Login | Register

Occupancy Monitoring and Pattern Analysis for Urban Building Energy Modeling

Title:

Occupancy Monitoring and Pattern Analysis for Urban Building Energy Modeling

Samareh Abolhassani, Soroush (2024) Occupancy Monitoring and Pattern Analysis for Urban Building Energy Modeling. PhD thesis, Concordia University.

[thumbnail of Soroush_PHD_S2024.pdf]
Text (application/pdf)
Soroush_PHD_S2024.pdf - Accepted Version
Restricted to Repository staff only until 6 March 2026.
Available under License Spectrum Terms of Access.
30MB

Abstract

One of the main required actions for moving forward in zero-carbon cities’ goals is to increase building energy efficiency. Urban Building Energy Modeling (UBEM) can help optimize the built environment's energy efficiency and improve the design and operation of building energy systems. Moreover, building modeling provides key information for Heating, Ventilation and Air Conditioning (HVAC) control, building energy management, different building energy efficiency scenarios, and feedback to the occupants. In order to parametrize Urban Building Energy Modeling (UBEM), individual buildings' characteristics, such as constructions, internal loads, energy systems, etc., are required. Many dynamic UBEMs have already been developed, yet most use simplified assumptions for some of the parameters needed. The capabilities required for having a comprehensive UBEM are creating detailed 3D urban building geometry, creating a comprehensive building attributes library, conducting detailed archetype selection, and assignment of this construction information to the building surfaces. More importantly, occupant behavior is another important factor that influences the modeling results, and it is the root of high uncertainty in UBEM results. Most existing tools have a significant weakness in dealing with occupant related monitoring data or estimation of likely schedules.
Many studies have been conducted to develop and introduce different occupant behavior measurements and methods for urban building energy modeling. However, none of the previous studies introduced scalable and practical occupant behavior monitoring on an urban scale. Some of the main challenges that prevent the scalability of the already developed occupant behavior methods and measurements are the fact that they suffer from threatening the occupant's privacy and the high cost of their infrastructure and deployment.
This thesis aims to leverage passive WiFi sensing methods for occupant behavior monitoring and pattern analysis for UBEM using commercial off-the-shelf WiFi devices, for which the infrastructure is already available in many buildings. Passive and device-free WiFi sensing does not threaten the occupant's privacy, and its deployment cost is low. Therefore, this method of occupancy measurement has the potential to be used on an urban scale and to play an essential role to manage energy in zero carbon and smart cities in the future.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Concordia Institute for Information Systems Engineering
Item Type:Thesis (PhD)
Authors:Samareh Abolhassani, Soroush
Institution:Concordia University
Degree Name:Ph. D.
Program:Information and Systems Engineering
Date:6 February 2024
Thesis Supervisor(s):Eicker, Ursula and Bouguila, Nizar and Amayri, Manar
Keywords:Urban Building Energy Modeling, occupancy monitoring, WiFi sensing technology, occupant behavior
ID Code:993453
Deposited By: Soroush Samareh Abolhassani
Deposited On:05 Jun 2024 16:01
Last Modified:05 Jun 2024 16:01

References:

[1] “World urbanisation prospects,” UN Department of economic and social affairs: population dynamics, 2018. https://population.un.org/wup/ (accessed Jun. 13, 2022).
[2] P. Eickemeier et al., Climate change 2014 mitigation of climate change working group III contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. 2014.
[3] C. F. Reinhart and C. Cerezo Davila, “Urban building energy modeling - A review of a nascent field,” Build. Environ., vol. 97, pp. 196–202, 2016, doi: 10.1016/j.buildenv.2015.12.001.
[4] W. Li et al., “Modeling urban building energy use: A review of modeling approaches and procedures,” Energy, vol. 141, pp. 2445–2457, 2017, doi: 10.1016/j.energy.2017.11.071.
[5] F. Johari, G. Peronato, P. Sadeghian, X. Zhao, and J. Widén, “Urban building energy modeling: State of the art and future prospects,” Renewable and Sustainable Energy Reviews, vol. 128. Elsevier Ltd, p. 109902, Aug. 01, 2020, doi: 10.1016/j.rser.2020.109902.
[6] M. Ferrando, F. Causone, T. Hong, and Y. Chen, “Urban building energy modeling (UBEM) tools: A state-of-the-art review of bottom-up physics-based approaches,” Sustain. Cities Soc., vol. 62, no. March, p. 102408, 2020, doi: 10.1016/j.scs.2020.102408.
[7] T. Hong, Y. Chen, X. Luo, N. Luo, and S. H. Lee, “Ten questions on urban building energy modeling,” Build. Environ., vol. 168, no. August 2019, p. 106508, 2020, doi: 10.1016/j.buildenv.2019.106508.
[8] Y. Q. Ang, Z. M. Berzolla, and C. F. Reinhart, “From concept to application: A review of use cases in urban building energy modeling,” Appl. Energy, vol. 279, p. 115738, 2020, doi: 10.1016/j.apenergy.2020.115738.
[9] S. Hosseinihaghighi, K. Panchabikesan, S. Dabirian, J. Webster, M. Ouf, and U. Eicker, “Discovering, processing and consolidating housing stock and smart thermostat data in support of energy end-use mapping and housing retrofit program planning,” Sustain. Cities Soc., vol. 78, no. December 2021, p. 103640, 2022, doi: 10.1016/j.scs.2021.103640.
[10] Y. Chen, T. Hong, X. Luo, and B. Hooper, “Development of city buildings dataset for urban building energy modeling,” Energy Build., vol. 183, pp. 252–265, 2019, doi: 10.1016/j.enbuild.2018.11.008.
[11] EnergyPlus Development Team, “6.0 input/output reference: The encyclopedic reference to EnergyPlus input and output.,” US Department of Energy. 2010.
[12] S. P. Elie Azar, “Human Behavior and Energy Consumption in Buildings : An Integrated Agent-Based Modeling and Building Performance Simulation Framework,” IBPSA Build. Simul. 2017, pp. 482–487, 2017.
[13] F. Causone, S. Carlucci, M. Ferrando, A. Marchenko, and S. Erba, “A data-driven procedure to model occupancy and occupant-related electric load profiles in residential buildings for energy simulation,” Energy Build., vol. 202, 2019, doi: 10.1016/j.enbuild.2019.109342.
[14] S. Carlucci, G. Lobaccaro, Y. Li, E. Catto Lucchino, and R. Ramaci, “The effect of spatial and temporal randomness of stochastically generated occupancy schedules on the energy performance of a multiresidential building,” Energy Build., vol. 127, pp. 279–300, Sep. 2016, doi: 10.1016/j.enbuild.2016.05.023.
[15] K. U. Ahn, D. W. Kim, C. S. Park, and P. de Wilde, “Predictability of occupant presence and performance gap in building energy simulation,” Appl. Energy, vol. 208, pp. 1639–1652, Dec. 2017, doi: 10.1016/j.apenergy.2017.04.083.
[16] W. O’Brien, I. Gaetani, S. Carlucci, P. J. Hoes, and J. L. M. Hensen, “On occupant-centric building performance metrics,” Build. Environ., vol. 122, pp. 373–385, Sep. 2017, doi: 10.1016/j.buildenv.2017.06.028.
[17] P. Hoes, J. L. M. Hensen, M. G. L. C. Loomans, B. de Vries, and D. Bourgeois, “User behavior in whole building simulation,” Energy Build., vol. 41, no. 3, pp. 295–302, Mar. 2009, doi: 10.1016/j.enbuild.2008.09.008.
[18] F. Causone, A. Tatti, M. Pietrobon, F. Zanghirella, and L. Pagliano, “Yearly operational performance of a nZEB in the Mediterranean climate,” Energy Build., vol. 198, pp. 243–260, Sep. 2019, doi: 10.1016/j.enbuild.2019.05.062.
[19] D. Yan et al., “Occupant behavior modeling for building performance simulation: Current state and future challenges,” Energy Build., vol. 107, pp. 264–278, Nov. 2015, doi: 10.1016/j.enbuild.2015.08.032.
[20] A. Gagliano, M. Detommaso, and F. Nocera, Smart Energy Control Systems for Sustainable Buildings, vol. 67, no. June. 2017.
