Login | Register

Shape Control and Residual Stresses Management in Carbon Fiber Reinforced Thermoplastic Structures Manufactured Using Automated Fiber Placement

Title:

Shape Control and Residual Stresses Management in Carbon Fiber Reinforced Thermoplastic Structures Manufactured Using Automated Fiber Placement

Scattolin, Clara (2024) Shape Control and Residual Stresses Management in Carbon Fiber Reinforced Thermoplastic Structures Manufactured Using Automated Fiber Placement. Masters thesis, Concordia University.

[thumbnail of Scattolin_MASc_S2024.pdf]
Preview
Text (application/pdf)
Scattolin_MASc_S2024.pdf - Accepted Version
Available under License Spectrum Terms of Access.
10MB

Abstract

Thermoplastics are particularly well suited to the aerospace industry because of their superior mechanical properties and shelf-life when compared to thermosets. When manufacturing thermoplastic composite parts using automated fiber placement (AFP) technology, the high processing temperature and non-uniform cooling causes residual process stresses to arise. Constituent level or ply level stresses are residual stresses that come from interactions inherent to the composite system. They would be present in this carbon fiber reinforced polyether ether ketone (PEEK) material system regardless of the manufacturing method. Residual process stresses are laminate level stresses that arise from an external process, like AFP manufacturing.
AFP manufactured parts can include flat panels with free edges and fully constrained geometries like rings and cylinders. They express their residual stresses somewhat differently: flat panels will warp visibly as they cool, while the stresses present in rings will only be visible once they have been slit along their length. They will visibly spring in or out.
The goal of this thesis was to see if it was possible to use annealing to relieve the residual process stresses from thermoplastic composite structures manufactured using AFP without compromising laminate properties. These properties included crystallinity, void content, and fiber volume fraction. It would seem that the residual stresses in unidirectional panels with free edges can be mostly relieved with annealing. A 3-hour hold at 200˚C brought them to within 2mm of flat. However, the radii and spring-in or spring-out behavior of hoop-wound and asymmetric rings remained unaffected.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering
Item Type:Thesis (Masters)
Authors:Scattolin, Clara
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Mechanical Engineering
Date:6 January 2024
Thesis Supervisor(s):Hoa, Suong V.
Keywords:Residual stress management, automated fiber placement, AFP, composite manufacturing, annealing thermoplastics
ID Code:993416
Deposited By: Clara Scattolin
Deposited On:05 Jun 2024 16:33
Last Modified:05 Jun 2024 16:33

References:

Linköping University, Linköping, Sweden, 2017. Accessed: Jan. 31, 2022. [Online]. Available: 10.3384/diss.diva-137488
[2] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction, 9th ed. Wiley, 2013.
[3] J. R. Davis, “Guide to Materials Selection,” in Engineered Materials Handbook Desk Edition, M. M. Gauthier, Ed., ASM International, 1995, pp. 106–154. doi: 10.31399/asm.hb.emde.a0003005.
[4] E. Oromiehie, B. G. Prusty, P. Compston, and G. Rajan, “Automated fibre placement based composite structures: Review on the defects, impacts and inspections techniques,” Compos. Struct., vol. 224, p. 110987, Sep. 2019, doi: 10.1016/j.compstruct.2019.110987.
[5] S. V. Hoa, Principles of the Manufacturing of Composite Materials, 2nd ed. Lancaster: DEStech, 2018.
[6] K. Debnath, M. R. Choudhury, and A. E. W. Jarfors, “Primary Manufacturing of Thermoplastic Polymer Matrix Composites,” in Primary and Secondary Manufacturing of Polymer Matrix Composites, 1st ed., CRC Press, 2017, pp. 17–41. Accessed: May 03, 2022. [Online]. Available: https://doi-org.lib-ezproxy.concordia.ca/10.1201/9781351228466
[7] S. Van Hoa, M. Duc Hoang, and J. Simpson, “Manufacturing procedure to make flat thermoplastic composite laminates by automated fibre placement and their mechanical properties,” J. Thermoplast. Compos. Mater., vol. 30, no. 12, pp. 1693–1712, Dec. 2017, doi: 10.1177/0892705716662516.
[8] C. Grant, “Automated processes for composite aircraft structure,” Ind. Robot Int. J., vol. 33, no. 2, pp. 117–121, Jan. 2006, doi: 10.1108/01439910610651428.
