Login | Register

Numerical study of the effect of instability on detonation dynamics and critical phenomena

Title:

Numerical study of the effect of instability on detonation dynamics and critical phenomena

Yan, Chian ORCID: https://orcid.org/0000-0002-3297-7428 (2023) Numerical study of the effect of instability on detonation dynamics and critical phenomena. PhD thesis, Concordia University.

[thumbnail of Yan_PhD_S2023.pdf]
Text (application/pdf)
Yan_PhD_S2023.pdf - Accepted Version
Restricted to Repository staff only until 11 April 2025.
Available under License Spectrum Terms of Access.
31MB

Abstract

Detonation is a supersonic, self-sustained, combustion-driven wave. Real detonation wavefronts are inherently unstable, and their structures are unsteady with different levels of instabilities embedded at the frontal structure. To elucidate the effects of instabilities on various dynamics of the detonation wave, such as its initiation, failure, and propagation mechanism, this thesis research proposes a series of numerical investigations by perturbing the unstable detonation structure from mixture inhomogeneity, boundary conditions, and an external obstacle to increase flow instability artificially. Through these studies of different scenarios, the significance of the instabilities of the unstable detonation front structure on the detonation dynamics and critical phenomena would be conclusively demonstrated, and the results contribute to a better understanding of gaseous detonation behaviour.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering
Item Type:Thesis (PhD)
Authors:Yan, Chian
Institution:Concordia University
Degree Name:Ph. D.
Program:Aerospace
Date:11 April 2023
Thesis Supervisor(s):Ng, Hoi Dick
Keywords:Detonation; instabilities; detonation structure; dynamics; critical phenomena; CFD
ID Code:992046
Deposited By: Chian Yan
Deposited On:21 Jun 2023 14:20
Last Modified:21 Jun 2023 14:20

References:

Adelman, H., Cambier, J., Menees, G., and Balboni, J. (1988). Analytical and experimental validation of the oblique detonation wave engine concept. In 26th Aerospace Sciences Meeting, Reno, NV, USA, AIAA 88–0097.
Alexander, D. and Sislian, J. (2008). A computational study of the propulsive characteristics of a shcramjet engine. J. Propul. Power, 24:34–44.
Anand, V. and Gutmark, E. (2019). Rotating detonation combustors and their similarities to rocket instabilities. Prog. Energy Combust. Sci., 73:182–234.
Anand, V., St George, A., Driscoll, R., and Gutmark, E. (2016). Longitudinal pulsed detonation instability in a rotating detonation combustor. Exp. Therm. Fluid Sci., 77:212–225.
Arienti, M. and Shepherd, J. (2005). A numerical study of detonation diffraction. J. Fluid Mech., 529:117–146.
Ashford, S. and Emanuel, G. (1994). Wave angle for oblique detonation waves. Shock Waves, 3:327–329.
Austin, J., Pintgen, F., and Shepherd, J. (2005). Reaction zones in highly unstable detonations. Proc. Combust. Inst., 30:1849–1857.
Betelin, V., Nikitin, V., and Mikhalchenko, E. (2020). 3D numerical modeling of a cylindrical RDE with an inner body extending out of the nozzle. Acta Astronaut., 176:628–646.
Bourlioux, A. (1991). Numerical Study of Unstable Detonations. PhD thesis, Princeton University, Princeton, NJ, USA.
Bourlioux, A. and Majda, A. (1992). Theoretical and numerical structure for unstable twodimensional detonations. Combust. Flame, 90:211–229.
Braun, J., Saracoglu, B., and Paniagua, G. (2017). Unsteady performance of rotating detonation engines with different exhaust nozzles. J. Propuls. Power, 33:121–130.
Bykovskii, F. and Zhdan, S. (2015). Current status of research of continuous detonation in fuel-air mixture (review). Combust. Expl. Shock Waves, 51:21–35.
Cambier, J. L., Adelman, H., and Menees, G. P. (1990). Numerical simulations of an oblique detonation wave engine. J. Propul. Power, 6:315–323.
Chan, J., Sislian, J., and Alexander, D. (2010). Numerically simulated comparative performance of a scramjet and shcramjet at Mach 11. J. Propul. Power, 26:1125–1134.
Chapman, D. L. (1899). On the rate of explosion in gases. Lond. Edinb. Dublin philos. mag., 47(284):90–104.
