Brahim, Lahouari Zakaria (2023) Characterization of Two MAPK Phosphatases, MKP2 and DsPTP1, and Their Potential MAPK Substrates. Masters thesis, Concordia University.
Text (application/pdf)
3MBBrahim_MSc_F2023.pdf - Accepted Version Restricted to Repository staff only until 1 October 2025. Available under License Spectrum Terms of Access. |
Abstract
In plants and other eukaryotes, mitogen-activated protein kinase (MAPK) cascades are essential signalling pathways that regulate a wide array of cellular functions related to development and environmental stress management responses. MAPK cascades each consist of a chain of kinases ranging from MAPKKKKs to MAPKs, which upregulate downstream kinases by phosphorylation to elicit cellular responses. Ultimately, the cellular output of MAPK signalling is primarily controlled by MAPK phosphatases (MKPs), which downregulate MAPKs by dephosphorylation. The five MKPs identified in Arabidopsis thaliana (MKP1, MKP2, DsPTP1, IBR5 and PHS1) have primarily been found to be involved in plant stress responses, making our knowledge of the involvement of these phosphatases in developmental pathways limited. Our research group previously found that MKP2 and DsPTP1 exhibit a striking albino phenotype characterized by small cream-coloured seedlings when both are absent in double mutants. In this thesis, I further characterize the roles of MKP2 and DsPTP1 in plant growth and development and identify potential MAPK substrates of the two phosphatases. In-silico transcript and protein accumulation studies were performed and reveal the expression of MKP2 and DsPTP1 in vegetative tissues, indicating their possible role in the early stages of plant development. To identify potential MAPK substrates, yeast two-hybrid and bimolecular fluorescence complementation studies were performed. Based on my analyses, I propose four MAPKs that are potential targets of MKP2/DsPTP1 in a pathway that regulates plant development. In summary, this work characterizes potential roles of MKP2 and DsPTP1 in plant development and identifies potential MAPK substrates for further study.
Divisions: | Concordia University > Faculty of Arts and Science > Biology |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Brahim, Lahouari Zakaria |
Institution: | Concordia University |
Degree Name: | M. Sc. |
Program: | Biology |
Date: | 1 August 2023 |
Thesis Supervisor(s): | Lee, Jin Suk |
ID Code: | 992932 |
Deposited By: | Lahouari Zakaria Brahim |
Deposited On: | 14 Nov 2023 19:19 |
Last Modified: | 14 Nov 2023 19:19 |
References:
Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W.-L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., & Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415(6875), 977–983. https://doi.org/10.1038/415977aBartels, S., Anderson, J. C., González Besteiro, M. A., Carreri, A., Hirt, H., Buchala, A., Métraux, J.-P., Peck, S. C., & Ulm, R. (2009). MAP KINASE PHOSPHATASE1 and PROTEIN TYROSINE PHOSPHATASE1 Are Repressors of Salicylic Acid Synthesis and SNC1-Mediated Responses in Arabidopsis. The Plant Cell, 21(9), 2884–2897. https://doi.org/10.1105/tpc.109.067678
Bazin, J., Mariappan, K., Jiang, Y., Blein, T., Voelz, R., Crespi, M., & Hirt, H. (2020). Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. PLOS Pathogens, 16(4), e1008401. https://doi.org/10.1371/journal.ppat.1008401
Beckers, G. J. M., Jaskiewicz, M., Liu, Y., Underwood, W. R., He, S. Y., Zhang, S., & Conrath, U. (2009). Mitogen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in Arabidopsis thaliana. The Plant Cell, 21(3), 944–953. https://doi.org/10.1105/tpc.108.062158
