Dayanandan, Arun ORCID: https://orcid.org/0000-0002-4254-2356 (2022) Effects of Elevated Predation Risk on Female Mate Selection and Maternal Effects in Trinidadian guppies. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
1MBDayanandan_MSc_S2022.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
Predation carries a number of non-consumptive i.e. non-lethal behavioural effects over daily, seasonal, yearly, and generational time scales through which population-level changes in innate antipredator behaviour can occur. Two proposed ways through which these changes may occur are by (1) shaping female mate selection decision-making behaviours to reduce the risk of a predation event, and (2) by improving offspring fitness through anticipatory maternal effects on offspring antipredator behaviour. While changes in antipredator behaviour under these conditions have been noted under acute and long-term risk, similar studies looking at populations reared under short-term elevated background predation risk are lacking. In this thesis, I looked at the impact of elevated predation risk over a period of several days on the reproductive behaviours of female Trinidadian guppies (Poecilia reticulata) and their offspring. In my first experiment, I exposed adult female guppies to intermediate and elevated ambient short-term predation risk and predicted that female guppies would reduce their preference for brightly coloured males and exhibit increased antipredator behaviours. I tested this by measuring the guppy’s latency to enter, sexual activity, time spent with the blue male, and sampling frequency. I found no evidence of intermediate and elevated ambient short-term predation risk affecting female mate preference nor antipredator behaviours. In the second experiment, I examined the impact of elevated maternal predation risk on the antipredator behaviour of Trinidadian guppy offspring. I did this by exposing pregnant female guppies to elevated predation risk and subsequently measuring the antipredator behaviours of their offspring. I predicted that offspring of female guppies under elevated predation risk would exhibit increased dispersal, exploratory behaviour, and neophobic predator-avoidance behaviour. I tested this by measuring offspring response to a novel odour, total distance travelled, mean velocity, number of darts, average acceleration of darts, and time spent paused. I found no evidence of elevated predation risk affecting offspring antipredator responses nor inducing neophobia. Overall, the results of the female mate selection experiment and the anticipatory maternal effects experiment did not provide evidence of elevated predation risk over short-term time frames altering reproductive behaviour in Trinidadian guppies. My results stand in contrast to similar research on wild fish populations and thus additional research is needed to understand the role of short-term predation risk on Trinidadian guppy reproductive behaviours.
Divisions: | Concordia University > Faculty of Arts and Science > Biology |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Dayanandan, Arun |
Institution: | Concordia University |
Degree Name: | M. Sc. |
Program: | Biology |
Date: | 2 April 2022 |
Thesis Supervisor(s): | Brown, Grant E. |
Keywords: | mate selection, maternal effect, Poecilia reticulata, predation, non-consumptive effect, neophobia, short-term |
ID Code: | 990560 |
Deposited By: | ARUN VINOD DAYANANDAN |
Deposited On: | 16 Jun 2022 14:34 |
Last Modified: | 16 Jun 2022 14:34 |
References:
Agrawal, A. A., Laforsch, C., & Tollrian, R. (1999). Transgenerational induction of defences in animals and plants. Nature, 401, 60–63Auld, H.L., Pusiak, R. J. P., Godin, J. G. J. (2016). Independent Mating Preferences for Male Body Size and Coloration in Female Trinidadian Guppies. Ethology, 122, 597–608
Beck B.B., Rapaport L. G., & Wilson A. C. (1994). Reintroduction of captive-born animals. In P. J. S. Olney, G. M. Mace, & A. T. C. Feister (Eds.). Creative Conservation: Interactive Management of Wild and Captive Animals (pp. 265–286). London, UK: Chapman and Hall
Bischof, R., & Zedrosser, A. (2009). The educated prey: consequences for exploitation and control. Behavioral Ecology, 20, 1228–1235
Bishop, T. D., & Brown, J. A. (1992). Threat-Sensitive Foraging by Larval Threespine Sticklebacks (Gasterosteus aculeatus). Behavioral Ecology and Sociobiology, 31, 133–138
Botero, C. A., & Rubenstein, D. R. (2012). Fluctuating Environments, Sexual Selection and the Evolution of Flexible Mate Choice in Birds. PLoS ONE, 7, e32311
Breden, F., Scott, M., & Michel, E. (1987). Genetic differentiation for antipredator behaviour in the Trinidad guppy, Poecilia reticulata. Animal Behaviour, 35, 618–620
Brooks R. (2002). Variation in female mate choice within guppy populations: population divergence, multiple ornaments and the maintenance of polymorphism. Genetica, 116, 343–358
Brooks, R., & Endler, J. A. (2001). Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. Evolution, 55, 1644–1655
Brown G. E., Adrian J. C. Jr., Patton, T., & Chivers, D. P. (2001) Fathead minnows learn to recognize predator odour when exposed to concentrations of artificial alarm pheromone below their behav- ioural-response threshold. Canadian Journal of Zoology, 79, 2239–2245
Brown, C., & Day, R. L. (2002). The future of stock enhancements: lessons for hatchery practice from conservation biology. Fish and Fisheries, 3, 79–94
Brown, C., & Laland, K. N. (2003). Social learning in fishes: a review. Fish and Fisheries, 4, 280–288
Brown, Douglas (2018). Tracker Video Analysis and Modeling Tool. Vers. 5.0.6. Computer software.