Choi, J. Y., Kim, D. W., Jeung, I. S., Ma, F., and Yang, V. (2007). Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc. Combust. Inst., 31:2473–2480.
Ciccarelli, G. and Cross, M. (2016). On the propagation mechanism of a detonation wave in a round tube with orifice plates. Shock Waves, 26 (5):587–597.
Ciccarelli, G. and Dorofeev, S. (2008). Flame acceleration and transition to detonation in a duct. Prog. Energy Comb. Sci., 34:449–550.
Ciccarelli, G., Wang, Z., Lu, J., and Cross, M. (2017). Effect of orifice plate spacing on detonation propagation. J. Loss Prev. Process Ind., 49:739–744.
Courant, R.and Friedrichs, K. (1948). Supersonic Flows and Shock Waves. Interscience, New York, USA.
Deng, L., Ma, H., Xu, C., Zhou, C., and Liu, X. (2017). Investigation on the propagation process of rotating detonation wave. Acta Astronaut., 139:278–287.
Desbordes, D., Guerraud, C., Hamada, L., and Presles, H. N. (1993). Failure of classical dynamic parameters relationships in highly regular cellular detonation systems. Prog. Astronaut. Aeronaut., 153:347–359.
Doring, W. (1943).¨ Uber detonationsvorgang in gasen.¨ Annalen der Physik, 43 (6–7):421–436.
Edwards, D. H., Thomas, G. O., and Nettleton, M. A. (1979). The diffraction of a planar detonation wave at an abrupt area change. J. Fluid Mech., 95:79–96.
Emanuel, G. and Tuckness, D. G. (2004). Steady, oblique, detonation waves. Shock Waves, 13:445– 451.
Erpenbeck, J. (1962). Stability of steady-state equilibrium detonations. Phys. Fluids, 5(5):604–614. Erpenbeck, J. (1964). Stability of idealized one-reaction detonations. Phys. Fluids, 7(5):684–696.
Fang, Y., Zhang, Z., Hu, Z., and Deng, X. (2019). Initiation of oblique detonation waves induced by a blunt wedge in stoichiometric hydrogen-air mixtures. Aero. Sci. Tech., 92:676–684.
Fedkiw, R. P., Aslam, T., Merriman, B., and Osher, S. (1999). A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys., 152 (2):457–492.
Fickett, W. and Wood, W. (1966). Flow calculations for pulsating one-dimensional detonations. Phys. Fluids, 9 (5):903–916.
Fujiwara, T. and Reddy, K. (1989). Propagation mechanism of detonation – three dimensional phenomena. Mem. Fac. Eng. Nagoya Univ., 41:1–18.
Gallier, S., Le-Palud, F., Pintgen, F., Mevel, R., and Shepherd, J. E. (2017). Detonation wave diffraction in H2–O2–Ar mixtures. Proc. Combust. Inst., 36:2781–2789.
Gelfand, B. E., Silnikov, M. V., Medvedev, S. P., and Khomik, S. V. (2012). Fast deflagration and quasi-detonation, Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Springer, Berlin, Heidelberg.
Gross, R. A. (1963). Oblique detonation waves. AIAA J., 1:1225–1227.
Gui, M., Fan, B., and Dong, G. (2011). Periodic oscillation and fine structure of wedge-induced oblique detonation waves. Acta Mech. Sin., 27:922–928.
Harris, M. (2007). Optimizing parallel reduction in cuda. Technical report, NVIDIA Developer Technology.
He, L. and Lee, J. (1995). The dynamical limit of one-dimensional detonations. Phys. Fluids, 7 (5):1151–1158.
Hishida, M., Fujiwara, T., and Wolanski, P. (2009). Fundamentals of rotating detonations. Shock Waves, 19:1–10.
Iwata, K., Nakaya, S., and Tsue, M. (2017). Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture. Proc. Combust. Inst., 36:2761–2769.
Jones, D., Kemister, G., Oran, E., and Sichel, M. (1996). The influence of cellular structure on detonation transmission. Shock Waves, 6:119–129.
Jones, D. A., Kemister, G., Tonello, N., Oran, E., and Sichel, M. (2000). Numerical simulation of detonation reignition in H2–O2 mixtures in area expansions. Shock Waves, 10:33–41.
Jouguet, J. C. E. (1905). Sur la propagation des reactions chimiques dans les gaz. Journal de Mathematiques Pures et Appliquees, 1:347–425.
