990, doi: 10.1063/1.345414.
[84] T. Gunst, T. Markussen, K. Stokbro, and M. Brandbyge, “First-principles method for electron-phonon coupling and electron mobility: Applications to two-dimensional materials,” Phys. Rev. B, vol. 93, no. 3, p. 035414, Jan. 2016, doi: 10.1103/PhysRevB.93.035414.
[85] K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Unraveling the acoustic electron-phonon interaction in graphene,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 85, no. 16, p. 165440, Apr. 2012, doi: 10.1103/PhysRevB.85.165440.
[86] M. Bhattacharjee, N. Mandal, H. Nemade, and D. Bandyopadhyay, “Simulation of a Voltage Controlled Resistor Mimicking the Geometry of a MOSFET Device having Graphite Channel,” no. V, pp. 3–6, 2014.
[87] M. M. Montemore and J. W. Medlin, “A unified picture of adsorption on transition metals through different atoms,” J. Am. Chem. Soc., vol. 136, no. 26, pp. 9272–9275, 2014, doi: 10.1021/ja504193w.
[88] P. Singh, P. A. Sohi, and M. Kahrizi, “Effect of point defects in armchair graphene nanoribbons for biosensing of Methanethiol biomarkers: A DFT Study,” 2021 IEEE 21st Int. Conf. Nanotechnol., pp. 142–145, Jul. 2021, doi: 10.1109/NANO51122.2021.9514321.
[89] “Methanethiol | CH3SH - PubChem.” https://pubchem.ncbi.nlm.nih.gov/compound/methanethiol (accessed Oct. 07, 2020).
[90] G. K. Walia and D. K. K. Randhawa, “Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts,” J. Mol. Model., vol. 24, no. 4, 2018, doi: 10.1007/s00894-018-3631-x.
[91] D. A. Neamen, “Semiconductor physics and devices : basic principles,” p. 758, 2012.
[92] W. Zhou et al., “Designing sub-10-nm Metal-Oxide-Semiconductor Field-Effect Transistors via Ballistic Transport and Disparate Effective Mass: The Case of Two-Dimensional Bi N,” Phys. Rev. Appl., vol. 13, no. 4, p. 1, 2020, doi: 10.1103/PhysRevApplied.13.044066.
[93] X. Gu and R. Yang, “First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene,” J. Appl. Phys., vol. 117, no. 2, p. 025102, Jan. 2015, doi: 10.1063/1.4905540.
[94] P. Van Mieghem, “Theory of Band Tails in Heavily Doped Semiconductors,” Rev. Mod. Phys., vol. 64, no. 3, pp. 755–792, 1992.
[95] P. A. Haddad, D. Flandre, and J. P. Raskin, “Intrinsic rectification in common-gated graphene field-effect transistors,” Nano Energy, vol. 43, no. October 2017, pp. 37–46, 2018, doi: 10.1016/j.nanoen.2017.10.049.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top