Brown, G. E., & Godin, J. G. J. (1999). Chemical alarm signals in wild Trinidadian guppies (Poecilia reticulata ). Canadian Journal of Zoology, 77, 562–570
Brown, G. E., Bongiorno, T., DiCapua, D. M., Ivan, L. I., & Roh, E. (2006b). Effects of group size on the threat-sensitive response to varying concentrations of chemical alarm cues by juvenile convict cichlids. Canadian Journal of Zoology, 84, 1–8
Brown, G. E., Chuard, P. J., Demers, E. E., Ramnarine, I. W., Chivers, D. P., & Ferrari, M. C. (2018). Personality and the retention of neophobic predator avoidance in wild caught Trinidadian guppies, Behaviour, 155(4), 265-278
Brown, G. E., Ferrari, M. C. O., & Chivers, D. P. (2011). Learning about Danger: Chemical Alarm Cues and Threat-Sensitive Assessment of Predation Risk by Fishes. In C. Brown, K. Laland, & J. Krause (Eds.), Fish Cognition and Behavior (pp. 59–80). Oxford, UK: Wiley-Blackwell
Brown, G. E., Ferrari, M. C. O., Elvidge, C. K., Ramnarine, I., & Chivers, D. P. (2013). Phenotypically plastic neophobia: a response to variable predation risk. Proceedings of the Royal Society B: Biological Sciences, 280, 20122712
Brown, G. E., Jackson, C. D., Malka, P. H., Jacques, É., & Couturier, M.-A. (2012). Disturbance cues in freshwater prey fishes: Does urea function as an ‘early warning cue’ in juvenile convict cichlids and rainbow trout? Current Zoology, 58, 250–259
Brown, G. E., Macnaughton, C. J., Elvidge, C. K., Ramnarine, I., & Godin, J. G. J. (2009). Provenance and threat-sensitive predator avoidance patterns in wild-caught Trinidadian guppies. Behavioral Ecology and Sociobiology, 63, 699–706
Brown, G. E., Rive, A. C., Ferrari, M. C. O., & Chivers, D. P. (2006a). The dynamic nature of antipredator behavior: prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behavioral Ecology and Sociobiology, 61, 9–16
Bryer, P., Mirza, R. S., & Chivers, D. P. (2001) Chemosensory assessment of predation risk by slimy sculpins: responses to alarm, disturbance, and predator cues. Journal of Chemical Ecology, 27, 533–546
Carthey, A. J. R., & Blumstein, D. T. (2018). Predicting Predator Recognition in a Changing World. Trends in Ecology & Evolution, 33, 106–115
Cattelan, S., Herbert-Read, J., Panizzon, P., Devigili, A., Griggio, M., Pilastro, A., & Morosinotto, C. (2020). Maternal predation risk increases offspring’s exploration but does not affect schooling behavior. Behavioral Ecology, 31, 1207–1217
Chaine, A. S., & Lyon, B. E. (2008). Adaptive Plasticity in Female Mate Choice Dampens Sexual Selection on Male Ornaments in the Lark Bunting. Science, 319, 459–462
Chin, E. H., Love, O. P., Verspoor, J. J., Williams, T. D., Rowley, K., & Burness, G. (2009). Juveniles exposed to embryonic corticosterone have enhanced flight performance. Proceedings of the Royal Society B: Biological Sciences, 276, 499–505
Chivers, D. P., & Smith, R. J. F. (1998). Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. Écoscience, 5, 338–352
Chivers, D. P., Brown, G. E., & Ferrari, M. C. O. (2012) The evolution of alarm substances and disturbance cues in aquatic animals In C. Brönmark & L. A. Hansson (Eds.). Chemical Ecology in Aquatic Systems. London, UK: Oxford University Press
Chivers, D. P., Mirza, R. S., Bryer, P. J., & Kiesecker, J. M. (2001). Threat-sensitive predator avoidance by slimy sculpins: understanding the importance of visual versus chemical information. Canadian Journal of Zoology, 79, 867–873