[9] Y. D. Boon, S. C. Joshi, and S. K. Bhudolia, “Review: Filament Winding and Automated Fiber Placement with In Situ Consolidation for Fiber Reinforced Thermoplastic Polymer Composites,” Polymers, vol. 13, no. 12, Art. no. 12, Jan. 2021, doi: 10.3390/polym13121951.
[10] A. Brasington, C. Sacco, J. Halbritter, R. Wehbe, and R. Harik, “Automated fiber placement: A review of history, current technologies, and future paths forward,” Compos. Part C Open Access, vol. 6, p. 100182, Oct. 2021, doi: 10.1016/j.jcomc.2021.100182.
[11] K. Yassin and M. Hojjati, “Processing of thermoplastic matrix composites through automated fiber placement and tape laying methods: A review,” J. Thermoplast. Compos. Mater., vol. 31, no. 12, pp. 1676–1725, Dec. 2018, doi: 10.1177/0892705717738305.
[12] S. T. Peters and J. L. McLarty, “Filament Winding,” in Composites, D. B. Miracle and S. L. Donaldson, Eds., ASM International, 2001, pp. 536–549. doi: 10.31399/asm.hb.v21.a0003416.
[13] M. Schlottermuller, H. Lu, Y. Roth, N. Himmel, R. Schledjewski, and P. Mitschang, “Thermal Residual Stress Simulation in Thermoplastic Filament Winding Process,” J. Thermoplast. Compos. Mater., vol. 16, no. 6, pp. 497–519, Nov. 2003, doi: 10.1177/089270503035407.
[14] N. Bakhshi and M. Hojjati, “Effect of compaction roller on layup quality and defects formation in automated fiber placement,” J. Reinf. Plast. Compos., vol. 39, no. 1–2, pp. 3–20, Jan. 2020, doi: 10.1177/0731684419868845.
[15] Y. Qin, J. Summerscales, J. Graham-Jones, M. Meng, and R. Pemberton, “Monomer Selection for In Situ Polymerization Infusion Manufacture of Natural-Fiber Reinforced Thermoplastic-Matrix Marine Composites,” Polymers, vol. 12, no. 12, Art. no. 12, Dec. 2020, doi: 10.3390/polym12122928.
[16] O. Olabisi and K. Adewale, Eds., Handbook of Thermoplastics, 2nd ed. Boca Raton: CRC Press, 2016. doi: 10.1201/b19190.
[17] J. Barroeta Robles, M. Dubé, P. Hubert, and A. Yousefpour, “Repair of thermoplastic composites: an overview,” Adv. Manuf. Polym. Compos. Sci., vol. 8, no. 2, pp. 68–96, Apr. 2022, doi: 10.1080/20550340.2022.2057137.
[18] M. Flanagan et al., “Out-of-autoclave manufacturing of a stiffened thermoplastic carbon fibre PEEK panel,” AIP Conf. Proc., vol. 1896, no. 1, p. 030014, Oct. 2017, doi: 10.1063/1.5008001.
[19] P. P. Parlevliet, H. E. N. Bersee, and A. Beukers, “Residual stresses in thermoplastic composites—A study of the literature—Part I: Formation of residual stresses,” Compos. Part Appl. Sci. Manuf., vol. 37, no. 11, pp. 1847–1857, Nov. 2006, doi: 10.1016/j.compositesa.2005.12.025.
[20] S. Béland, High Performance Thermoplastic Resins and Their Composites. New Jersey: Noyes Publications, 1990. [Online]. Available: https://app.knovel.com/hotlink/toc/id:kpHPTRTC0F/high-performance-thermoplastic/high-performance-thermoplastic
[21] H. Ghayoor and S. Hoa, “Viscoelastic Analysis of Process-induced Stresses in Manufacturing of Thermoplastic Composites by Automated Fiber Placement Technology,” presented at the The 20th International Conference on Composite Materials, Copenhagen, Jul. 2015. Accessed: Sep. 10, 2021. [Online]. Available: https://www.researchgate.net/publication/311540800_Viscoelastic_Analysis_of_Process-induced_Stresses_in_Manufacturing_of_Thermoplastic_Composites_by_Automated_Fiber_Placement_Technology
[22] M. Hyer W., Stress Analysis of Fiber-Reinforced Composite Materials. Pennsylvania, USA: DEStech Publications, Inc., 2009.
[23] R. M. Jones, Mechanics Of Composite Materials, Second edition. Boca Raton, FL: CRC Press, 2014. [Online]. Available: https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1802660
[24] Y. Arao, J. Koyanagi, Y. Okudoi, M. Otsuka, and H. Kawada, “Residual Stress Relaxation in CFRP Cross-ply Laminate,” J. Solid Mech. Mater. Eng., vol. 4, no. 11, pp. 1595–1604, 2010, doi: 10.1299/jmmp.4.1595.
