Ghanami, Shayan (2023) Electrokinetic Remediation of Organic Soil Polluted with Petroleum Products in Temperate and Cold Regions. Masters thesis, Concordia University.
Text (application/pdf)
7MBGhanami_MASc_S2023.pdf - Accepted Version Restricted to Repository staff only until 1 January 2025. Available under License Spectrum Terms of Access. |
Abstract
Global warming leads to the thawing of ice caps in cold regions like Canada's northern territories, which are predominantly covered with permafrost. Its active top layer contains different fractions of organic matter and clay. More frequent use of shipping routes increases the risk of northern soil pollution. One group of common pollutants, originating from pipeline spills or various leakage, are light hydrocarbons. Soil pollution affects the sensitive northern environment. Effective soil remediation necessitates a comprehensive understanding of soil properties to implement an appropriate remediation method tailored to the specific soil characteristics and the challenging climatic conditions in northern territories.
A series of laboratory tests were conducted to evaluate the feasibility of electrokinetic (EK) soil remediation on organic soils in cold-tempered regions. The study involved four distinct soil compositions to determine the efficacy of EK transport within organic matter (3%, 16%, and 35% w/w) containing soil. The soil was polluted with toluene and exposed to a constant low DC voltage gradient. To optimize electrokinetic remediation, a daily injection of surfactant was conducted. The tests were carried out continuously over a period of four days without anolyte, and one day including electroosmotic discharge collecting both anolyte and catholyte. The study was conducted in ambient (20°C) and cold temperatures (7°C) to simulate temperate and cold environments.
The results showed the feasibility of light hydrocarbons removal from organic soils, while EK transport was more effective under low temperatures. Soil changed properties and pH gradient was observed between the anode and cathode. Furthermore, extracted liquids indicated some dissolutions of humic substances present in organic soil.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Ghanami, Shayan |
Institution: | Concordia University |
Degree Name: | M.A. Sc. |
Program: | Civil Engineering |
Date: | 4 August 2023 |
Thesis Supervisor(s): | Elektorowicz, Maria |
Keywords: | Soil remediation Soil pollution BTEX Toluene Permafrost Electrokinetic remediation peat Organic soil Organic matter BTEX in Northern Territories |
ID Code: | 992809 |
Deposited By: | Shayan Ghanami |
Deposited On: | 14 Nov 2023 19:45 |
Last Modified: | 14 Nov 2023 19:45 |
References:
Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., Marks, R. E., Puppala, S., Bricka, M., & Parker, R. (1995). Electrokinetic remediation: Basics and technology status. Journal of Hazardous Materials, 40(2), 117–137. https://doi.org/10.1016/0304-3894(94)00066-pAmin, M. M., Hatamipour, M. S., Momenbeik, F., Nourmoradi, H., Farhadkhani, M., & Mohammadi-Moghadam, F. (2014). Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction. The Scientific World Journal, 2014, 1–6. https://doi.org/10.1155/2014/416752
Anderson, J. L. (1989). Colloid transport by Interfacial forces. Annual review of fluid mechanics, 21(1), 61–99. https://doi.org/10.1146/annurev.fl.21.010189.000425
Anisimov, O. A., Shiklomanov, N. I., & Nelson, F. E. (1997). Global warming and active-layer thickness: Results from transient general circulation models. Global and Planetary Change, 15(3–4), 61–77. https://doi.org/10.1016/s0921-8181(97)00009-x
ASTM. 2014. "ASTM C136/C136M-19." In standard test method for sieve analysis of fine and coarse aggregates astm international, West Conshohocken, PA.
Benignus, V. A. (1981). Health effects of toluene: a review. Neurotoxicology, 2(3), 567-588.