Cooke, S. J., Steinmetz, J., Degner, J. F., Grant, E. C., & Philipp, D. P. (2003). Metabolic fright responses of different-sized largemouth bass (Micropterus salmoides) to two avian predators show variations in nonlethal energetic costs. Canadian Journal of Zoology, 81, 699–709
Coslovsky, M., & Richner, H. (2011). Predation risk affects offspring growth via maternal effects: Maternal effects due to predation risk. Functional Ecology, 25, 878–888
Cote, J., Fogarty, S., Weinersmith, K., Brodin, T., & Sih, A. (2010). Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis). Proceedings of the Royal Society B: Biological Sciences, 277, 1571–1579
Crane, A. L., Bairos-Novak, K. R., Goldman, J. A., & Brown, G. E. (2022). Chemical disturbance cues in aquatic systems: a review and prospectus. Ecological Monographs, 92(1), e01487
Crane, A. L., Demers, E., Feyten, L. E. A., Ramnarine, I. W., Brown, G. E. (In Press). Exploratory decisions of Trinidadian guppies when uncertain about predation risk. Animal Cognition
Crane, A. L., Feyten, L. E. A., Ramnarine, I. W., & Brown, G. E. (2020). Temporally variable predation risk and fear retention in Trinidadian guppies. Behavioral Ecology, 31, 1084–1090
Davenport, J. M., King, A. B., Riley, A. W., Hampson, M. E., & Constantinides, P. (2020). The non‐consumptive effects of predators and personality on prey growth and mortality. Ethology, 126, 363–371
Dill, L. M. (1999). Male mating strategies under predation risk: do females call the shots? Behavioral Ecology, 10, 452–461
Elvidge, C. K., Chuard, P. J. C., & Brown, G. E. (2016). Local predation risk shapes spatial and foraging neophobia patterns in Trinidadian guppies. Current Zoology, 62, 457–462
Elvidge, C. K., Ramnarine, I., & Brown, G. E. (2014). Compensatory foraging in Trinidadian guppies: Effects of acute and chronic predation threats, Current Zoology, 60(3), 323-332
Endler, J. A., & Houde, A. E. (1995). Geographic variation in female preferences for male traits in poecilia reticulata. Evolution, 49, 456–468
Farr, J. A. 1989. Sexual selection and secondary differ- entiation in poeciliids: determinants of male mating success and the evolution of female mate choice. In G. K. Meffe & F. F. Snelson, Jr (Eds.). Ecology and Evolution of Livebearing Fishes (Poecillidae) (pp. 91–123). Englewood Cliffs, New Jersey: Prentice-Hall
Ferrari, M. C. O., & Chivers, D. P. (2006). Learning threat-sensitive predator avoidance: how do fathead minnows incorporate conflicting information? Animal Behaviour, 71, 19–26
Ferrari, M. C. O., Wisenden, B. D., & Chivers, D. P. (2010). Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Canadian Journal of Zoology, 88, 698–724
Fleming, I. A. (1994). Captive Breeding and the Conservation of Wild Salmon Populations. Conservation Biology, 8, 886–888
Foam, P. E., Mirza, R. S., Chivers, D. P., & Brown, G. E. (2005). Juvenile convict cichlids (Archocentrus nigrofasciatus) allocate foraging and antipredator behaviour in response to temporal variation in predation risk. Behaviour, 142, 129–144
Friard, O., & Gamba, M. (2016). BORIS: A free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods in Ecology and Evolution, 7, 1325–1330
Gagliano, M., & McCormick, M. I. (2009). Hormonally mediated maternal effects shape offspring survival potential in stressful environments. Oecologia, 160, 657–665
Gallucci, M. (2019). GAMLj: General analyses for linear models. [jamovi module].