Jourdaine, N., Tsuboi, N., Ozawa, K., Kojima, T., and Koichi Hayashi, A. (2018). Threedimensional numerical thrust performance analysis of hydrogen fuel mixture rotating detonation engine with aerospike nozzle. Proc. Combust. Inst., 37(3):3443–3451.
Ju, Y., Masuya, G., and Sasoh, A. (1998). Numerical and theoretical studies on detonation initiation by a supersonic projectile. Proc. Symp. (Int.) on Combust., 27(2):2225–2231.
Kailasanath, K. (2003). Recent developments in the research on pulse detonation engines. AIAA J.,
41 (2):145–159.
Kailasanath, K. (2017). Recent developments in the research on rotating-detonation-wave engines. In 55th AIAA aerospace sciences meeting, Grapevine, TX, USA, AIAA 2017-0784, Grapevine, TX, USA, AIAA 2017-0784.
Kailasanath, K., Oran, E., Boris, J., and Young, T. (1985). Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Combust. Flame, 61:199–209.
Kaneshige, M. and Shepherd, J. (1996). Oblique detonation stabilized on a hypervelocity projectile. Proc. Symp. (Int.) on Combust., 26:3015–3022.
Kaneshige, M. and Shepherd., J. E. (1997). Detonation Database. Technical report fm97-8, GALCIT.
Kasahara, J., Fujiwara, T., Endo, T., and Arai, T. (2001). Chapman-Jouguet oblique detonation structure around hypersonic projectiles. AIAA J., 39:1553–1561.
Katta, V., Cho, K., Hoke, J., Codoni, J., Schauer, F., and Roquemore, W. (2019). Effect of increasing channel width on the structure of rotating detonation wave. Proc. Combust. Inst., 37:3575–3583.
Kawasaki, A. and Kasahara, J. (2020). A novel characteristic length of detonation relevant to supercritical diffraction. Shock Waves, 30:1–12.
Kellenberger, M. and Ciccarelli, G. (2020). Three-dimensional behavior of quasi-detonation. Combust. Flame, 215:145–156.
Knystautas, R., Lee, J. H. S., and Guirao, C. (1982). The critical tube diameter for detonation failure in hydrocarbon-air mixtures. Combust. Flame, 48:63–83.
Lee, H. and Stewart, D. (1990). Calculation of linear detonation instability: one-dimensional instability of planar detonations. J. Fluid Mech., 216:109–132.
Lee, J. (1997). Initiation of detonation by a hypervelocity projectile. Prog. Astronaut. Aeronaut., 173:293–310.
Lee, J. H. S. (1984). Dynamic parameters of gaseous detonations. Annu. Rev. Fluid Mech., 16:311–336.
Lee, J. H. S. (1996). On the critical tube diameter. In: Bowen, J. (ed.) Dynamics of Exothermicity, p. 321. Gordon and Breach, Amsterdam.
Lee, J. H. S. (2008). The Detonation Phenomenon. Cambridge University Press, Cambridge, UK.
Lefebvre, M. and Oran, E. (1995). Analysis of the shock structures in a regular detonation. Shock Waves, 4:277–283.
Lehr, H. (1972). Experiments on shock-induced combustion. Acta Astronaut., 17:589–597.
Li, C., Kailasanath, K., and Oran, E. S. (1994). Detonation structures behind oblique shocks. Phys. Fluids, 6:1600–1611.
Li, C. P. and Kailasanath, K. (2000). Detonation transmission and transition in channels of different sizes. Proc. Combust. Inst., 28:603–609.
Li, J., Ning, J., Kiyanda, C. B., and Ng, H. D. (2016). Numerical simulation of cellular detonations diffraction in stable gaseous mixtures. Propul. Power Res., 5 (3):177–183.
Li, J., Zhao, Z. W., Kazakov, A., and Dryer, F. L. (2004). An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet., 36 (10):566–575.
Liu, Y., Chen, Y., and Xia, Z.J. anb Wang, J. (2020). Numerical study of the reverse-rotating waves in rotating detonation engine with a hollow combustor. Acta Astronaut., 170:421–430.
Liu, Y., Lee, J. H. S., Tan, H., and Ng, H. D. (2021). Investigation of near-limit detonation propagation in a tube with helical spiral. Fuel, 286 (2):119384.
Liu, Y., Liu, Y., Wu, D., and Wang, J. (2016). Structure of an oblique detonation wave induced by a wedge. Shock Waves, 26:161–168.