Bergmann, D. C., Lukowitz, W., & Somerville, C. R. (2004). Stomatal Development and Pattern Controlled by a MAPKK Kinase. Science, 304(5676), 1494–1497. https://doi.org/10.1126/science.1096014
Berriri, S., Garcia, A. V., Dit Frey, N. F., Rozhon, W., Pateyron, S., Leonhardt, N., Montillet, J.-L., Leung, J., Hirt, H., & Colcombet, J. (2012). Constitutively Active Mitogen-Activated Protein Kinase Versions Reveal Functions of Arabidopsis MPK4 in Pathogen Defense Signaling. The Plant Cell, 24(10), 4281–4293. https://doi.org/10.1105/tpc.112.101253
Bigeard, J., & Hirt, H. (2018). Nuclear Signaling of Plant MAPKs. Frontiers in Plant Science, 9, 469. https://doi.org/10.3389/fpls.2018.00469
Camps, M., Nichols, A., & Arkinstall, S. (2000). Dual specificity phosphatases: A gene family for control of MAP kinase function. The FASEB Journal, 14(1), 6–16. https://doi.org/10.1096/fasebj.14.1.6
Clough, S. J., & Bent, A. F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana: Floral dip transformation of Arabidopsis. The Plant Journal, 16(6), 735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
Colcombet, J., & Hirt, H. (2008). Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. Biochemical Journal, 413(2), 217–226. https://doi.org/10.1042/BJ20080625
Danquah, A., De Zélicourt, A., Boudsocq, M., Neubauer, J., Frei Dit Frey, N., Leonhardt, N., Pateyron, S., Gwinner, F., Tamby, J.-P., Ortiz-Masia, D., Marcote, M. J., Hirt, H., & Colcombet, J. (2015). Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. The Plant Journal, 82(2), 232–244. https://doi.org/10.1111/tpj.12808
Davis, R. J. (1993). The mitogen-activated protein kinase signal transduction pathway. Journal of Biological Chemistry, 268(20), 14553–14556. https://doi.org/10.1016/S0021-9258(18)82362-6
Dreze, M., Monachello, D., Lurin, C., Cusick, M. E., Hill, D. E., Vidal, M., & Braun, P. (2010). High-Quality Binary Interactome Mapping. In Methods in Enzymology (Vol. 470, pp. 281–315). Elsevier. https://doi.org/10.1016/S0076-6879(10)70012-4
Farooq, A., Chaturvedi, G., Mujtaba, S., Plotnikova, O., Zeng, L., Dhalluin, C., Ashton, R., & Zhou, M.-M. (2001). Solution Structure of ERK2 Binding Domain of MAPK Phosphatase MKP-3. Molecular Cell, 7(2), 387–399. https://doi.org/10.1016/S1097-2765(01)00186-1
Gaudet, P., Livstone, M. S., Lewis, S. E., & Thomas, P. D. (2011). Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Briefings in Bioinformatics, 12(5), 449–462. https://doi.org/10.1093/bib/bbr042
Guo, H., Feng, P., Chi, W., Sun, X., Xu, X., Li, Y., Ren, D., Lu, C., David Rochaix, J., Leister, D., & Zhang, L. (2016). Plastid-nucleus communication involves calcium-modulated MAPK signalling. Nature Communications, 7(1), 12173. https://doi.org/10.1038/ncomms12173
Gupta, R., Huang, Y., Kieber, J., & Luan, S. (1998). Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis. The Plant Journal, 16(5), 581–589. https://doi.org/10.1046/j.1365-313x.1998.00327.x
Huang, Y., Li, H., Gupta, R., Morris, P. C., Luan, S., & Kieber, J. J. (2000). ATMPK4, an Arabidopsis Homolog of Mitogen-Activated Protein Kinase, Is Activated in Vitro by AtMEK1 through Threonine Phosphorylation. Plant Physiology, 122(4), 1301–1310. https://doi.org/10.1104/pp.122.4.1301
Ichimura, K., Mizoguchi, T., Irie, K., Morris, P., Giraudat, J., Matsumoto, K., & Shinozaki, K. (1998). Isolation of ATMEKK1 (a MAP Kinase Kinase Kinase)-Interacting Proteins and Analysis of a MAP Kinase Cascade inArabidopsis. Biochemical and Biophysical Research Communications, 253(2), 532–543. https://doi.org/10.1006/bbrc.1998.9796