[25] J. A. Barnes and G. E. Byerly, “The formation of residual stresses in laminated thermoplastic composites,” Compos. Sci. Technol., vol. 51, no. 4, pp. 479–494, Jan. 1994, doi: 10.1016/0266-3538(94)90081-7.
[26] A. Turnbull, A. S. Maxwell, and S. Pillai, “Residual stress in polymers—evaluation of measurement techniques,” J. Mater. Sci., vol. 34, pp. 451–459, 1999, doi: https://doi-org.lib-ezproxy.concordia.ca/10.1023/A:1004574024319.
[27] M. Schlottermuller, R. Schledjewski, and P. Mitschang, “Influence of process parameters on residual stress in thermoplastic filament-wound parts,” Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., vol. 218, no. 2, pp. 157–164, Apr. 2004, doi: 10.1177/146442070421800209.
[28] M. E. Fitzpatrick, A. T. Fry, P. Holdway, F. A. Kandil, J. Shackleton, and L. Suominen, “Determination of residual stresses by X-ray diffraction.,” no. 2. National Physical Laboratory, Teddington, Sep. 2005. Accessed: Jul. 12, 2022. [Online]. Available: https://eprintspublications.npl.co.uk/2391/
[29] F. Chinesta et al., “First steps towards an advanced simulation of composites manufacturing by automated tape placement,” Int. J. Mater. Form., vol. 7, no. 1, pp. 81–92, Mar. 2014, doi: 10.1007/s12289-012-1112-9.
[30] E. Oromiehie, B. G. Prusty, P. Compston, and G. Rajan, “Characterization of process-induced defects in automated fiber placement manufacturing of composites using fiber Bragg grating sensors,” Struct. Health Monit., vol. 17, no. 1, pp. 108–117, Jan. 2018, doi: 10.1177/1475921716685935.
[31] L. Sorensen, T. Gmür, and J. Botsis, “Residual strain development in an AS4/PPS thermoplastic composite measured using fibre Bragg grating sensors,” Compos. Part Appl. Sci. Manuf., vol. 37, no. 2, pp. 270–281, Feb. 2006, doi: 10.1016/j.compositesa.2005.02.016.
[32] N. Yadav, K. Wachtarczyk, P. Gąsior, R. Schledjewski, and J. Kaleta, “In-line residual strain monitoring for thermoplastic automated tape layup using fiber Bragg grating sensors,” Polym. Compos., pp. 1–13, doi: 10.1002/pc.26480.
[33] F. Shadmehri and S. Hoa, “Digital Image Correlation Applications in Composite Automated Manufacturing, Inspection, and Testing,” Appl. Sci., vol. 9, p. 2719, Jul. 2019, doi: 10.3390/app9132719.
[34] O. A. Tafreshi, S. V. Hoa, F. Shadmehri, D. M. Hoang, and D. Rosca, “Heat transfer analysis of automated fiber placement of thermoplastic composites using a hot gas torch,” Adv. Manuf. Polym. Compos. Sci., vol. 5, no. 4, Dec. 2019, doi: 10.1080/20550340.2019.1686820.
[35] F. Sonmez, H. Hahn, and M. Akbulut, “Analysis of Process-Induced Residual Stresses in Tape Placement,” J. Thermoplast. Compos. Mater., vol. 15, pp. 525–544, Nov. 2002, doi: 10.1177/0892705702015006207.
[36] Q. Miao, Z. Dai, G. Ma, F. Niu, and D. Wu, “Analysis of spring-back deformation of CF/PEEK thin angled laminates by laser-assisted forming,” Compos. Struct., vol. 321, p. 117288, Oct. 2023, doi: 10.1016/j.compstruct.2023.117288.
[37] C. Dedieu, A. Barasinski, F. Chinesta, and J.-M. Dupillier, “About the origins of residual stresses in in situ consolidated thermoplastic composite rings,” Int. J. Mater. Form., vol. 10, no. 5, pp. 779–792, Oct. 2017, doi: 10.1007/s12289-016-1319-2.
[38] M. Siegl and I. Ehrlich, “Transformation of the Mechanical Properties of Fiber-Reinforced Plastic Tubes from the Cartesian Coordinate System into the Cylindrical Coordinate System for the Application of Bending Models,” Athens J. Τechnology Eng., vol. 4, no. 1, pp. 47–62, Feb. 2017, doi: 10.30958/ajte.4-1-4.