Giesing, E. R., Suski, C. D., Warner, R. E., & Bell, A. M. (2011). Female sticklebacks transfer information via eggs: effects of maternal experience with predators on offspring. Proceedings of the Royal Society B: Biological Sciences, 278, 1753–1759
Gluckman, P. D., Hanson, M. A., Spencer, H. G., & Bateson, P. (2005). Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proceedings of the Royal Society B: Biological Sciences, 272, 671–677
Godin, J. G. J. (2003). Predator preference for brightly colored males in the guppy: a viability cost for a sexually selected trait. Behavioral Ecology, 14, 194–200
Godin, J. G. J., & Briggs, S. E. (1996). Female mate choice under predation risk in the guppy. Animal Behaviour, 51, 117–130
Godin, J. G. J., & Dugatkin, L. A. (1995). Variability and repeatability of female mating preference in the guppy. Animal Behaviour, 49, 1427–1433
Godin, J. G. J., & Smith, S. A. (1988). A fitness cost of foraging in the guppy. Nature, 333, 69–71
Goldman, J. A., Crane, A. L., Feyten, L. E. A., Collins, E., & Brown, G. E. (2021). Disturbance cue communication is shaped by emitter diet and receiver background risk in Trinidadian guppies. Current Zoology, zoab025
Gotceitas, V., & Brown, J. A. (1993). Substrate selection by juvenile Atlantic cod (Gadus morhua): effects of predation risk. Oecologia, 93, 31–37
Helfman, G. S., & Winkelman, D. L. (2010). Threat Sensitivity in Bicolor Damselfish: Effects of Sociality and Body Size. Ethology, 103, 369–383
Henderson, J. N., & Letcher, B. H. (2003). Predation on stocked Atlantic salmon (Salmo salar) fry. Canadian Journal of Fisheries and Aquatic Sciences, 60, 32–42
Henriksen, R., Rettenbacher, S., & Groothuis, T. G. G. (2011). Prenatal stress in birds: Pathways, effects, function and perspectives. Neuroscience & Biobehavioral Reviews, 35, 1484–1501
Hirvonen, H., Ranta, E., Piironen, J., Laurila, A., & Peuhkuri, N. (2000). Behavioural responses of naive Arctic charr young to chemical cues from salmonid and non-salmonid fish. Oikos, 88, 191–199
Hoset, K. S., Ferchaud, A.-L., Dufour, F., Mersch, D., Cote, J., & Le Galliard, J.-F. (2011). Natal dispersal correlates with behavioral traits that are not consistent across early life stages. Behavioral Ecology, 22, 176–183
Houde, A. E. (1993). Evolution by Sexual Selection: What Can Population Comparisons Tell Us? The American Naturalist, 141, 796–803
Houde, A. E., & Endler, J. A. (1990). Correlated Evolution of Female Mating Preferences and Male Color Patterns in the Guppy Poecilia reticulata. Science, 248, 1405–1408
Kelley, J. L., & Magurran, A. E. (2003). Learned predator recognition and antipredator responses in fishes. Fish and Fisheries, 4, 216–226
Kelley, J. L., & Magurran, A. E. (2003b). Effects of relaxed predation pressure on visual predator recognition in the guppy. Behavioral Ecology and Sociobiology, 54, 225–232
Kemp, D. J., Reznick, D. N., & Grether, G. F. (2008). Ornamental evolution in Trinidadian guppies (Poecilia reticulata): insights from sensory processing-based analyses of entire colour patterns. Biological Journal of the Linnean Society, 95(4), 734–7
Killen, S. S., & Brown, J. A. (2006). Energetic cost of reduced foraging under predation threat in newly hatched ocean pout. Marine Ecology Progress Series, 321, 255–266
Kirkpatrick, M., & Ryan, M. J. (1991). The evolution of mating preferences and the paradox of the lek. Nature, 350, 33–38
Kniel, N., Guenther, A., & Godin, J.G. J. (2020). Individual personality does not predict learning performance in a foraging context in female guppies, Poecilia reticulata. Animal Behaviour, 167, 3–12
Korsten, P., van Overveld, T., Adriaensen, F., & Matthysen, E. (2013). Genetic integration of local dispersal and exploratory behaviour in a wild bird. Nature Communications, 4, 2362
Lawrence, B. J., & Smith, R. J. F. (1989). Behavioral response of solitary fathead minnows,Pimephales promelas, to alarm substance. Journal of Chemical Ecology, 15, 209–219
Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. [R package].