Bolan, N. S., Park, J. H., Robinson, B., Naidu, R., & Huh, K. Y. (2011). Phytostabilization. Advances in Agronomy, 145–204. https://doi.org/10.1016/b978-0-12-385538-1.00004-4
Bolden, A. L., Kwiatkowski, C. F., & Colborn, T. (2015a). New look at BTEX: Are ambient levels a problem? Environmental Science & Technology, 49(9), 5261–5276. https://doi.org/10.1021/es505316f
Boonsaner, M., Borrirukwisitsak, S., & Boonsaner, A. (2011). Phytoremediation of BTEX contaminated soil by canna×generalis. Ecotoxicology and Environmental Safety, 74(6), 1700–1707. https://doi.org/10.1016/j.ecoenv.2011.04.011
Canada, E. (2023, August 28). Temperature climatology - map - average - jun-jul-aug (summer). Environment Canada.
https://weather.gc.ca/saisons/image_e.html?format=clim_stn&season=jja&type=temp
CBC. 2015. 'Alberta pipelines: 5 major oil spills in recent history', CBC News, Accessed 2023/07/03. https://www.cbc.ca/news/canada/alberta-pipelines-5-major-oil-spills-in-recent-history-1.3156604#:~:text=In%20April%202011%2C%20almost%204.5,the%20province%20in%2035%20years.
Chae, Y., Kim, L., Lee, J., Kim, D., Cui, R., & An, Y.-J. (2021). Estimation of hazardous concentration of toluene in the terrestrial ecosystem through the species sensitivity distribution approach. Environmental Pollution, 289, 117836. https://doi.org/10.1016/j.envpol.2021.117836
Chemicals, Ataman. 2020. 'Hostapur Sas 60', Accessed 2023/07/10. https://www.atamanchemicals.com/.
Choudhury, A., Elektorowicz, M., (1998). Removal of nickel and lead from natural clay soil through the introduction of EDTA and coupling ion exchange processes with electrokinetic methodology (thesis). Concordia University, Montreal.
Claisse, Peter. (2016). Durability of concrete structures. https://doi.org/10.1016/B978-0-08-100275-9.00025-5.
Clayton, JS. (1977). Soils of Canada: A cooperative project of the Canada soil survey committee and the soil research institute, Ottawa, Ontario (Research Branch, Canada Department of Agriculture).
Delgado, A. V., González-Caballero, F., Hunter, R. J., Koopal, L. K., & Lyklema, J. (2007). Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 309(2), 194–224. https://doi.org/10.1016/j.jcis.2006.12.075
Edwards, E. A., & Grbić-Galić, D. (1994). Anaerobic degradation of toluene and O-xylene by a methanogenic consortium. Applied and Environmental Microbiology, 60(1), 313–322. https://doi.org/10.1128/aem.60.1.313-322.1994.
Elektorowicz, M. (1994). Bioremediation of petroleum-contaminated clayey soil with pre-treatment, Environmental Technology, Vol. 15: 373-380.
Elektorowicz, M., Hatem, J. (2000). Application of surfactant enhanced electorokinetics for hydrocarbon-contaminated soils, 53RD Canadian Geotechnical Conference, Montreal, October, 617-624
Elektorowicz, M. (2009). Electrochemical remediation of mixed contaminants, Chap. 15, Electrochemical remediation technologies for polluted soils, sediments and groundwater, Editors: Reddy K. and Cameselle C., John Wiley & Son, Ltd, 315 - 331; ISBN: 9780470523650
Eriksson, E., Auffarth, K., Henze, M., & Ledin, A. (2002). Characteristics of grey wastewater. Urban Water, 4(1), 85–104. https://doi.org/10.1016/s1462-0758(01)00064-4
Fernández Rodríguez, M. D., García Gómez, M. C., Alonso Blazquez, N., & Tarazona, J. V. (2014). Soil pollution remediation. Encyclopedia of Toxicology, 344–355. https://doi.org/10.1016/b978-0-12-386454-3.00579-0
Filley, C. M., Halliday, W., & Kleinschmidt-Demasters, B. K. (2004). The effects of toluene on the central nervous system. Journal of Neuropathology & Experimental Neurology, 63(1), 1–12. https://doi.org/10.1093/jnen/63.1.1
Ford, J. D., Pearce, T., Duerden, F., Furgal, C., & Smit, B. (2010). Climate change policy responses for Canada’s Inuit population: The importance of and opportunities for adaptation. Global Environmental Change, 20(1), 177–191. https://doi.org/10.1016/j.gloenvcha.2009.10.008
Gavrilchuk, K., & Lesage, V. (2014). Large-scale marine development projects (mineral, oil and gas, infrastructure) proposed for Canada's North. Fisheries and Oceans Canada, Maurice Lamontagne Institute.