Liu, Y., Zhou, W., Yang, Y., Liu, Z., and Wang, J. (2018). Numerical study on the instabilities in H2air rotating detonation engines numerical study on the instabilities in H2-air rotating detonation engines. Phys. Fluids, 30(4):046106.
Lu, F. and Braun, E. (2014). Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts. J. Propuls. Power, 30(5):1125–1142.
Ma, J., Luan, M., Xia, Z., Wang, J., Zhang, S., Yao, S., and Wang, B. (2020). Recent progress, development trends, and consideration of continuous detonation engines. AIAA J., 58(12):4976– 5035.
Maeda, S., Kasahara, J., and Matsuo, A. (2012). Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation. Combust. Flame, 159(2):887–896.
Matsui, H. and Lee, J. H. S. (1979). On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures. Proc. Combust. Inst., 17:1269–1280.
McVey, J. and Toong, T. (1971). Mechanism of instabilities of exothermic hypersonic blunt-body flows. Combust. Sci. Tech., 3:63–76.
Mehrjoo, N., Gao, Y., Kiyanda, C. B., Ng, H. D., and Lee, J. H. S. (2015). Effects of porous walled tubes on detonation transmission into unconfined space. Proc. Combust. Inst., 35 (2):1981–1987.
Mehrjoo, N., Zhang, B., Portaro, R., Ng, H. D., and Lee, J. H. S. (2014). Response of critical tube diameter phenomenon to small perturbations for gaseous detonations. Shock Waves, 24 (2):219– 229.
Meng, Q., Zhao, N., Zheng, H., and Yang, J. (2018). Numerical investigation of the effect of inlet mass flow rates on H2/air non-premixed rotating detonation wave. Int. J. Hydrog. Energy, 43:13618–13631.
Miao, S., Zhou, J., Liu, S., and Cai, X. (2018). Formation mechanisms and characteristics of transition patterns in oblique detonations. Acta Astronaut., 142:121–129.
Mitrofanov, V. V. and Soloukhin, R. I. (1965). The diffraction of multi-front detonation waves. Sov. Phys. Dokl., 9 (12):1055–1058.
Moen, I., Sulmistras, A., Thomas, G. O., Bjerketvedt, D., and Thibault, P. A. (1983). Influence of cellular regularity on the behavior of gaseous detonations. Prog. Astronaut. Aeronaut., 106:220– 243.
Morgan, G. (2013). The Euler Equations with a Single-step Arrhenius Reaction. University of Cambridge, Cambridge, UK.
Morris, C., Kamel, M., and Hanson, R. (1998). Shock-induced combustion in high-speed wedge flows. Proc. Combust. Inst., 27:2157–2164.
Nagura, Y., Kasahara, J., Sugiyama, Y., and Matsuo, A. (2013). Comprehensive visualization of detonation diffraction structures and sizes in unstable and stable mixtures. Proc. Combust. Inst., 34:1949–1956.
Nettleton, M. (2002). Recent work on gaseous detonations. Shock Waves, 12:3–12.
Ng, H. and Lee, J. (2008). Comments on explosion problems for hydrogen safety. J. Loss Prevention Proc. Ind., 21(2):136–146.
Ng, H. D., Radulescu, M. I., Higgins, A. J., Nikiforakis, N., and Lee, J. H. S. (2005). Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chainbranching kinetics. Combust. Theor. Model, 9 (3):385–401.
Ng, H. D. and Zhang, F. (2012). Detonation Instability, chapter 3. Springer-Verlag, Berlin, Heidelberg.
Ning, J., Chen, D., and Li, J. (2020). Numerical studies on propagation mechanisms of gaseous detonations in the inhomogeneous medium. Applied Sci., 10:4585.
Oppenheim, A. (1985). Dynamic features of combustion. Philos. Trans. Royal Soc. A, 315:471–508.
Oran, E., Kailasanath, K., and Guirguis, R. (1988). Numerical simulations of the development and structure of detonations. Prog. Astronaut. Aeronaut., 114:155–169.
Oran, E., Young, T., Boris, J., Picone, J., and Edwards, D. (1982). A study of detonation structure: The formation of unreacted gas pockets. Proc. Combust. Inst., 19:573–582.
Palaniswamy, S., Akdag, V., Peroomian, O., and Chakravarthy, S. (2018). Comparison between ideal and slot injection in a rotating detonation engine. Combust. Sci. Technol., 190:557–578.