Lepage, O., Øverli, Ø., Petersson, E., Järvi, T., & Winberg, S. (2000). Differential Stress Coping in Wild and Domesticated Sea Trout. Brain, Behavior and Evolution, 56, 259–268
Lima, S. L., & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology, 68, 619–640
Lima, S. L., & Steury, T. D. (2005) Perception of predation risk: the foundation of nonlethal predator-prey interacitons. In Barbosa P, Castellanos I (Eds.). Ecology of predatory-prey interactions (pp 166-188). Oxford, UK: Oxford University Press
Lima, S. L., Bednekoff, P. A. (1999) Temporal variation in danger drives antipredator behavior: the predator risk allocation hypothesis. The American Naturalist, 153, 649–659
Love, O. P., & Williams, T. D. (2008a). The Adaptive Value of Stress‐Induced Phenotypes: Effects of Maternally Derived Corticosterone on Sex‐Biased Investment, Cost of Reproduction, and Maternal Fitness. The American Naturalist, 172, E135–E149
Love, O. P., Chin, E. H., Wynne‐Edwards, K. E., & Williams, T. D. (2005). Stress Hormones: A Link between Maternal Condition and Sex‐Biased Reproductive Investment. The American Naturalist, 166, 751–766
Love, O. P., McGowan, P. O., & Sheriff, M. J. (2013). Maternal adversity and ecological stressors in natural populations: the role of stress axis programming in individuals, with implications for populations and communities. Functional Ecology, 27, 81–92
Love, O., & Williams, T. (2008b). Plasticity in the adrenocortical response of a free-living vertebrate: The role of pre- and post-natal developmental stress. Hormones and Behavior, 54, 496–505
Lundvall, D., Svanbäck, R., Persson, L., & Byström, P. (1999). Size-dependent predation in piscivores: interactions between predator foraging and prey avoidance abilities. Canadian Journal of Fisheries and Aquatic Sciences, 56, 1285–1292
Magnhagen, C. (1991). Predation risk as a cost of reproduction. Trends in Ecology & Evolution, 6, 183–186
Magurran, A. E. (2005) Evolutionary ecology: the Trinidadian guppy. Oxford, UK: Oxford University Press
Magurran, A. E. & Seghers, B. H. (1994) Sexual conflict as a consequence of ecology: evidence from guppy, Poecilia reticulata, populations in Trinidad. Proceedings of the Royal Society London Series B: Biological Sciences, 255, 31–36
Magurran, A. E., & Seghers, B. H. (1990). Risk Sensitive Courtship in the Guppy (Poecilia reticulata). Behaviour, 112, 194–201
Magurran, A. E., Irving, P. W., & Henderson, P. A. (1996) Is there a fish alarm pheromone? A wild study and critique. Proceedings of the Royal Society of London. Series B: Biological Sciences, 263, 1551–1556
Matthews, S. G., & Phillips, D. I. W. (2010). Transgenerational Inheritance of the Stress Response: A New Frontier in Stress Research. Endocrinology, 151, 7–13
McGhee, K. E., Barbosa, A. J., Bissell, K., Darby, N. A., & Foshee, S. (2021). Maternal stress during pregnancy affects activity, exploration and potential dispersal of daughters in an invasive fish. Animal Behaviour, 171, 41–50
McGhee, K. E., Pintor, L. M., Suhr, E. L., & Bell, A. M. (2012). Maternal exposure to predation risk decreases offspring antipredator behaviour and survival in threespined stickleback. Functional Ecology, 26, 932–940
McLean, I. G. (1998) Conservation and the ontogeny of behavior. In J. R. Clemmons, & R. Buchholz (Eds.). Behavioral approaches to conservation in the wild (pp. 132–156). Cambridge, UK: Cambridge University Press
Mettke-Hofmann, C. (2017). Neophobia. In J. Vonk, & T. Shackelford (Eds.). Encyclopedia of Animal Cognition and Behavior (pp. 1-8). New York City, NY: Springer International Publishing