Ghanami, S., Elektorowicz, M., Guan, H., & Rajaei, E. (2023). Electrokinetic soil remediation for Canadian northern regions. CSCE/SCGC 2023.
Gorham, E. (1957). The development of Peat Lands. The quarterly review of biology, 32(2), 145–166. https://doi.org/10.1086/401755
Gouma, S., Fragoeiro, S., Bastos, A. C., & Magan, N. (2014). Bacterial and fungal bioremediation strategies. Microbial Biodegradation and Bioremediation, 301–323. https://doi.org/10.1016/b978-0-12-800021-2.00013-3
Habibi, S., Elektorowicz, M. (2004). A new electrokinetic technology for revitalization of oily sludge (thesis). Concordia University, Montreal.
Hakimipour, M., Elektorowicz, M. (2001). 'Development of a hybrid electrokinetic system for the simultaneous removal of heavy metals and PAHs from clayey soil’ (thesis). Concordia University, Montreal.
Hatem, G., Elektorowicz, M. (1999). 'Design of the surfactant enhanced electrokinetic system for hydrocarbons removal from clayey soils in pilot scale conditions’ (thesis). Concordia University, Montreal.
Hernández-Soriano, M. C., Mingorance, M. D., & Peña, A. (2007). Interaction of pesticides with a surfactant-modified soil interface: Effect of soil properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 306(1–3), 49–55. https://doi.org/10.1016/j.colsurfa.2006.11.030
Hernández-Soriano, M. del, Degryse, F., & Smolders, E. (2011). Mechanisms of enhanced mobilisation of trace metals by anionic surfactants in soil. Environmental Pollution, 159(3), 809–816. https://doi.org/10.1016/j.envpol.2010.11.009
Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L., & Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266–276. https://doi.org/10.1016/j.matchemphys.2017.09.028
Jean, Martin. (2006). The world's largest wetlands: Ecology and conservation L. H. Fraser, P. A. Keddy . 2005. The world's largest wetlands: Ecology and conservation. Ecoscience. 13. 559-560. 10.2980/1195-6860(2006)13[559:TWLWEA]2.0.CO;2.
Jennings, A. A., & Mansharamani, P. (1999). Modeling electrokinetically-enhanced aggregate remediation. Environmental Modelling & Software, 14(6), 625–634. https://doi.org/10.1016/s1364-8152(99)00004-3
Joosten, Hans. (2003). Wise use of mires: Background and principles. 239-250.
Kariminezhad, E., Elektorowicz, M. (2018). 'Effect of various electrokinetic treatment regimes on solids surface properties and thermal behavior of oil sediments', J Hazard Mater, 353: 227-35.
Kheraj, S. (2020). A history of oil spills on long-distance pipelines in Canada. Canadian Historical Review, 101(2), 161–191. https://doi.org/10.3138/chr.2019-0005
Kieffer, W. F. (1975). CRC handbook of chemistry and physics.