[21] K. Sun and T. Hong, “A framework for quantifying the impact of occupant behavior on energy savings of energy conservation measures,” Energy Build., vol. 146, pp. 383–396, Jul. 2017, doi: 10.1016/j.enbuild.2017.04.065.
[22] G. Buttitta, O. Neu, W. Turner, and D. Finn, “Modelling household occupancy profiles using data mining clustering techniques on time use data,” Build. Simul., 2017, [Online]. Available: https://researchrepository.ucd.ie/handle/10197/9218.
[23] S. D’Oca, V. Fabi, S. P. Corgnati, and R. K. Andersen, “Effect of thermostat and window opening occupant behavior models on energy use in homes,” Build. Simul., vol. 7, no. 6, pp. 683–694, 2014, doi: 10.1007/s12273-014-0191-6.
[24] A. Wagner and W. O. Brien, Exploring Occupant Behavior in Buildings: Methods and Challenges. 2018.
[25] J. A. Díaz and M. J. Jiménez, “Experimental assessment of room occupancy patterns in an office building. Comparison of different approaches based on CO2 concentrations and computer power consumption,” Appl. Energy, vol. 199, pp. 121–141, Aug. 2017, doi: 10.1016/j.apenergy.2017.04.082.
[26] L. Pagliano, S. Carlucci, F. Causone, A. Moazami, and G. Cattarin, “Energy retrofit for a climate resilient child care centre,” Energy Build., vol. 127, pp. 1117–1132, Sep. 2016, doi: 10.1016/j.enbuild.2016.05.092.
[27] S. Martínez, P. Eguía, E. Granada, A. Moazami, and M. Hamdy, “A performance comparison of multi-objective optimization-based approaches for calibrating white-box building energy models.,” Energy Build., vol. 216, p. 109942, Jun. 2020, doi: 10.1016/j.enbuild.2020.109942.
[28] A. Cacabelos, P. Eguía, L. Febrero, and E. Granada, “Development of a new multi-stage building energy model calibration methodology and validation in a public library,” Energy Build., vol. 146, pp. 182–199, Jul. 2017, doi: 10.1016/j.enbuild.2017.04.071.
[29] M. Frankel and C. Turner, “ACEEE Summer Study on Energy Efficiency in Buildings,” 2008. .
[30] M. S. Kaddory Al-Zubaidy, “A Literature Evaluation of the Energy Efficiency of Leadership in Energy and Environmental Design (LEED) -Certified Buildings,” Am. J. Civ. Eng. Archit., vol. 3, no. 1, pp. 1–7, 2015, doi: 10.12691/ajcea-3-1-1.
[31] J. H. Scofield, “Efficacy of LEED-certification in reducing energy consumption and greenhouse gas emission for large New York City office buildings,” Energy Build., vol. 67, pp. 517–524, 2013, doi: 10.1016/j.enbuild.2013.08.032.
[32] C. Turner and M. Frankel, “Energy Performance of LEED ® for New Construction Buildings,” New Build. Inst., pp. 1–46, 2008.
[33] C. J. Hopfe and J. L. M. Hensen, “Uncertainty analysis in building performance simulation for design support,” Energy Build., vol. 43, no. 10, pp. 2798–2805, 2011, doi: 10.1016/j.enbuild.2011.06.034.
[34] W. Yao, X. Chen, W. Luo, M. Van Tooren, and J. Guo, “Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles,” Prog. Aerosp. Sci., vol. 47, no. 6, pp. 450–479, 2011, doi: 10.1016/j.paerosci.2011.05.001.
[35] G. Buttitta, O. Neu, W. Turner, and D. Finn, “Modelling Household Occupancy Profiles using Data Mining Clustering Techniques on Time Use Data School of Electric and Electronic Engineering,” IBPSA Build. Simul. 2017, vol. 2, 2017.
[36] F. Causone, S. Carlucci, M. Ferrando, A. Marchenko, and S. Erba, “A data-driven procedure to model occupancy and occupant-related electric load profiles in residential buildings for energy simulation,” Energy Build., vol. 202, p. 109342, Nov. 2019, doi: 10.1016/j.enbuild.2019.109342.
[37] F. D. Salim et al., “Modelling urban-scale occupant behaviour, mobility, and energy in buildings: A survey,” Build. Environ., vol. 183, no. December 2019, p. 106964, 2020, doi: 10.1016/j.buildenv.2020.106964.
[38] Happle, G., “Data-driven occupant presence models for urban building energy simulation,” 2020.
[39] A. Doma and M. Ouf, “Modelling occupant behaviour for urban scale simulation: Review of available approaches and tools,” Build. Simul., vol. 16, no. 2, pp. 169–184, 2023, doi: 10.1007/s12273-022-0939-3.
[40] J. Du, W. Pan, and C. Yu, “In-situ monitoring of occupant behavior in residential buildings ‒ a timely review,” Energy and Buildings, vol. 212. Elsevier Ltd, p. 109811, Apr. 01, 2020, doi: 10.1016/j.enbuild.2020.109811.
[41] J. W. Dziedzic, Y. Da, and V. Novakovic, “Indoor occupant behaviour monitoring with the use of a depth registration camera,” Build. Environ., vol. 148, pp. 44–54, Jan. 2019, doi: 10.1016/j.buildenv.2018.10.032.