[39] C. Dedieu, A. Barasinski, F. Chinesta, and J.-M. Dupillier, “On the prediction of residual stresses in automated tape placement,” Int. J. Mater. Form., vol. 10, no. 4, pp. 633–640, Aug. 2017, doi: 10.1007/s12289-016-1307-6.
[40] M. Cirino and R. B. Byron Pipes, “In-situ consolidation for the thermoplastic composite ring—residual stress state,” Compos. Manuf., vol. 2, no. 2, pp. 105–113, Jan. 1991, doi: 10.1016/0956-7143(91)90187-L.
[41] M. W. Hyer and C. Q. Rousseau, “Thermally Induced Stresses and Deformations in Angle-Ply Composite Tubes,” J. Compos. Mater., vol. 21, no. 5, pp. 454–480, May 1987, doi: 10.1177/002199838702100504.
[42] J. T. Tzeng, “Predictions and Experimental Verification of Residual Stresses in Thermoplastic Composite Cylinders,” J. Thermoplast. Compos. Mater., vol. 8, no. 2, pp. 163–179, Apr. 1995, doi: 10.1177/089270579500800202.
[43] O. Sayman, “Analysis of multi-layered composite cylinders under hygrothermal loading,” Compos. Part Appl. Sci. Manuf., vol. 36, no. 7, pp. 923–933, Jul. 2005, doi: 10.1016/j.compositesa.2004.12.007.
[44] C. S. Chouchaoui and O. O. Ochoa, “Similitude study for a laminated cylindrical tube under tensile, torsion, bending, internal and external pressure. Part I: governing equations,” Compos. Struct., vol. 44, no. 4, pp. 221–229, Apr. 1999, doi: 10.1016/S0263-8223(98)00068-3.
[45] M. Xia, H. Takayanagi, and K. Kemmochi, “Analysis of multi-layered filament-wound composite pipes under internal pressure,” Compos. Struct., vol. 53, no. 4, pp. 483–491, Sep. 2001, doi: 10.1016/S0263-8223(01)00061-7.
[46] D. Fricke, L. Raps, and I. Schiel, “Prediction of warping in thermoplastic AFP-manufactured laminates through simulation and experimentation,” Adv. Manuf. Polym. Compos. Sci., vol. 8, no. 1, pp. 1–10, Jan. 2022, doi: 10.1080/20550340.2021.2015212.
[47] M. A. Khan, P. Mitschang, and R. Schledjewski, “Parametric study on processing parameters and resulting part quality through thermoplastic tape placement process,” J. Compos. Mater., vol. 47, no. 4, pp. 485–499, Feb. 2013, doi: 10.1177/0021998312441810.
[48] H. Xin, D. E. T. Shepherd, and K. D. Dearn, “Strength of poly-ether-ether-ketone: Effects of sterilisation and thermal ageing,” Polym. Test., vol. 32, no. 6, pp. 1001–1005, Sep. 2013, doi: 10.1016/j.polymertesting.2013.05.012.
[49] W. J. Unger and J. S. Hansen, “The Effect of Cooling Rate and Annealing on Residual Stress Development in Graphite Fibre Reinforced PEEK Laminates,” J. Compos. Mater., vol. 27, no. 2, pp. 108–137, Feb. 1993, doi: 10.1177/002199839302700201.
[50] X. Wang et al., “Effects of thermal residual stress on interfacial properties of polyphenylene sulphide/carbon fibre (PPS/CF) composite by microbond test,” J. Mater. Sci., vol. 51, no. 1, pp. 334–343, Jan. 2016, doi: 10.1007/s10853-015-9251-2.
[51] M. Greisel, J. Jäger, J. Moosburger-Will, M. G. R. Sause, W. M. Mueller, and S. Horn, “Influence of residual thermal stress in carbon fiber-reinforced thermoplastic composites on interfacial fracture toughness evaluated by cyclic single-fiber push-out tests,” Compos. Part A, vol. 66, pp. 117–127, 2014, doi: 10.1016/j.compositesa.2014.07.010.
[52] P. Cebe, “Annealing study of poly(etheretherketone),” J. Mater. Sci., vol. 23, no. 10, pp. 3721–3731, Oct. 1988, doi: 10.1007/BF00540520.
[53] J.-A. E. Manson and J. C. Seferis, “Autoclave Processing of PEEK/Carbon Fiber Composites,” J. Thermoplast. Compos. Mater., vol. 2, no. 1, pp. 34–49, Jan. 1989, doi: 10.1177/089270578900200103.
