Ren, Zhebo ORCID: https://orcid.org/0000-0001-9019-8660 (2022) Numerical modeling of thermally induced ground deformations around potential geothermal energy storage wells in northern Quebec. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
9MBRen_MASc_S2022.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
Literature from the past two decades demonstrates the feasibility of utilizing borehole geothermal energy storage (BTES) system for the heating of buildings in the cold climate region like Northern Quebec. However, BTES systems would generate an increase in temperature in surrounding soil formations, which may induce ground deformation and result in unexpected accidents. This study investigates the effect of BTES systems of 50-year service life period on thermal consolidation of surrounding soil formations in northern Quebec, where BTES sites are covered by a large quantity of unconsolidated glacial tills. A fully coupled thermal-hydro-mechanical modeling is conducted using Abaqus, and cases with different configuration and operation temperature are modeled. Thermally induced pore pressure generation and dissipation processes are simulated and analyzed. Thermally induced deformation of soil formations is also addressed. The glacial till in the upper layer is prone to sustain strain softening and the glacial till in the lower layer is prone to sustain strain hardening during the periodical thermal operation. A BTES system with a large geometric scale or with a high operation temperature (60°C in this study) would impose significant influence on the glacial till formation, which is displayed by significant changes in pore water pressure and ground deformations.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Ren, Zhebo |
Institution: | Concordia University |
Degree Name: | M.A. Sc. |
Program: | Civil Engineering |
Date: | 31 March 2022 |
Thesis Supervisor(s): | Li, Biao |
Keywords: | Cam-Clay model, BTES system, thermal-hydro-mechanical modeling, glacial till, deformation analysis |
ID Code: | 990491 |
Deposited By: | Zhebo Ren |
Deposited On: | 16 Jun 2022 15:08 |
Last Modified: | 31 Mar 2023 00:00 |
References:
1. Abaqus. (2016). Applied soil mechanics with Abaqus applications (Vol. 4, Issue 1).2. Al-Khazaali, M., Vanapalli, S. K., & Oh, W. T. (2019). Numerical investigation of soil–pipeline system behavior nearby unsupported excavation in saturated and unsaturated glacial till. Canadian Geotechnical Journal, 56(1), 69–88. https://doi.org/10.1139/cgj-2017-0411
3. Atkinson, J. H., & Little, J. A. (1988). Undrained triaxial strength and stress-strain characteristics of a glacial till soil. Canadian Geotechnical Journal, 25(3), 428–439. https://doi.org/10.1139/t88-048
4. Bardet. (1997). Experimental Soil Mechanics. Prentice Hall, 1001. http://librosysolucionarios.net/
5. Baser, T., & McCartney, J. S. (2015). Development of a full-scale soil-borehole thermal energy storage system. Geotechnical Special Publication, GSP 256, 1608–1617. https://doi.org/10.1061/9780784479087.145
6. Bell, F. G. (2002). The geotechnical properties of some till deposits occurring along the coastal areas of Eastern England. Engineering Geology, 63(1–2), 49–68. https://doi.org/10.1016/S0013-7952(01)00068-0
7. Belzile, P., Comeau, F., Raymond, J., & Lamarche, L. (2017). Arctic Climate Horizontal Ground-Coupled Heat Pump. 41.
8. Cao, L., Peaker, S., & Ahmad, S. (2015). Engineering characteristic of glacial tills in GTA. 68e Conférence Canadienne de Géotechnique et 7e Conférence Canadienne Sur Le Pergélisol, 20 Au 23 Septembre 2015, Québec, Québec., 1967.
9. Catolico, Ge, & McCartney. (2016). Numerical Modeling of a Soil-Borehole Thermal Energy Storage System. Vadose Zone Journal, 15(1), vzj2015.05.0078. https://doi.org/10.2136/vzj2015.05.0078
10. Chiasson, A. D., & Yavuzturk, C. (2003). Assessment of the viability of hybrid geothermal heat pump systems with solar thermal collectors. ASHRAE Transactions, 109 PART 2, 487–500.
11. Clarke, B. G. (2018). The engineering properties of glacial tills. Geotechnical Research, 5(4), 262–277. https://doi.org/10.1680/jgere.18.00020
12. Delage, P. (2013). On the thermal impact on the excavation damaged zone around deep radioactive waste disposal. Journal of Rock Mechanics and Geotechnical Engineering, 5(3), 179–190. https://doi.org/10.1016/j.jrmge.2013.04.002
13. Evans, Reay, Riley, Mitchell, & Busby. (2006). Appraisal of underground energy storage potential in Northern Ireland.