Papalexandris, M. (2000). A numerical study of wedge-induced detonations. Combust. Flame, 120:526–538.
Pintgen, F., Eckett, C. A., Austin, J. M., and Shepherd, J. E. (2003). Direct observations of reaction zone structure in propagating detonations. Combust. Flame, 133 (3):211–229.
Pintgen, F. and Shepherd, J. E. (2009). Detonation diffraction in gases. Combust. Flame, 156 (3):665–677.
Pintgen, F. P. (2005). Detonation Diffraction in Mixtures with Various Degrees of Instability. PhD thesis, California Institute of Technology, CA, USA.
Pratt, D., Humphrey, J., and Glenn, D. (1991). Morphology of standing oblique detonation waves. J. Propul. Power, 7:837–845.
Qin, Q. and Zhang, X. (2018). A novel method for trigger location control of the oblique detonation wave by a modified wedge. Combust. Flame, 197:65–77.
Qin, Q. and Zhang, X. (2020). Study on the initiation characteristics of the oblique detonation wave by a co-flow hot jet. Acta Astronaut., 177:86–95.
Radulescu, M. (2018). A detonation paradox: Why inviscid detonation simulations predict the incorrect trend for the role of instability in gaseous cellular detonations? Combust. Flame, 195:151–162.
Radulescu, M. and Maxwell, B. (2011). The mechanism of detonation attenuation by a porous medium and its subsequent re-initiation. J. Fluid Mech., 667:96–134.
Radulescu, M. I. (2003). The Propagation and Failure Mechanism of Gaseous Detonations: Experiments in Porous-walled Tubes. PhD thesis, McGill University, QC, Canada.
Radulescu, M. I. and Lee, J. H. S. (2002). The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame, 131 (1-2):29–46.
Rainsford, G., Aulakh, D. J. S., and Ciccarelli, G. (2018). Visualization of detonation propagation in a round tube equipped with repeating orifice plates. Combust. Flame, 198:205–211.
Rankin, B., Fotia, M., Naples, A., Stevens, C., Hoke, J., and Kaemming, T. (2017). Overview of performance, application, and analysis of rotating detonation engine technologies. J. Propul. Power, 33:131–143.
Ree, F. H. (1984). A statistical mechanical theory of chemically reacting multiphase mixtures: Application to the detonation properties of petn. J. Chem. Phys., 81:1151–1158.
Ren, T., Yan, Y., Zhao, H., Lee, J. H. S., and Ng, H. D. (2020). Propagation of near-limit gaseous detonations in rough-walled tubes. Shock Waves, 30:769–780.
Ren, T., Yan, Y., Zhao, H., Lee, J. H. S., Ng, H. D., Zhang, Q., and Shang, C. (2021). Velocity fluctuation and cellular structure of near-limit detonations in rough tubes. Fuel, 289:119909.
Ren, Z., Wang, B., Xiang, G., and Zheng, L. (2018). Effect of the multiphase composition in a premixed fuel–air stream on wedge-induced oblique detonation stabilisation. J. Fluid Mech., 846:411–427.
Rosato, D. A., Thornton, M., Sosa, J., Bechman, C., Goodwin, G. B., and Ahmed, K. A. (2021).
Stabilized detonation for hypersonic propulsion. Proc. Natl. Acad. Sci., 118(20):e2102244118.
Roy, G. D., Frolov, S. M., Borisov, A. A., and Netzer, D. W. (2004). Pulse detonation propulsion: challenges, current status, and future perspective. Progr. Energy Combust. Sci., 30:545–672.
Schauer, F., Stutrud, J., and Bradley, R. (2001). Detonation initiation studies and performance results for pulsed detonation engine applications. In 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, AIAA 2001-1129.
Schwer, D. and Kailasanath, K. (2011a). Effect of inlet on fill region and performance of rotating detonation engines. In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, CA, USA AIAA 2011-6044.
Schwer, D. and Kailasanath, K. (2011b). Numerical study of the effects of engine size on rotating detonation engines. In 49th AIAA aerospace sciences meeting, Orlando, FL, USA, AIAA 2011-581.
Schwer, D. and Kailasanath, K. (2013). Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels. Proc. Combust. Inst., 34:1991–1998.
Shao, Y., Liu, M., and Wang, J. (2010). Numerical investigation of rotating detonation engine propulsive performance. Combust. Sci. Technol., 182:1586–1597.