[54] J. A. Mondo and K. A. Parfrey, “Performance of In-Situ Consolidated Thermoplastic Composite Structure,” Sampe Soc. Adv. Mater., vol. 27, pp. 361–370, 1995.
[55] G. Lebrun and J. Denault, “Effect of annealing on the thermal expansion and residual stresses of bidirectional thermoplastic composite laminates,” Compos. Part Appl. Sci. Manuf., vol. 41, no. 1, pp. 101–107, Jan. 2010, doi: 10.1016/j.compositesa.2009.09.009.
[56] V.-T. Hoang et al., “Postprocessing method-induced mechanical properties of carbon fiber-reinforced thermoplastic composites,” J. Thermoplast. Compos. Mater., p. 0892705720945376, Aug. 2020, doi: 10.1177/0892705720945376.
[57] S. Risteska, A. Trajkovska Petkoska, S. Samak, and M. Drienovsky, “Annealing Effects on the Crystallinity of Carbon Fiber-Reinforced Polyetheretherketone and Polyohenylene Laminate Composites Manufactured by Laser Automatic Tape Placement,” Mater. Sci., vol. 26, pp. 308–316, Feb. 2020, doi: 10.5755/j01.ms.26.3.21489.
[58] S.-L. Gao and J.-K. Kim, “Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion,” Compos. Part Appl. Sci. Manuf., vol. 31, no. 6, pp. 517–530, Jun. 2000, doi: doi.org/10.1016/S1359-835X(00)00009-9.
[59] H. El Kadi and J. Denault, “Effects of Processing Conditions on the Mechanical Behavior of Carbon-Fiber-Reinforced PEEK,” J. Thermoplast. Compos. Mater., vol. 14, no. 1, pp. 34–53, Jan. 2001, doi: 10.1106/XDX9-U8K4-E0PM-70MX.
[60] T. W. Giants, “Crystallinity and dielectric properties of PEEK, poly(ether ether ketone),” IEEE Trans. Dielectr. Electr. Insul., vol. 1, no. 6, pp. 991–999, Dec. 1994, doi: 10.1109/94.368664.
[61] W. J. Cantwell, P. Davies, and H. H. Kausch, “The effect of cooling rate on deformation and fracture in IM6/PEEK composites,” Compos. Struct., vol. 14, no. 2, pp. 151–171, Jan. 1990, doi: 10.1016/0263-8223(90)90028-D.
[62] T. Tsukada, S. Minakuchi, and N. Takeda, “Assessing residual stress redistribution during annealing in thick thermoplastic composites using optical fiber sensors,” J. Thermoplast. Compos. Mater., vol. 33, no. 1, pp. 53–68, Jan. 2020, doi: 10.1177/0892705718804580.
[63] S. Valvez, A. P. Silva, P. N. B. Reis, and F. Berto, “Annealing effect on mechanical properties of 3D printed composites,” Procedia Struct. Integr., vol. 37, pp. 738–745, Jan. 2022, doi: 10.1016/j.prostr.2022.02.004.
[64] D. Cohen and M. W. Hyer, “Residual stresses in cross-ply composite tubes,” Virginia Polytechnic Institute and State University, NASA-CR-173540, Apr. 1984. Accessed: Aug. 11, 2022. [Online]. Available: https://ntrs.nasa.gov/citations/19840017700
[65] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. McGraw-Hill, 1970.
[66] T. Chapman, J. Gillespie Jr, B. Pipes, J.-A. Månson, and J. Seferis, “Prediction of Process-Induced Residual Stresses in Thermoplastic Composites,” J Comp Mat, vol. 24, Jun. 1990, doi: 10.1177/002199839002400603.
[67] L. S. Srinath and Y. V. G. Acharya, “Stresses in a circular ring: Comparison of theory with experiment,” Appl. Sci. Res., vol. 4, no. 3, pp. 189–194, May 1954, doi: 10.1007/BF03184950.
[68] “Treating of steel | Britannica.” Accessed: Jun. 30, 2022. [Online]. Available: https://www.britannica.com/technology/steel/Treating-of-steel
[69] S. S. Sahay, “Annealing of Steel,” in Steel Heat Treating Fundamentals and Processes,ASM Handbook, vol. 4A, 2013, pp. 289–304. Accessed: Jun. 30, 2022. [Online]. Available: DOI: 10.31399/asm.hb.v04a.a0005787
[70] J. Hirsch, “Annealing of Aluminum and Its Alloys,” vol. 4E, 2016. Accessed: Jun. 30, 2022. [Online]. Available: DOI: 10.31399/asm.hb.v04e.a0006285
[71] G. E. Totten, Ed., “Annealing and Recrystallization of Coppers,” in Heat Treating of Nonferrous Alloys, vol. 4E, ASM International, 2016, p. 0. doi: 10.31399/asm.hb.v04e.a0006278.
