Ibrahim, Mohamed ORCID: https://orcid.org/0000-0001-9689-0906 (2022) Enabling Millimeter Wave Communications for Use Cases of 5G and Beyond Networks. PhD thesis, Concordia University.
Preview |
Text (application/pdf)
11MBIbrahim_PhD_S2022.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
The wide bandwidth requirements of the fifth generation (5G) and beyond networks are driving the move to millimeter wave (mmWave) bands where it can provide a huge increase in the available bandwidth. Increasing the bandwidth is an effective way to improve the channel capacity with limited power. Moreover, the short wavelengths of such bands enable massive number of antennas to be integrated together in small areas. With such massive number of antennas, narrow beamwidth beams can be obtained which in turn can improve the security. Furthermore, the massive number of antennas can help in mitigating the severe path-loss at mmWave frequencies, and realize high data rate communication at reasonable distances. Nevertheless, one of the main bottlenecks of mmWave communications is the signal blockage. This is due to weak diffraction ability and severe penetration losses by many common building materials such as brick, and mortar as well as the losses due to human bodies. Thus, user mobility and/or small movements of obstacles and reflectors cause rapid channel gain variations which leads to unreliable communication links.
The harsh propagation environment at such high frequencies makes it hard to provide a reliable service, hence, maintaining connectivity is one key design challenge in mmWave networks. Relays represent a promising approach to improve mmWave connectivity where they can redirect the signal to avoid the obstacles existing in the propagation environment. However, routing in mmWave networks is known to be a very challenging problem due to the inherent propagation characteristics of mmWave frequencies. Furthermore, inflexible routing technique may worsen network performance and increase scheduling overhead. As such, designing an appropriate transmission routing technique for each service is a crucial issue in mmWave networks. Indeed, multiple factors must be taken into account in the routing process, such as guaranteeing the robustness of network connectivity and providing high data rates.
In this thesis, we propose an analytical framework to investigate the network reliability of mmWave relaying systems for multi-hop transmissions. We also propose a flexible routing technique for mmWave networks, namely the $n^{\rm th}$ best routing technique. The performance of the proposed routing technique is investigated using tools from stochastic geometry. The obtained results provide useful insights on adjusting the signal noise ratio (SNR) threshold for decode and forward (DF) relay according to the order of the best relay, blockage and relay densities in order to improve spectral efficiency. We also propose a novel mathematical framework to investigate the performance of two appropriate routing techniques for mmWave networks, namely minimum hop count (MHC) and nearest LoS relay to the destination with MHC (NLR-MHC) to support wide range of use cases for 5G and beyond networks. Analytical models are provided to evaluate the performance of the proposed techniques using tools from stochastic geometry. In doing so, we model the distribution of hop count using phase-type distribution, and then we use this distribution to derive analytical results for the coverage probability and spectral efficiency. Capitalizing on the derived results, we introduce a comprehensive study of the effects of different system parameters on the performance of multi-hop mmWave systems. These findings provide important insights for designing multi-hop mmWave networks with better performance.
Furthermore, we adapt the proposed relay selection technique for IoT devices in mmWave relaying systems to prolong the IoT device’s battery life. The obtained results reveal the trade-off between the network connectivity and the energy consumption of IoT devices. Lastly, we have exploited the enormous bandwidth available in the mmWave band to support reliable fronthaul links for cell-free (CF) massive multiple-input multiple-output (MIMO). We provide a comprehensive investigation of different system parameters on the uplink (UL) performance of mmWave fronthaul-based CF mMIMO systems. Results reveal that increasing the access point (AP) density beyond a certain limit would not achieve further improvement in the UL data rates. Also, the higher number of antennas per AP may even cause UL data rates degradation.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering |
---|---|
Item Type: | Thesis (PhD) |
Authors: | Ibrahim, Mohamed |
Institution: | Concordia University |
Degree Name: | Ph. D. |
Program: | Electrical and Computer Engineering |
Date: | 11 March 2022 |
Thesis Supervisor(s): | Hamouda, Walaa |
ID Code: | 990549 |
Deposited By: | Mohamed Ibrahim |
Deposited On: | 16 Jun 2022 14:51 |
Last Modified: | 16 Jun 2022 14:51 |
Repository Staff Only: item control page