Sharpe, G. (1997). Linear stability of idealized detonations. Proc. R. Soc. Lond. A., 453:2603–2625.
Sharpe, G. and Falle, S. (2000). Numerical simulations of pulsating detonations: I. non-linear stability of steady detonations. Combust. Theory. Model., 4:557–574.
Shepherd, J. (2009). Detonation in gases. Proc. Combust. Inst., 32(1):83–98.
Shi, L., Uy, K. C. K., and Wen, C. Y. (2020). The re-initiation mechanism of detonation diffraction in a weakly unstable gaseous mixture. J. Fluid Mech., 895:A24.
Short, M. and Stewart, D. (1998). Cellular detonation stability. part 1. a normal-mode linear analysis. J. Fluid Mech., 368(10):229–262.
Smirnov, N., Betelin, V., Nikitin, V., Stamov, L., and Altoukhov, D. (2015). Accumulation of errors in numerical simulations of chemically reacting gas dynamics. Acta Astronaut., 117:338–355.
Smirnov, N., Betelin, V., Shagaliev, R., Nikitin, V., Belyakov, I., Deryuguin, Y., Aksenov, S., and Korchazhkin, D. (2014). Hydrogen fuel rocket engines simulation using logos code. Int. J. Hydrog. Energy, 39(20):10748–10756.
Smirnov, N., Nikitin, V., Stamov, L., Mikhalchenko, E., and Tyurenkova, V. (2018). Rotating detonation in a ramjet engine three-dimensional modeling. Aero. Sci. Tech., 81:213–224.
Smirnov, N., Nikitin, V., Stamov, L., Mikhalchenko, E., and Tyurenkova, V. (2019). Threedimensional modeling of rotating detonation in a ramjet engine. Acta Astronaut., 163:168–176.
Sochet, I., Lamy, T., Brossard, J., Vaglio, C., and Cayzac, R. (1999). Critical tube diameter for detonation transmission and critical initiation energy of spherical detonation. Shock Waves, 9:113–123.
Starr, A., Lee, J. H. S., and Ng, H. D. (2015). Detonation limits in rough walled tubes. Proc. Combust. Inst., 35 (2):1989–1996.
Strehlow, R. (1969). The nature of transverse waves in detonations. Acta Astronaut., 5:539–548.
Strehlow, R., Liangminas, R., Watson, R., and Eyman, J. (1967). Transverse wave structure in detonations. Proc. Symp. (Int.) on Combust., 11:683–692.
Sun, J., Zhou, J., Liu, S., and Lin, Z. (2018). Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions. Acta Astronaut., 152:630–638.
Sun, J., Zhou, J., Liu, S., Lin, Z., and Cai, J. (2017). Effects of injection nozzle exit width on rotating detonation engine. Acta Astronaut., 140:388–401.
Sun, X. X., Yan, C., Yan, Y., Mi, X. C., Lee, J. H. S., and Ng, H. D. (2022). Critical tube diameter for quasi-detonations. Combust. Flame, 244:112280.
Taki, S. and Fujiwara, T. (1978). Numerical analysis of two-dimensional non-steady detonations. AIAA J., 16:73–77.
Tang, X., Wang, J., and Shao, Y. (2015). Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor. Combust. Flame, 162:997–1008.
Tang-Yuk, K. C., Mi, X. C., Lee, J. H. S., and Ng, H. D. (2018). Transmission of a detonation across a density interface. Shock Waves, 28:967–979.
Tang-Yuk, K. C., Mi, X. C., Lee, J. H. S., Ng, H. D., and Deiterding, R. (2022). Transmission of a detonation wave across an inert layer. Combust. Flame, 236:111769.
Teng, H., Xi, X., Wang, K., and Yang, P. (2022). Instability of wave complex resulting from oblique detonation decoupling. Acta Mech. Sin., 38:121391.
Teng, H., Zhou, L., Yang, P., and Jiang, Z. (2020). Numerical investigation of wavelet features in rotating detonations with a two-step induction-reaction model. Int. J. Hydrog. Energy, 45:4991–5001.
Teng, H. H. and Jiang, Z. L. (2012). On the transition pattern of the oblique detonation structure. J. Fluid Mech., 713:659–669.
Teng, H. H., Ng, H. D., and Jiang, Z. L. (2017). Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proc. Combust. Inst., 36:2735–2742.
Teng, H. H., Ng, H. D., Li, K., Luo, C., and Jiang, Z. L. (2015). Evolution of cellular structures on oblique detonation surfaces. Combust. Flame, 162:470–477.