Jagodzik, P., Tajdel-Zielinska, M., Ciesla, A., Marczak, M., & Ludwikow, A. (2018). Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. Frontiers in Plant Science, 9, 1387. https://doi.org/10.3389/fpls.2018.01387
Jiang, L., Chen, Y., Luo, L., & Peck, S. C. (2018). Central Roles and Regulatory Mechanisms of Dual-Specificity MAPK Phosphatases in Developmental and Stress Signaling. Frontiers in Plant Science, 9, 1697. https://doi.org/10.3389/fpls.2018.01697
Kerk, D., Bulgrien, J., Smith, D. W., Barsam, B., Veretnik, S., & Gribskov, M. (2002). The Complement of Protein Phosphatase Catalytic Subunits Encoded in the Genome of Arabidopsis. Plant Physiology, 129(2), 908–925. https://doi.org/10.1104/pp.004002
Kerk, D., Templeton, G., & Moorhead, G. B. G. (2008). Evolutionary Radiation Pattern of Novel Protein Phosphatases Revealed by Analysis of Protein Data from the Completely Sequenced Genomes of Humans, Green Algae, and Higher Plants. Plant Physiology, 146(2), 323–324. https://doi.org/10.1104/pp.107.111393
Kosetsu, K., Matsunaga, S., Nakagami, H., Colcombet, J., Sasabe, M., Soyano, T., Takahashi, Y., Hirt, H., & Machida, Y. (2010). The MAP Kinase MPK4 Is Required for Cytokinesis in Arabidopsis thaliana. The Plant Cell, 22(11), 3778–3790. https://doi.org/10.1105/tpc.110.077164
Krysan, P. J., & Colcombet, J. (2018). Cellular Complexity in MAPK Signaling in Plants: Questions and Emerging Tools to Answer Them. Frontiers in Plant Science, 9, 1674. https://doi.org/10.3389/fpls.2018.01674
Liang, J., Zhang, Q., Liu, Y., Zhang, J., Wang, W., & Zhang, Z. (2022). Chlorosis seedling lethality 1 encoding a MAP3K protein is essential for chloroplast development in rice. BMC Plant Biology, 22(1), 20. https://doi.org/10.1186/s12870-021-03404-9
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591
Li, L., Nelson, C. J., Trösch, J., Castleden, I., Huang, S., & Millar, A. H. (2017). Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development. The Plant Cell, 29(2), 207–228. https://doi.org/10.1105/tpc.16.00768
Lin, C., & Chen, S. (2018). New functions of an old kinase MPK4 in guard cells. Plant Signaling & Behavior, 13(5), e1477908. https://doi.org/10.1080/15592324.2018.1477908
Liu, Y., Shepherd, E. G., & Nelin, L. D. (2007). MAPK phosphatases—Regulating the immune response. Nature Reviews Immunology, 7(3), 202–212. https://doi.org/10.1038/nri2035
Liu, R., Xu, Y.-H., Jiang, S.-C., Lu, K., Lu, Y.-F., Feng, X.-J., Wu, Z., Liang, S., Yu, Y.-T., Wang, X.-F., & Zhang, D.-P. (2013). Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signalling, require a transcription repressor, WRKY40, to balance their function. Journal of Experimental Botany, 64(18), 5443–5456. https://doi.org/10.1093/jxb/ert307
Liu, R., Liu, Y., Ye, N., Zhu, G., Chen, M., Jia, L., Xia, Y., Shi, L., Jia, W., & Zhang, J. (2015). AtDsPTP1 acts as a negative regulator in osmotic stress signalling during Arabidopsis seed germination and seedling establishment. Journal of Experimental Botany, 66(5), 1339–1353. https://doi.org/10.1093/jxb/eru484
Lee, J. S., & Ellis, B. E. (2007). Arabidopsis MAPK Phosphatase 2 (MKP2) Positively Regulates Oxidative Stress Tolerance and Inactivates the MPK3 and MPK6 MAPKs. Journal of Biological Chemistry, 282(34), 25020–25029. https://doi.org/10.1074/jbc.M701888200
Lee, J. S., Wang, S., Sritubtim, S., Chen, J.-G., & Ellis, B. E. (2009). Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. The Plant Journal, 57(6), 975–985. https://doi.org/10.1111/j.1365-313X.2008.03741.x