Møller, A. P. (1994). Sexual Selection and the Barn Swallow. Oxford, UK: Oxford University Press
Monclús, R., Tiulim, J., & Blumstein, D. T. (2011). Older mothers follow conservative strategies under predator pressure: The adaptive role of maternal glucocorticoids in yellow-bellied marmots. Hormones and Behavior, 60, 660–665
O’Steen, S., Cullum, A. J., & Bennett, A. F. (2002). Rapid Evolution of Escape Ability in Trinidadian Guppies (Poecilia reticulata). Evolution, 56, 776–784
Peckarsky, B. L., Abrams, P. A., Bolnick, D. I., Dill, L. M., Grabowski, J. H., Luttbeg, B., Orrock, J. L., Peacor, S. D., Preisser, E. L., Schmitz, O. J., Trussell, G. C. (2008). Revisiting the classics: considering nonconsumptive effects in textbook examples of predator–prey interactions. Ecology, 89, 2416–2425
Pilakouta, N., & Alonzo, S. H. (2014). Predator exposure leads to a short-term reversal in female mate preferences in the green swordtail, Xiphophorus helleri. Behavioral Ecology, 25, 306–312
Pollock, M. S., Chivers, D. P., Mirza, R. S., & Wisenden, B. D. (2003). Fathead Minnows, Pimephales promelas, Learn to Recognize Chemical Alarm Cues of Introduced Brook Stickleback, Culaea inconstans. Environmental Biology of Fishes, 66, 313–319
Pomiankowski, A. (1987). The costs of choice in sexual selection. Journal of Theoretical Biology, 128, 195–218
Pomiankowski, A. (1988). The evolution of female mate preferences for male genetic quality. Oxford Surveys in Evolutionary Biology, 5, 136–184
R Core Team (2019). R: A Language and environment for statistical computing. (Version 3.6) [Computer software]
Riechert, S.E. (2005) Patterns of inheritance of traits associated with predator foraging behavior. In P. Barbosa & I. Castellanos (Eds.). Ecology of Predator–Prey Interactions (pp. 55–76). Oxford, UK: Oxford University Press
Rogan, M. T., Stäubli, U. V., & LeDoux, J. E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature, 390, 604–607
Schoech, S. J., Rensel, M. A., & Heiss, R. S. (2011). Short- and long-term effects of developmental corticosterone exposure on avian physiology, behavioral phenotype, cognition, and fitness: A review. Current Zoology, 57, 514–530
Sheriff, M. J., & Love, O. P. (2013). Determining the adaptive potential of maternal stress. Ecology Letters, 16, 271–280
Sheriff, M. J., Bell, A., Boonstra, R., Dantzer, B., Lavergne, S. G., McGhee, K. E., MacLeod, K. J., Winandy, L., Zimmer, C., Love, O. P. (2017). Integrating Ecological and Evolutionary Context in the Study of Maternal Stress. Integrative and Comparative Biology, 57, 437–449
Sheriff, M. J., Krebs, C. J., & Boonstra, R. (2009). The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. Journal of Animal Ecology, 78, 1249–1258
Shine, R., & Downes, S. J. (1999). Can pregnant lizards adjust their offspring phenotypes to environmental conditions? Oecologia, 119, 1–8
Shively, R. S., Poe, T. P., & Sauter, S. T. (1996). Feeding Response by Northern Squawfish to a Hatchery Release of Juvenile Salmonids in the Clearwater River, Idaho. Transactions of the American Fisheries Society, 125, 230–236
Sih, A. (1992). Prey Uncertainty and the Balancing of Antipredator and Feeding Needs. The American Naturalist, 139, 1052–1069
Sih, A. (1994). Predation risk and the evolutionary ecology of reproductive behaviour. Journal of Fish Biology, 45, 111–130
Sih, A., Ziemba, R., & Harding, K. C. (2000). New insights on how temporal variation in predation risk shapes prey behavior. Trends in Ecology & Evolution, 15, 3–4
Singmann, H. (2018). afex: Analysis of Factorial Experiments. [R package]