Teodorczyk, A., Lee, J. H. S., and Knystautas, R. (1988). Propagation mechanism of quasidetonations. Proc. Combust. Inst., 22:1723–1731.
Teodorczyk, A., Lee, J. H. S., and Knystautas, R. (1991). Photographic study of the structure and propagation mechanisms of quasi-detonations in rough tubes. AIAA Prog. Astronaut. Aeronaut., 133:223–240.
Toro, E. F. (1989). A weighted average flux method for hyperbolic conservation laws. Proc. R. Soc. Lond. A., 423:401–438.
Toro, E. F. (1994). Restoration of the contact surface in the hll-riemann solver. Shock Waves, 4 (1):25–34.
Toro, E. F. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin.
Tsuboi, N., Katoh, S., and Hayashi, A. (2002). Three-dimensional numerical simulation for hydrogen/air detonation: Rectangular and diagonal structures. Proc. Combust. Inst., 29:2783–2788.
Tsuboi, N., Watanabe, Y., Kojima, T., and Hayashi, A. (2015). Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture. Proc. Combust. Inst., 35:2005–2013.
Uemura, Y., Hayashi, A., Asahara, M., Tsuboi, N., and Yamada, E. (2013). Transverse wave generation mechanism in a rotating detonation. Proc. Combust. Inst., 34(2):1981–1989.
van Leer, B. (1985). On the relation between the upwind-differencing schemes of godunov, enguistosher and roe. SIAM J. Sci. Comput., 5(1):1–20.
Verreault, J. and Higgins, A. (2011). Initiation of detonation by conical projectiles. Proc. Combust. Inst., 33(2):2311–2318.
Viguier, C., Figueira da Silva, L., Desbordes, D., and Deshaies, B. (1996). Onset of oblique detonation waves: Comparison between experimental and numerical results for hydrogen-air mixtures. Symp. (Int.) Combust., 26:3023–3031.
Vlasenko, V. and Sabel’nikov, V. (1995). Numerical simulation of inviscid flows with hydrogen combustion behind shock waves and in detonation waves. Combust. Explos. Shock Waves, 31:376–389.
von Neumann, J. (1942). Theory of detonation waves. progress report to the national defense research committee Div. B, OSRD-549 (PB 31090). In Taub, A. H., editor, John von Neumann: Collected Works, 1903–1957, volume 6, page 178–218. New York: Pergamon Press.
Wang, A. F., Zhao, W., and Jiang, Z. L. (2011). The criterion of the existence or inexistence of transverse shock wave at wedge supported oblique detonation wave. Acta Mech. Sin., 27:611– 619.
Wang, L. Q., Ma, H. H., and Shen, Z. W. (2018a). Effect of orifice plates on detonation propagation in stoichiometric hydrogen-oxygen mixture. Exp. Thermal Fluid Sci., 99:367–373.
Wang, L. Q., Ma, H. H., Shen, Z. W., Lin, M. J., and Li, X. J. (2018b). Experimental study of detonation propagation in a square tube filled with orifice plates. Int. J. Hydrogen Energy, 43 (9):4645–4656.
Wang, Y. and Wang, J. (2015). Effect of equivalence ratio on the velocity of rotating detonation.
Int. J. Hydrogen Energy, 40(25):7949–7955.
Wescott, B. L., Stewart, D. S., and Bdzil, J. B. (2004). On self-similarity of detonation diffraction.
Phys. Fluids, 16:373–384.
White, D. (1961). Turbulent structure of gaseous detonation. Phys. Fluids, 4:465–480.
Williams, D., Bauwens, L., and Oran, E. (1997). Detailed structure and propagation of threedimensional detonations. Proc. Combust. Inst., 26:2991–2998.
Wolanski, P. (2013). Detonative propulsion. Proc. Combust. Inst., 34:125–158.
Xiang, G., Li, H., Cao, R., and Chen, X. (2020). Study of the features of oblique detonation induced by a finite wedge in hydrogen-air mixtures with varying equivalence ratios. Fuel, 264:116854.
Xiang, G., Zhang, Y., Zhang, C., and Kou, Y. (2022). Study on initiation mechanism of oblique detonation induced by blunt bump on wedge surface. Fuel, 323:124314.
Xiao, Q., Sow, A., Maxwell, B. M., and M.I.Radulescu (2021). Effect of boundary layer losses on 2d detonation cellular structures. Proc. Combust. Inst., 38:3641–3649.