Lumbreras, V., Vilela, B., Irar, S., Solé, M., Capellades, M., Valls, M., Coca, M., & Pagès, M. (2010). MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6: MKP2 mediates disease responses and interacts with MPK6 and MPK3. The Plant Journal, 63(6), 1017–1030. https://doi.org/10.1111/j.1365-313X.2010.04297.x
Marmagne, A., Ferro, M., Meinnel, T., Bruley, C., Kuhn, L., Garin, J., Barbier-Brygoo, H., & Ephritikhine, G. (2007). A High Content in Lipid-modified Peripheral Proteins and Integral Receptor Kinases Features in the Arabidopsis Plasma Membrane Proteome. Molecular & Cellular Proteomics, 6(11), 1980–1996. https://doi.org/10.1074/mcp.M700099-MCP200
Marshall, C. J. (1994). MAP kinase kinase kinase, MAP kinase kinase, and MAP kinase. Current Opinion in Genetics & Development, 4(1), 82–89. https://doi.org/10.1016/0959-437X(94)90095-7
Monroe-Augustus, M., Zolman, B. K., & Bartel, B. (2003). IBR5, a Dual-Specificity Phosphatase-Like Protein Modulating Auxin and Abscisic Acid Responsiveness in Arabidopsis. The Plant Cell, 15(12), 2979–2991. https://doi.org/10.1105/tpc.017046
Naoi, K., & Hashimoto, T. (2004). A Semidominant Mutation in an Arabidopsis Mitogen-Activated Protein Kinase Phosphatase-Like Gene Compromises Cortical Microtubule Organization[W]. The Plant Cell, 16(7), 1841–1853. https://doi.org/10.1105/tpc.021865
Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H. B., Lacy, M., Austin, M. J., Parker, J. E., Sharma, S. B., Klessig, D. F., Martienssen, R., Mattsson, O., Jensen, A. B., & Mundy, J. (2000). Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance. Cell, 103(7), 1111–1120. https://doi.org/10.1016/S0092-8674(00)00213-0
Pogson, B. J., & Albrecht, V. (2011). Genetic Dissection of Chloroplast Biogenesis and Development: An Overview. Plant Physiology, 155(4), 1545–1551. https://doi.org/10.1104/pp.110.170365
Pogson, B. J., Ganguly, D., & Albrecht-Borth, V. (2015). Insights into chloroplast biogenesis and development. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847(9), 1017–1024. https://doi.org/10.1016/j.bbabio.2015.02.003
Pytela, J., Kato, T., & Hashimoto, T. (2010). Mitogen-activated protein kinase phosphatase PHS1 is retained in the cytoplasm by nuclear extrusion signal-dependent and independent mechanisms. Planta, 231(6), 1311–1322. https://doi.org/10.1007/s00425-010-1135-8
Quettier, A.-L., Bertrand, C., Habricot, Y., Miginiac, E., Agnes, C., Jeannette, E., & Maldiney, R. (2006). The phs1-3 mutation in a putative dual-specificity protein tyrosine phosphatase gene provokes hypersensitive responses to abscisic acid in Arabidopsis thaliana: PHS1 gene is involved in abscisic acid signalling. The Plant Journal, 47(5), 711–719. https://doi.org/10.1111/j.1365-313X.2006.02823.x
Raines, C. A. (2003). The Calvin cycle revisited. Photosynthesis Research, 75(1), 1–10. https://doi.org/10.1023/A:1022421515027
Ramazi, S., & Zahiri, J. (2021). Post-translational modifications in proteins: Resources, tools and prediction methods. Database, 2021, baab012. https://doi.org/10.1093/database/baab012
Rodriguez, M. C. S., Petersen, M., & Mundy, J. (2010). Mitogen-Activated Protein Kinase Signaling in Plants. Annual Review of Plant Biology, 61(1), 621–649. https://doi.org/10.1146/annurev-arplant-042809-112252
Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., Schölkopf, B., Weigel, D., & Lohmann, J. U. (2005). A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37(5), 501–506. https://doi.org/10.1038/ng1543