Kirkey, S. (2017, October 26). Warm winters, scorching summers: New maps project impact of climate change. nationalpost. https://nationalpost.com/news/canada/warm-winters-scorching-summers-new-maps-project-impact-of-climate-change
Kokelj, S. V., & Jorgenson, M. T. (2013). Advances in thermokarst research. Permafrost and Periglacial Processes, 24(2), 108–119. https://doi.org/10.1002/ppp.1779
Kostecki, P., Morrison, R., & Dragun, J. (2005). Hydrocarbons. Encyclopedia of Soils in the Environment, 217–226. https://doi.org/10.1016/b0-12-348530-4/00098-9
Kroetsch, D. J., Geng, X., Chang, S. X., & Saurette, D. D. (2011). Organic soils of canada: Part 1. wetland organic soils. Canadian Journal of Soil Science, 91(5), 807–822. https://doi.org/10.4141/cjss10043
Liang, S.-H., Yuan, C., Tu, Y.-T., Chien, H.-Y., & Kao, C.-M. (2017). Treatment of low-level BTEX-contaminated soils by anionic surfactant washing. DEStech Transactions on Engineering and Technology Research, (mcee). https://doi.org/10.12783/dtetr/mcee2016/6459
Liu, K., Quan, J., Mu, Y., Zhang, Q., Liu, J., Gao, Y., Chen, P., Zhao, D., & Tian, H. (2013). Aircraft measurements of BTEX compounds around Beijing City. Atmospheric Environment, 73, 11–15. https://doi.org/10.1016/j.atmosenv.2013.02.050
Mackelprang, R., Saleska, S. R., Jacobsen, C. S., Jansson, J. K., & Taş, N. (2016). Permafrost meta-omics and climate change. Annual Review of Earth and Planetary Sciences, 44(1), 439–462. https://doi.org/10.1146/annurev-earth-060614-105126
Maini, G., Sharman, A. K., Knowles, C. J., Sunderland, G., & Jackman, S. A. (2000). Electrokinetic remediation of metals and organics from historically contaminated soil. Journal of Chemical Technology & Biotechnology, 75(8), 657–664. https://doi.org/10.1002/1097-4660(200008)75:8<657::aid-jctb263>3.0.co;2-5
McCutcheon, S. C., & Jørgensen, S. E. (2008). Phytoremediation. Encyclopedia of Ecology, 2751–2766. https://doi.org/10.1016/b978-008045405-4.00069-0
Morgan, P., Lewis, S. T., & Watkinson, R. J. (1993). Biodegradation of benzene, toluene, ethylbenzene and xylenes in gas-condensate-contaminated ground-water. Environmental Pollution, 82(2), 181–190. https://doi.org/10.1016/0269-7491(93)90115-5
Muhilan, B. M., Chattopadhyay, I. (2022). 'Chapter 16 - Exploring the role of soil microbiome in global climatic changes.' in Ajay Kumar, Joginder Singh and Luiz Fernando Romanholo Ferreira (eds.), Microbiome Under Changing Climate (Woodhead Publishing).
Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Surfactant-enhanced remediation of contaminated soil: A Review. Engineering Geology, 60(1–4), 371–380. https://doi.org/10.1016/s0013-7952(00)00117-4
Oades, J. M. (1984). Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, 76(1–3), 319–337. https://doi.org/10.1007/bf02205590
Oh, Y.-H., Kim, S.-I., Kim, M., Lee, S.-Y., & Kim, Y.-W. (2017). Preferred diffusion paths for copper electromigration by in situ transmission electron microscopy. Ultramicroscopy, 181, 160–164. https://doi.org/10.1016/j.ultramic.2017.05.018
Osterkamp, T. E., & Burn, C. R. (2003). Permafrost. Encyclopedia of Atmospheric Sciences, 1717–1729. https://doi.org/10.1016/b0-12-227090-8/00311-0
Pidwirny, M. (2023). Part 1. Introduction to physical geography: Part 1 of the eBook understanding physical geography (Our Planet Earth Publishing).
Prenafeta-Boldú, F. X., Ballerstedt, H., Gerritse, J., & Grotenhuis, J. T. (2004). Bioremediation of BTEX hydrocarbons: Effect of soil inoculation with the toluene-growing fungus Cladophialophora sp. strain T1. Biodegradation, 15(1), 59–65. https://doi.org/10.1023/b:biod.0000009973.53531.96
Québec, Gouvernement du. (2023). 'Regulation respecting contaminated soil storage and contaminated soil transfer stations', Gouvernement du Québec, Accessed 2023/07/05. https://www.legisquebec.gouv.qc.ca/.
Raihan, H., & Elektorowicz, M. (2006). Application of electrokinetics to control metal transports in biosolids in a cold climate (thesis). Concordia University, Montreal.