Xu, H., Mi, X. C., Kiyanda, C. B., Ng, H. D., and Lee, J. H. S. (2019). The role of cellular instability on the critical tube diameter problem for unstable gaseous detonations. Proc. Combust. Inst., 37 (3):3545–3553.
Xu, H., Mi, X. C., Lee, J., Yuan, X., and Ng, H. D. (2018). Diffraction and re-initiation of unstable detonations emerging from a confined tube to an open area. In Proceeding of the Canadian Section of the Combustion Institute Spring Technical Meeting, Toronto, ON, Canada. Ryerson University.
Yamada, T., Hayashi, A., Yamada, E., Tsuboi, N., Tangirala, V., and Fujiwara, T. (2020). Detonation limit thresholds in H2/O2 rotating detonation engine. Combust. Sci. Technol., 182:1901–1914.
Yan, C., Teng, H. H., Mi, X. C., and Ng, H. D. (2019). The effect of chemical reactivity on the formation of gaseous oblique detonation waves. Aerospace (MDPI), 6 (6):62.
Yang, L., Yue, L., Zhang, Q., and Zhang, X. (2020). Numerical study on the shock/combustion interaction of oblique detonation waves. Aero. Sci. Tech., 104:105938.
Yang, P. F., Ng, H. D., and Teng, H. H. (2019). Numerical study of wedge-induced oblique detonations in unsteady flow. J. Fluid Mech., 876:264–287.
Yao, S. and Zhang, M. (2018). Effects of injection conditions on the stability of rotating detonation waves. Shock Waves, 28:1079–1087.
Yi, T., Lou, J., Turangan, C., Choi, J., and Wolanski, P. (2011). Propulsive performance of a continuously rotating detonation engine. J. Propuls. Power, 27:171–181.
Yuan, X. Q., Mi, X. C., Ng, H. D., and Zhou, J. (2020). A model for the trajectory of the transverse detonation resulting from re-initiation of a diffracted detonation. Shock Waves, 30:13–15.
Yuan, X. Q., Yan, C., Zhou, J., and Ng, H. D. (2021). Computational study of gaseous cellular detonation diffraction and re-initiation by small obstacle induced perturbations. Phys. Fluids, 33:047115.
Zel’dovich, Y. B. (1940). On the theory of the propagation of detonations on gaseous system. J. Exptl. Theoret. Phys. (U.S.S.R.), 10:542–568.
Zel’dovich, Y. B. (1956). An experimental investigation of spherical detonation of gases. Soviet Phys. Tech. Phys., 1:1689–1713.
Zhang, B. (2016). The influence of wall roughness on detonation limits in hydrogen–oxygen mixture. Combust. Flame, 169:333–339.
Zhang, B. and Hong, L. (2017). The effects of large scale perturbation-generating obstacles on the propagation of detonation filled with methane-oxygen mixture. Combust. Flame, 182:279–287.
Zhang, B., Mehrjoo, N., Ng, H. D., Lee, J. H. S., and Bai, C. H. (2014). On the dynamic detonation parameters in acetylene-oxygen mixtures with varying amount of argon dilution. Combust. Flame, 161 (5):1390–1397.
Zhang, B., Ng, H. D., and Lee, J. H. S. (2012). The critical tube diameter and critical energy for direct initiation of detonation in C2H2/N2O/Ar mixtures. Combust. Flame, 159 (9):2944–2953.
Zhang, B., Ng, H. D., and Lee, J. H. S. (2013). Measurement and relationship between critical tube diameter and critical energy for direct blast initiation of gaseous detonations. J. Loss Prev. Proc. Ind., 26:1293–1299.
Zhang, F. (2014). Shock waves science and technology library, vol. 6 detonation dynamics. Springer-Verlag, Berlin, Heidelberg.
Zhang, S., Yao, S., Luan, M., Zhang, L., and Wang, J. (2018). Effects of injection conditions on the stability of rotating detonation waves. Shock Waves, 28:1079–1087.
Zhao, M., Li, J., Teo, C., Khoo, B., and Zhang, H. (2020). Effects of variable total pressures on instability and extinction of rotating detonation combustion. Flow, Turbul. Combust., 104:261– 290.
Zhou, R., Wu, D., and Wang, J. (2016). Progress of continuously rotating detonation engines. Chin. J. Aero., 29(1):15–29.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top