Shi, H., Li, Q., Luo, M., Yan, H., Xie, B., Li, X., Zhong, G., Chen, D., & Tang, D. (2022). BRASSINOSTEROID-SIGNALING KINASE1 modulates MAP KINASE15 phosphorylation to confer powdery mildew resistance in Arabidopsis. The Plant Cell, 34(5), 1768–1783. https://doi.org/10.1093/plcell/koac027
Silva, L. A. S., Sampaio, V. F., Barbosa, L. C. S., Machado, M., Flores‐Borges, D. N. A., Sales, J. F., Oliveira, D. C., Mayer, J. L. S., Kuster, V. C., & Rocha, D. I. (2020). Albinism in plants – far beyond the loss of chlorophyll: Structural and physiological aspects of wild‐type and albino royal poinciana ( Delonix regia ) seedlings. Plant Biology, 22(5), 761–768. https://doi.org/10.1111/plb.13146
Tamnanloo, F., Damen, H., Jangra, R., & Lee, J. S. (2018). MAP KINASE PHOSPHATASE1 Controls Cell Fate Transition during Stomatal Development. Plant Physiology, 178(1), 247–257. https://doi.org/10.1104/pp.18.00475
Tang, Q., Guittard-Crilat, E., Maldiney, R., Habricot, Y., Miginiac, E., Bouly, J.-P., & Lebreton, S. (2016). The mitogen-activated protein kinase phosphatase PHS1 regulates flowering in Arabidopsis thaliana. Planta, 243(4), 909–923. https://doi.org/10.1007/s00425-015-2447-5
Teige, M., Scheikl, E., Eulgem, T., Dóczi, R., Ichimura, K., Shinozaki, K., Dangl, J. L., & Hirt, H. (2004). The MKK2 Pathway Mediates Cold and Salt Stress Signaling in Arabidopsis. Molecular Cell, 15(1), 141–152. https://doi.org/10.1016/j.molcel.2004.06.023
Teramoto, H., Ono, T., & Minagawa, J. (2001). Identification of Lhcb Gene Family Encoding the Light-harvesting Chlorophyll-a/b Proteins of Photosystem II in Chlamydomonas reinhardtii. Plant and Cell Physiology, 42(8), 849–856. https://doi.org/10.1093/pcp/pce115
Ulm, R. (2002). Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. The EMBO Journal, 21(23), 6483–6493. https://doi.org/10.1093/emboj/cdf646
Walia, A., Lee, J. S., Wasteneys, G., & Ellis, B. (2009). Arabidopsis mitogen-activated protein kinase MPK18 mediates cortical microtubule functions in plant cells. The Plant Journal, 59(4), 565–575. https://doi.org/10.1111/j.1365-313X.2009.03895.x
Wang, H., Ngwenyama, N., Liu, Y., Walker, J. C., & Zhang, S. (2007). Stomatal Development and Patterning Are Regulated by Environmentally Responsive Mitogen-Activated Protein Kinases in Arabidopsis. The Plant Cell, 19(1), 63–73. https://doi.org/10.1105/tpc.106.048298
Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V., & Provart, N. J. (2007). An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLoS ONE, 2(8), e718. https://doi.org/10.1371/journal.pone.0000718
Xu, J., Xie, J., Yan, C., Zou, X., Ren, D., & Zhang, S. (2014). A chemical genetic approach demonstrates that MPK3/MPK6 activation and NADPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity. The Plant Journal, 77(2), 222–234. https://doi.org/10.1111/tpj.12382
Zhang, W., Cochet, F., Ponnaiah, M., Lebreton, S., Matheron, L., Pionneau, C., Boudsocq, M., Resentini, F., Huguet, S., Blázquez, M. Á., Bailly, C., Puyaubert, J., & Baudouin, E. (2019). The MPK 8‐ TCP 14 pathway promotes seed germination in Arabidopsis. The Plant Journal, 100(4), 677–692. https://doi.org/10.1111/tpj.14461
Zhang, X., Henriques, R., Lin, S.-S., Niu, Q.-W., & Chua, N.-H. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 1(2), 641–646. https://doi.org/10.1038/nprot.2006.97
Zhao, B. S., Roundtree, I. A., & He, C. (2017). Post-transcriptional gene regulation by mRNA modifications. Nature Reviews Molecular Cell Biology, 18(1), 31–42. https://doi.org/10.1038/nrm.2016.132
Repository Staff Only: item control page