Rajaei, E., Elektorowicz, M. (2023). Electro-washing technique for on-site remediation of heating oil contaminated soil from its properties perspective. CSCE/SCGC 2023.
Rathfelder, K., Lang, J. R., & Abriola, L. M. (1995). Soil vapor extraction and bioventing: Applications, limitations, and future research directions. Reviews of Geophysics, 33(S2), 1067–1081. https://doi.org/10.1029/95rg00402
Reddy, K. R., & Cameselle, C. (2009). Overview of electrochemical remediation technologies. electrochemical remediation technologies for polluted soils, sediments and groundwater, 1–28. Https://doi.org/10.1002/9780S470523650.ch1
Riekkola, M.-L. (2000). Electrophoresis | micellar electrokinetic chromatography. Encyclopedia of Separation Science, 1280–1286. https://doi.org/10.1016/b0-12-226770-2/04401-x
Sahu, O., & Singh, N. (2019). Significance of bioadsorption process on textile industry wastewater. The impact and prospects of green chemistry for textile technology, 367–416. https://doi.org/10.1016/b978-0-08-102491-1.00013-7
Sarkar, D., Ferguson, M., Datta, R., & Birnbaum, S. (2005). Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, Carbon Supplementation, and monitored natural attenuation. Environmental Pollution, 136(1), 187–195. https://doi.org/10.1016/j.envpol.2004.09.025
Shackelford, C. D. (2013). Geoenvironmental engineering. Reference module in earth systems and environmental sciences. https://doi.org/10.1016/b978-0-12-409548-9.05424-5
Smardon, R. (2014). Wetland ecology principles and conservation, second edition. Water, 6(4), 813–817. https://doi.org/10.3390/w6040813
Tiflidis, C., Westerbeek, E. Y., Jorissen, K. F., Olthuis, W., Eijkel, J. C., & De Malsche, W. (2021). Inducing AC-electroosmotic flow using electric field manipulation with insulators. Lab on a Chip, 21(16), 3105–3111. https://doi.org/10.1039/d1lc00393c
Troeh, F. R., & Thompson, L. M. (2008). Soils and soil fertility. Blackwell Pub.
University of Idaho. (2023). The Twelve soil orders. Soil orders | Soil & Water Systems | University of Idaho. https://www.uidaho.edu/cals/soil-orders
Waksman, S. A. (1943). II. The microbiologist looks at soil organic matter. Soil Science Society of America Journal, 7(C), 16–21. https://doi.org/10.2136/sssaj1943.036159950007000c0003x
Walker, Mark. (2019). Sphagnum the biology of a habitat manipulator.
West, L. T., Singer, M. J., & Hartemink, A. E. (2016). Introduction. The soils of the USA, 1–7. https://doi.org/10.1007/978-3-319-41870-4_1
Williams, J. J. (2007). Formulation of carpet cleaners. Handbook for cleaning/decontamination of Surfaces, 103–123. https://doi.org/10.1016/b978-044451664-0/50004-8
WWF. (2014). 'Remembering the Arctic’s most traumatic tanker spill Remembering the Arctic’s most traumatic tanker spill', WWF, Accessed 2023/07/03. https://wwf.panda.org/wwf_news/?218255/Remembering-the-Arctics-most-traumatic-tanker-spill.
Yu, B., Yuan, Z., Yu, Z., & Xue-song, F. (2022). BTEX in the environment: An update on sources, fate, distribution, pretreatment, analysis, and removal techniques. Chemical Engineering Journal, 435, 134825. https://doi.org/10.1016/j.cej.2022.134825
Zhang, L., Ren, F., Li, H., Cheng, D., & Sun, B. (2021). The influence mechanism of freeze-thaw on soil erosion: A Review. Water, 13(8), 1010. https://doi.org/10.3390/w13081010
Zhenghu, D., & Honglang, X. (2000). Effects of soil properties on ammonia volatilization. Soil science and plant nutrition, 46(4), 845–852. https://doi.org/10.1080/00380768.2000.10409150
Repository Staff Only: item control page