Snyder, N. F. R., Derrickson, S. R., Beissinger, S. R., Wiley, J. W., Smith, T. B., Toone, W. D., & Miller, B. (1996). Limitations of Captive Breeding in Endangered Species Recovery. Conservation Biology, 10, 338–348
Stoner, G., & Breden, F. (1988). Phenotypic Differentiation in Female Preference Related to Geographic Variation in Male Predation Risk in the Trinidad Guppy (Poecilia reticulata). Behavioral Ecology and Sociobiology, 22, 285–291
Storm, J. J., & Lima, S. L. (2010). Mothers Forewarn Offspring about Predators: A Transgenerational Maternal Effect on Behavior. The American Naturalist, 175, 382–390
The jamovi project (2020). jamovi. (Version 1.2) [Computer Software]
Uller, T. (2008). Developmental plasticity and the evolution of parental effects. Trends in Ecology & Evolution, 23, 432–438
Vainikka, A., Jokelainen, T., Kortet, R., & Ylonen, H. (2005). Predation risk allocation or direct vigilance response in the predator interaction between perch (Perca fluviatilis L.) and pike (Esox lucius L.)? Ecology of Freshwater Fish, 14, 225–232
Vavrek, M. A., & Brown, G. E. (2009). Threat-Sensitive Responses to Disturbance Cues in Juvenile Convict Cichlids and Rainbow Trout. Annales Zoologici Fennici, 46, 171–180
Vavrek, M. A., Elvidge, C. K., DeCaire, R., Belland, B., Jackson, C. D., & Brown, G. E. (2008). Disturbance cues in freshwater prey fishes: do juvenile convict cichlids and rainbow trout respond to ammonium as an ‘early warning’ signal? Chemoecology, 18, 255–261
Vilhunen, S., & Hirvonen, H. (2003). Innate Antipredator Responses of Arctic Charr (Salvelinus alpinus) Depend on Predator Species and their Diet. Behavioral Ecology and Sociobiology, 55, 1–10
Wallace M. P. (2000) Retaining natural behaviour in captivity for re- introduction. In L. M. Gosling, W. J. Sutherland (Eds.). Behaviour and conservation (pp 300–314). Cambridge, UK: Cambridge University Press
Walling, C. A., Royle, N. J., Lindström, J., & Metcalfe, N. B. (2008). Experience-induced preference for short-sworded males in the green swordtail, Xiphophorus helleri. Animal Behaviour, 76, 271–276
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., dymov, S., Szyf, M., Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847–854
Weinstock, M. (2008). The long-term behavioural consequences of prenatal stress. Neuroscience & Biobehavioral Reviews, 32, 1073–1086
Welton, N. J., McNamara, J. M., & Houston, A. I. (2003). Assessing predation risk: optimal behaviour and rules of thumb. Theoretical Population Biology, 64, 417–430
Werner, E. E., & Peacor, S. D. (2003). A review of trait-mediated indirect interactions in ecological communities. Ecology, 84, 1083–1100
Wisenden BD, & Chivers DP (2006) The role of public chemical information in antipredator behaviour. In F. Ladich, S. P. Colins, P. Moller, B. G. Kapoor (Eds.). Fish chemoreception (pp 259-278). Enfield, USA: Science Publisher
Zanette, L. Y., Hobbs, E. C., Witterick, L. E., MacDougall-Shackleton, S. A., & Clinchy, M. (2019). Predator-induced fear causes PTSD-like changes in the brains and behaviour of wild animals. Scientific Reports, 9, 11474
Zimmer, C., Boogert, N. J., & Spencer, K. A. (2013). Developmental programming: Cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood. Hormones and Behavior, 64, 494–500
Zimmer, C., Larriva, M., Boogert, N. J., & Spencer, K. A. (2017). Transgenerational transmission of a stress-coping phenotype programmed by early-life stress in the Japanese quail. Scientific Reports, 7, 46125
Repository Staff Only: item control page