14. Fortier, Allard, Lemieux, Therrien, Molson, & Fortier. (2011). Cartographie Des Depots Quateernaires Des Villages Nordiques De Whapmagoostui-Kuujjuarapik, Umijuaq, Salluit, Kuujjuaq.
15. Fortier, R., LeBlanc, A. M., & Yu, W. (2011). Impacts of permafrost degradation on a road embankment at Umiujaq in Nunavik (Quebec), Canada. Canadian Geotechnical Journal, 48(5), 720–740. https://doi.org/10.1139/t10-101
16. Gabrielsson, Bergdahl, & Moritz. (2000). Thermal energy storage in soils at temperatures reaching 90°c. Journal of Solar Energy Engineering, Transactions of the ASME, 122(1), 3–8. https://doi.org/10.1115/1.556272
17. Gabrielsson, Lehtmets, Moritz, & Bergdahl. (1997). Heat storage in soft clay. http://www.swedgeo.se/upload/publikationer/Rapporter/pdf/SGI-R53.pdf
18. Gagnon, & Allard. (2020). Geomorphological controls over carbon distribution in permafrost soils : the case of. 528(July), 509–528.
19. Giordano, Kanzari, Miranda, Dezayes, & Raymond. (2017). Shallow geothermal resource assessments for the northern community of Kuujjuaq, Québec, Canada. IGCP636 Annual Meeting, May 2018, 1–4.
20. Giordano, & Raymond. (2019). Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities. Applied Energy, 252(June), 113463. https://doi.org/10.1016/j.apenergy.2019.113463
21. Gray, J. T., Pilon, J., & Poitevin, J. (1988). A method to estimate active-layer thickness on the basis of correlations between terrain and climatic parameters as measured in northern Quebec. Canadian Geotechnical Journal, 25(3), 607–616. https://doi.org/10.1139/t88-067
22. Gunawan, Giordano, Jensson, Newson, & Raymond. (2020). Alternative heating systems for northern remote communities: Techno-economic analysis of ground-coupled heat pumps in Kuujjuaq, Nunavik, Canada. Renewable Energy, 147, 1540–1553. https://doi.org/10.1016/j.renene.2019.09.039
23. Han, Z., Vanapalli, S. K., & Kutlu, Z. N. (2016). Modeling Behavior of Friction Pile in Compacted Glacial Till. International Journal of Geomechanics, 16(6), 1–12. https://doi.org/10.1061/(asce)gm.1943-5622.0000659
24. Han, Zheng, Kong, Wang, Li, & Bai. (2008). Numerical simulation of solar assisted ground-source heat pump heating system with latent heat energy storage in severely cold area. Applied Thermal Engineering, 28(11–12), 1427–1436. https://doi.org/10.1016/j.applthermaleng.2007.09.013
25. Hillel, D. (2003). Soil Physics. Encyclopedia of Physical Science and Technology, 77–97. https://doi.org/10.1016/B0-12-227410-5/00936-4
26. Huang, B., & Sharma, J. S. (2008). A coupled consolidation shear model for the process of formation of glaciated soils. Canadian Geotechnical Journal, 45(2), 226–237. https://doi.org/10.1139/T07-092
27. Ibrahim, N. M., Rahim, N. L., Amat, R. C., Salehuddin, S., & Ariffin, N. A. (2012). Determination of Plasticity Index and Compression Index of Soil at Perlis. APCBEE Procedia, 4, 94–98. https://doi.org/10.1016/j.apcbee.2012.11.016
28. Işik, N. S. (2009). Estimation of swell index of fine grained soils using regression equations and artificial neural networks. Scientific Research and Essays, 4(10), 1047–1056.
29. Kaliakin, V. N. (2017). Example Problems Related to Compressibility and Settlement of Soils. In Soil Mechanics. https://doi.org/10.1016/b978-0-12-804491-9.00008-2
30. Kanzari, I. (2019). Évaluation Du Potentiel Des Pompes À Chaleur Géothermique Pour La Communauté Nordique De Kuujjuaq.