[72] J. L. Johnson, “Annealing of Refractory Metals,” 2016. Accessed: Jun. 30, 2022. [Online]. Available: DOI: 10.31399/asm.hb.v04e.a0006255
[73] K. R. Hart, R. M. Dunn, J. M. Sietins, C. M. Hofmeister Mock, M. E. Mackay, and E. D. Wetzel, “Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing,” Polymer, vol. 144, pp. 192–204, May 2018, doi: 10.1016/j.polymer.2018.04.024.
[74] W. J. Unger and J. S. Hansen, “The Effect of Thermal Processing on Residual Strain Development in Unidirectional Graphite Fibre Reinforced PEEK,” J. Compos. Mater., vol. 27, no. 1, pp. 59–82, Jan. 1993, doi: 10.1177/002199839302700105.
[75] W.-M. Sim, “Residual Stress Engineering in Manufacture of Aerospace Structural Parts,” presented at the 3rd International conference on distorsions engineering, Bremen, Sep. 2011, pp. 187–194. Accessed: Jul. 31, 2023. [Online]. Available: https://trimis.ec.europa.eu/sites/default/files/project/documents/20121115_114058_91510_Paper_IDE_2011.pdf
[76] A. Madariaga, I. Perez, P. J. Arrazola, R. Sanchez, J. J. Ruiz, and F. J. Rubio, “Reduction of distortions in large aluminium parts by controlling machining-induced residual stresses,” Int. J. Adv. Manuf. Technol., vol. 97, no. 1, pp. 967–978, Jul. 2018, doi: 10.1007/s00170-018-1965-2.
[77] “Technical Data Sheet APC-2 PEEK Thermoplastic Polymer Prepreg,” Solvay, Alpharetta, GA, USA, TDS APC-2_2017_10_11, Oct. 2017.
[78] N. Gallo, S. Pappadá, U. Raganato, and S. Corvaglia, “Development of the ‘High Pressure Repair Dome’ system for in-situ high performance repair of aeronautic structures,” MATEC Web Conf., vol. 188, p. 04004, 2018, doi: 10.1051/matecconf/201818804004.
[79] V. Srinivasan, “Computational Metrology for the Design and Manufacture of Product Geometry: A Classification and Synthesis,” J. Comput. Inf. Sci. Eng., vol. 7, no. 1, pp. 3–9, May 2006, doi: 10.1115/1.2424246.
[80] G. Henzold, Ed., “16 - General Geometrical Tolerances,” in Geometrical Dimensioning and Tolerancing for Design, Manufacturing and Inspection (Second Edition), Oxford: Butterworth-Heinemann, 2006, pp. 137–151. doi: 10.1016/B978-075066738-8/50021-7.
[81] D20 Committee, “Specification for Dimensional Tolerance of Thermosetting Glass-Reinforced Plastic Pultruded Shapes,” ASTM International. doi: 10.1520/D3917-15A.
[82] “ASTM D5687/D5687M-20 Standard Guide for Preparation of Flat Composite Panels with Processing Guidelines for Specimen Preparation,” in Annual Book of ASTM Standards 2020, vol. 15.03, West Conshohocken: ASTM International, 2015.
[83] G. Bogucki, W. McCarvill, S. Ward, and J. Tomblin, “Guidelines for the Development of Process Specifications, Instructions, and Controls for the Fabrication of Fiber-Reinforced Polymer Composites,” National Institute for Aviation Research, DOT/FAA/AR-02/110, Mar. 2003. Accessed: Jun. 02, 2022. [Online]. Available: https://apps.dtic.mil/sti/pdfs/ADA413644.pdf
[84] C. Collins, N. L. Batista, and P. Hubert, “Warpage investigation of carbon/PEEK discontinuous long fibre thin panels,” J. Compos. Mater., vol. 55, no. 24, pp. 3529–3537, Oct. 2021, doi: 10.1177/00219983211002247.
[85] G. Ameta, R. Lipman, S. Moylan, and P. Witherell, “Investigating the Role of Geometric Dimensioning and Tolerancing in Additive Manufacturing,” J. Mech. Des., vol. 137, no. 11, Oct. 2015, doi: 10.1115/1.4031296.