31. Klohn, E. J. (1965). The Elastic Properties of a Dense Glacial Till Deposit. Canadian Geotechnical Journal, 2(2), 116–128. https://doi.org/10.1139/t65-014
32. Lajeunesse, P. (2008). Early Holocene deglaciation of the eastern coast of Hudson Bay. 99, 341–352. https://doi.org/10.1016/j.geomorph.2007.11.012
33. Lanini, S., Delaleux, F., Py, X., Olivès, R., & Nguyen, D. (2014). Improvement of borehole thermal energy storage design based on experimental and modelling results. Energy and Buildings, 77, 393–400. https://doi.org/10.1016/j.enbuild.2014.03.056
34. Lehane, B. M., & Simpson, B. (2000). Modelling glacial till under triaxial conditions using a BRICK soil model. Canadian Geotechnical Journal, 37(5), 1078–1088. https://doi.org/10.1139/cgj-37-5-1078
35. Leroueil, S., Bihan, J. Le, Sebaihi, S., & Alicescu, V. (2002). Hydraulic conductivity of compacted tills from northern Quebec. 1049, 1039–1049. https://doi.org/10.1139/T02-062
36. Lewis, R. W., Majorana, C. E., & Schrefler, B. A. (1986). A coupled finite element model for the consolidation of nonisothermal elastoplastic porous media. Transport in Porous Media, 1(2), 155–178.
37. Liang, Y., Cao, L., Liu, J., & Sui, W. (2019). Numerical simulation of mechanical response of glacial tills under biaxial compression with the DEM. Bulletin of Engineering Geology and the Environment, 78(3), 1575–1588. https://doi.org/10.1007/s10064-018-1229-2
38. Long, M., & Menkiti, C. O. (2007). Geotechnical properties of Dublin Boulder Clay. Geotechnique, 57(7), 595–611. https://doi.org/10.1680/geot.2007.57.7.595
39. Mathews, W. H. (1974). Surface profiles of the laurentide ice sheet in its marginal areas. Journal of Glaciology, 13(67), 37–43. https://doi.org/10.3189/s0022143000023352
40. Miranda, Giordano, Kanzari, Raymond, & Dezayes. (2017). Shallow and deep geothermal resources assessment in northern communities of Québec : preliminary results from Kuujjuaq. September.
41. Miranda, M., Giorfano, N., Kanzari, I., Raymond, J., & Dezayes, C. (2018). TEMPERATURE-DEPTH PROFILES MEASURED IN THE INUIT COMMUNITY OF KUUJJUAQ , NORTHERN QUÉBEC , CANADA. January.
42. Moradi, A., Smits, K. M., Massey, J., Cihan, A., & McCartney, J. (2015). Impact of coupled heat transfer and water flow on soil borehole thermal energy storage (SBTES) systems: Experimental and modeling investigation. Geothermics, 57, 56–72. https://doi.org/10.1016/j.geothermics.2015.05.007
43. Pahud, D. (2000). Central solar heating plants with seasonal duct storage and short-term water storage: Design guidelines obtained by dynamic system simulations. Solar Energy, 69(6), 495–509. https://doi.org/10.1016/S0038-092X(00)00119-5
44. Pare, Lavallee, & Rosenberg. (1978). Frost Penetration Studies in Glacial Till on the James Bay Hydroelectric Complex. Canadian Geotechnical Journal, 15(4), 473–493. https://doi.org/10.1139/t78-052
45. Paré, Verma, Loiselle, & Pinzariu. (1983). Seepage through till foundations of dams of the Eastmain - Opinaca - La Grande diversion.
46. Penrod, E. B., & Prasanna, K. V. (1962). Design of a flat-plate collector for a solar earth heat pump. Solar Energy, 6(1), 9–22. https://doi.org/10.1016/0038-092X(62)90093-2
47. Powrie, W., & Li, E. S. F. (1991). Finite element analyses of an in situ wall propped at formation level. Geotechnique, 41(4), 499–514. https://doi.org/10.1680/geot.1991.41.4.499
48. Rad, F. M., & Fung, A. S. (2016). Solar community heating and cooling system with borehole thermal energy storage - Review of systems. Renewable and Sustainable Energy Reviews, 60, 1550–1561. https://doi.org/10.1016/j.rser.2016.03.025
49. Rad, F. M., Fung, A. S., & Rosen, M. A. (2017). An integrated model for designing a solar community heating system with borehole thermal storage. Energy for Sustainable Development, 36, 6–15. https://doi.org/10.1016/j.esd.2016.10.003
50. Reuss, M., Beck, M., & Müller, J. P. (1997). Design of a seasonal thermal energy storage in the ground. Solar Energy, 59(4-6–6 pt 4), 247–257. https://doi.org/10.1016/S0038-092X(97)00011-X
51. Roscoe, K. H., & Burland, J. B. (1968). Roscoe, Burland_1968_On the Generalised Stress-Strain Behaviour of Wet Clay.pdf.
52. Rosenberg, P., & Journeaux, N. L. (1978). Load bearing slurry trench wall supported by glacial till. Canadian Geotechnical Journal, 15(3), 430–434. https://doi.org/10.1139/t78-040
53. Sauer, E. K., & Christiansen, E. A. (1988). Preconsolidation pressures in intertill glaciolacustrine clay near Blaine Lake, Saskatchewan. Canadian Geotechnical Journal, 25(4), 831–838. https://doi.org/10.1139/t88-091
54. Sauer, E. K., Egeland, A. K., & Christiansen, E. A. (1993a). Compression characteristics and index properties of tills and intertill clays in southern Saskatchewan, Canada. Canadian Geotechnical Journal, 30(2), 257–275. https://doi.org/10.1139/t93-022
55. Sauer, E. K., Egeland, A. K., & Christiansen, E. A. (1993b). Preconsolidation of tills and intertill clays by glacial loading in southern Saskatchewan, Canada. Canadian Journal of Earth Sciences, 30(3), 420–433. https://doi.org/10.1139/e93-031
56. Shah, S. K., Aye, L., & Rismanchi, B. (2018). Seasonal thermal energy storage system for cold climate zones: A review of recent developments. Renewable and Sustainable Energy Reviews, 97(March), 38–49. https://doi.org/10.1016/j.rser.2018.08.025
57. Shaw, R. J., & Hendry, M. J. (1998). Hydrogeology of a thick clay till and Cretaceous clay sequence , Saskatchewan , Canada. 1052, 1041–1052.
58. Sibbitt, B., McClenahan, D., Djebbar, R., Thornton, J., Wong, B., Carriere, J., & Kokko, J. (2012). The performance of a high solar fraction seasonal storage district heating system - Five years of operation. Energy Procedia, 30, 856–865. https://doi.org/10.1016/j.egypro.2012.11.097
59. St-Amour, Clatworthy, & Manzari. (2017). Jet Grouting within Toronto’s Glacial Deposits, a Contractor’s Perspective. 354–364.
60. Sweet, M. L., & McLeskey, J. T. (2012). Numerical simulation of underground Seasonal Solar Thermal Energy Storage (SSTES) for a single family dwelling using TRNSYS. Solar Energy, 86(1), 289–300. https://doi.org/10.1016/j.solener.2011.10.002
61. Thomson, S., Martin, R. L., & Eisenstein, S. (1982). Soft zones in the glacial till in downtown Edmonton. Canadian Geotechnical Journal, 19(2), 175–180. https://doi.org/10.1139/t82-019
62. Trenter, N. . (1999). Engineering in glacial tills. CIRIA.
63. Watabe, Y., Leroueil, S., & Le Bihan, J.-P. (2000). Influence of compaction conditions on pore-size distribution and saturated hydraulic conductivity of a glacial till. Canadian Geotechnical Journal, 37(6), 1184–1194. http://www.nrc.ca/cgi-bin/cisti/journals/rp/rp2_abst_e?cgj_t00-053_37_ns_nf_cgj37-00
64. Winterwerp, J. C., & Van Kesteren, W. G. M. (2004). 8 - Mechanical Behaviour. In J. C. Winterwerp & W. G. M. van Kesteren (Eds.), Introduction to the Physics of Cohesive Sediment in the Marine Environment (Vol. 56, pp. 253–341). Elsevier. https://doi.org/https://doi.org/10.1016/S0070-4571(04)80009-8
65. Yang, H., Cui, P., & Fang, Z. (2010). Vertical-borehole ground-coupled heat pumps: A review of models and systems. Applied Energy, 87(1), 16–27. https://doi.org/10.1016/j.apenergy.2009.04.038
Repository Staff Only: item control page