[86] D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers, Sixth edition. Hoboken, NJ: John Wiley and Sons, Inc, 2014.
[87] “Evaluating Goodness of Fit - MATLAB & Simulink.” Accessed: May 13, 2022. [Online]. Available: https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html
[88] A. Navlani, A. Fandango, and I. Idris, “R-Squared,” in Python Data Analysis (3rd Edition), 3rd ed., Packt Publishing, 2021, pp. 266–288. Accessed: May 13, 2022. [Online]. Available: https://app-knovel-com.lib-ezproxy.concordia.ca/hotlink/pdf/id:kt012W3AU5/python-data-analysis/rmse
[89] F. L. Litvin and A. Fuentes, “Gaussian Curvature; Three Types of Surface Points,” in Gear Geometry and Applied Theory, 2nd ed., Cambridge University Press, 2004, pp. 153–201. Accessed: May 12, 2022. [Online]. Available: https://app-knovel-com.lib-ezproxy.concordia.ca/hotlink/pdf/id:kt009XUTK2/gear-geometry-applied/gaussian-curvature-three
[90] A. Pressley, Elementary Differential Geometry. in Springer Undergraduate Mathematics Series. London: Springer London, 2010. doi: 10.1007/978-1-84882-891-9.
[91] V. A. Toponogov, Differential geometry of curves and surfaces: a concise guide. Boston: Birkhäuser, 2006.
[92] S. Timoshenko, “Analysis of Bi-Metal Thermostats,” J. Opt. Soc. Am., vol. 11, no. 3, p. 233, Sep. 1925, doi: 10.1364/JOSA.11.000233.
[93] N. Carbajal, G. Vargas, A. Arrese, and F. Mujika, “Analysis of Thermal Stresses in Unsymmetric Cross-ply Composite Strips,” J. Compos. Mater., vol. 42, no. 12, pp. 1247–1266, Jun. 2008, doi: 10.1177/0021998308091735.
[94] K. D. Cowley and P. W. R. Beaumont, “The measurement and prediction of residual stresses in carbon-fibre/polymer composites,” Compos. Sci. Technol., vol. 57, no. 11, pp. 1445–1455, Jan. 1997, doi: 10.1016/S0266-3538(97)00048-1.
[95] “Technical Data Sheet APC-2-PEEK Thermoplastic Polymer,” Cytec Engineered Materials.
[96] I. Daniel and O. Ishai, “Appendix A: Material Properties,” in Engineering Mechanics of Composite Materials, 2nd ed., New York: Oxford University, 2006, pp. 373–383.
[97] “ZX130L | Industrial Robots by Kawasaki Robotics,” Kawasaki Robotics. Accessed: Apr. 04, 2023. [Online]. Available: https://kawasakirobotics.com/eu-africa/products-robots/zx130l/
[98] “Strain Gage Installation Checklist Composite and Plastic Materials,” Micro-Measurements, Raleigh, NC, USA, MS0270-1803-EN. Accessed: Oct. 25, 2022. [Online]. Available: https://docs.micro-measurements.com/?id=11353&_ga=2.67794584.869125972.1666710512-1436451991.1665777323
[99] “Instruction Bulletin B-129-8: Surface Preparation for Strain Gage Bonding,” Micro-Measurements, Raleigh, NC, USA, 11129, Dec. 2011. Accessed: Oct. 27, 2022. [Online]. Available: http://www.vishaypg.com/docs/11129/11129_b1.pdf
[100] “Instruction Bulletin B-127: Strain Gage Installations with M-Bond 200 Adhesive,” Micro-Measurements, Raleigh, NC, USA, BUL 11127, Feb. 2018. Accessed: Jul. 20, 2023. [Online]. Available: https://micro-measurements.com/knowledge-base/instruction-bulletins
[101] “S5198 General Purpose Strain Gages—Linear Pattern,” Micro-Measurements, Raleigh, NC, USA, 11138, Apr. 2018. Accessed: Jul. 11, 2023. [Online]. Available: https://micro-measurements.com/pca/detail/s5198
[102] “235SL General Purpose Strain Gages—Linear Pattern,” Micro Measurements, Raleigh, NC, USA, 11409, May 2019. Accessed: Feb. 17, 2023. [Online]. Available: https://docs.micro-measurements.com/?id=12140
[103] “LePage Technical Data Sheet Polyurethane Wood Glue.” LePage, Jan. 05, 2016. Accessed: Feb. 17, 2023. [Online]. Available: https://www.lepage.ca/en/lepage-products/build-things/wood-glue/polyurethane-wood-glue.html
[104] Model 8000-8-SM Instruction Manual, 1.12. Raleigh, NC, USA: Micro-Measurements, 2014.
[105] “StrainSmart 8000 Getting Started Guide,” Micro-Measurements, Raleigh, NC, USA, MM130-000287, Feb. 2020.
[106] “Strain Gage Sensor Reference Guide,” Micro Measurements, Raleigh, NC, USA, 8690-EN_May20, May 2020. Accessed: Feb. 01, 2023. [Online]. Available: https://docs.micro-measurements.com/?id=8690
[107] “Arc measurement tool,” Digimizer. Accessed: Nov. 25, 2022. [Online]. Available: https://www.digimizer.com/manual/u-arc.php
[108] L. Conklin, “Tutorial for Collecting and Processing Images of Composite Structures to Determine the Fiber Volume Fraction,” Hampton, Virginia, NASA/CR-2017-219365, Jan. 2017. Accessed: Nov. 02, 2022. [Online]. Available: https://ntrs.nasa.gov/citations/20170001570
[109] C. N. Morales, G. Claure, J. Álvarez, and A. Nanni, “Evaluation of fiber content in GFRP bars using digital image processing,” Compos. Part B Eng., vol. 200, p. 108307, Nov. 2020, doi: 10.1016/j.compositesb.2020.108307.
[110] M. Doumeng et al., “A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques,” Polym. Test., vol. 93, p. 106878, Jan. 2021, doi: 10.1016/j.polymertesting.2020.106878.
[111] F. Shadmehri, S. V. Hoa, J. Fortin-Simpson, and H. Ghayoor, “Effect of in situ treatment on the quality of flat thermoplastic composite plates made by automated fiber placement (AFP),” Adv. Manuf. Polym. Compos. Sci., vol. 4, no. 2, pp. 41–47, Apr. 2018, doi: 10.1080/20550340.2018.1444535.
[112] “Universal Analysis Getting Started Guide,” TA Instruments, New Castle, May 2004. Accessed: Mar. 21, 2023. [Online]. Available: https://www.t-k-e.com/handbooks/Getting_Started_Universal_Analysis_2000.pdf
[113] D. J. Blundell and B. N. Osborn, “The morphology of poly(aryl-ether-ether-ketone),” Polymer, vol. 24, no. 8, pp. 953–958, Aug. 1983, doi: 10.1016/0032-3861(83)90144-1.
[114] M. H. Hassan, A. R. Othman, and S. Kamaruddin, “A review on the manufacturing defects of complex-shaped laminate in aircraft composite structures,” Int. J. Adv. Manuf. Technol., vol. 91, no. 9, pp. 4081–4094, Aug. 2017, doi: 10.1007/s00170-017-0096-5.
[115] G. K. Jeyakodi, “Finite Element Simulation of the In - Situ AFP process for Thermoplastic Composites using Abaqus,” Master Thesis, Delft University of Technology, Delft, Netherlands, 2016. Accessed: Nov. 22, 2023. [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid%3A6c13aaca-5f12-47b2-92ed-7744c64bcbb7
[116] “Plane-Shear Measurement with Strain Gages,” Intertechnology, Toronto, Ontario, Tech Note TN-512-1. Accessed: Dec. 15, 2023. [Online]. Available: https://intertechnology.com/Vishay/TechNotes_TechTips.html
[117] D. G. Zill, Advanced Engineering Mathematics, 7th ed. Burlington, MA: Jones & Bartlett Learning, LLC, 2022. Accessed: Jan. 12, 2022. [Online]. Available: https://ebookcentral-proquest-com.lib-ezproxy.concordia.ca/lib/concordia-ebooks/detail.action?docID=6450212
[118] “Solve Differential Equation - MATLAB & Simulink.” Accessed: Oct. 25, 2023. [Online]. Available: https://www.mathworks.com/help/symbolic/solve-a-single-differential-equation.html?s_cid=ans2doc_man_link
[119] J. T. Tzeng and R. B. Pipes, “Thermal residual stress analysis for in situ and post-consolidated composite rings,” Compos. Manuf., vol. 3, no. 4, pp. 273–279, 1992, doi: 10.1016/0956-7143(92)90114-A.
[120] A. C. Ugural and S. K. Fenster, “Chapter 2. Strain and Material Properties,” in Advanced Mechanics of Materials and Applied Elasticity, 6th ed., Pearson, 2020.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top