[42] T. Sharpe, “Ethical issues in domestic building performance evaluation studies,” Build. Res. Inf., vol. 47, no. 3, pp. 318–329, 2019, doi: 10.1080/09613218.2018.1471868.
[43] S. Petersen, T. H. Pedersen, K. U. Nielsen, and M. D. Knudsen, “Establishing an image-based ground truth for validation of sensor data-based room occupancy detection,” Energy Build., vol. 130, pp. 787–793, Oct. 2016, doi: 10.1016/j.enbuild.2016.09.009.
[44] G. Zhang et al., “Robust real-time human perception with depth camera,” Front. Artif. Intell. Appl., vol. 285, pp. 304–310, 2016, doi: 10.3233/978-1-61499-672-9-304.
[45] F. Conti, A. Pullini, and L. Benini, “Brain-inspired classroom occupancy monitoring on a low-power mobile platform,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., pp. 624–629, 2014, doi: 10.1109/CVPRW.2014.95.
[46] C. Gao, P. Li, Y. Zhang, J. Liu, and L. Wang, “People counting based on head detection combining Adaboost and CNN in crowded surveillance environment,” Neurocomputing, vol. 208, pp. 108–116, Oct. 2016, doi: 10.1016/j.neucom.2016.01.097.
[47] J. Liu, Y. Liu, G. Zhang, P. Zhu, and Y. Q. Chen, “Detecting and tracking people in real time with RGB-D camera,” Pattern Recognit. Lett., vol. 53, pp. 16–23, Feb. 2015, doi: 10.1016/j.patrec.2014.09.013.
[48] H. Zou, J. Yang, H. P. Das, H. Liu, Y. Zhou, and C. J. Spanos, “Wifi and vision multimodal learning for accurate and robust device-free human activity recognition,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., vol. 2019-June, pp. 426–433, 2019, doi: 10.1109/CVPRW.2019.00056.
[49] A. Khalili, A. Soliman, M. Asaduzzaman, and A. Griffiths, “Wi‐Fi sensing: applications and challenges,” J. Eng., vol. 2020, no. 3, pp. 87–97, 2020, doi: 10.1049/joe.2019.0790.
[50] A. K. Mikkilineni, J. Dong, T. Kuruganti, and D. Fugate, “A novel occupancy detection solution using low-power IR-FPA based wireless occupancy sensor,” Energy Build., vol. 192, pp. 63–74, Jun. 2019, doi: 10.1016/j.enbuild.2019.03.022.
[51] S. Singh and B. Aksanli, “Non-intrusive presence detection and position tracking for multiple people using low-resolution thermal sensors,” J. Sens. Actuator Networks, vol. 8, no. 3, 2019, doi: 10.3390/jsan8030040.
[52] S. S. Shetty, H. D. Chinh, M. Gupta, and S. K. Panda, “User presence estimation in multi-occupancy rooms using plug-load meters and PIR sensors,” 2017 IEEE Glob. Commun. Conf. GLOBECOM 2017 - Proc., vol. 2018-Janua, pp. 1–6, 2017, doi: 10.1109/GLOCOM.2017.8255036.
[53] S. Wolf, D. Calı̀, J. Krogstie, and H. Madsen, “Carbon dioxide-based occupancy estimation using stochastic differential equations,” Appl. Energy, vol. 236, no. August 2018, pp. 32–41, 2019, doi: 10.1016/j.apenergy.2018.11.078.
[54] M. S. Zuraimi, A. Pantazaras, K. A. Chaturvedi, J. J. Yang, K. W. Tham, and S. E. Lee, “Predicting occupancy counts using physical and statistical Co2-based modeling methodologies,” Build. Environ., vol. 123, pp. 517–528, 2017, doi: 10.1016/j.buildenv.2017.07.027.
[55] A. U. Nambi, A. Irawan, A. Nurhidayat, B. Humala, and T. R. Dharmawan, “Predicting room-level occupancy using smart-meter data,” Int. J. Distrib. Syst. Technol., vol. 8, no. 4, pp. 1–16, 2017, doi: 10.4018/IJDST.2017100101.
[56] W. Kleiminger, C. Beckel, and S. Santini, “Household occupancy monitoring using electricity meters,” UbiComp 2015 - Proc. 2015 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput., pp. 975–986, 2015, doi: 10.1145/2750858.2807538.
[57] V. Becker and W. Kleiminger, “Exploring zero-training algorithms for occupancy detection based on smart meter measurements,” Comput. Sci. - Res. Dev., vol. 33, no. 1–2, pp. 25–36, 2018, doi: 10.1007/s00450-017-0344-9.
[58] N. Alishahi, M. Nik-Bakht, and M. M. Ouf, “A framework to identify key occupancy indicators for optimizing building operation using WiFi connection count data,” Build. Environ., vol. 200, no. April, p. 107936, 2021, doi: 10.1016/j.buildenv.2021.107936.
[59] X. Lu, H. Wen, H. Zou, H. Jiang, L. Xie, and N. Trigoni, “Robust occupancy inference with commodity WiFi,” Int. Conf. Wirel. Mob. Comput. Netw. Commun., 2016, doi: 10.1109/WiMOB.2016.7763228.
[60] W. Wang, J. Chen, T. Hong, and N. Zhu, “Occupancy prediction through Markov based feedback recurrent neural network (M-FRNN) algorithm with WiFi probe technology,” Build. Environ., vol. 138, pp. 160–170, Jun. 2018, doi: 10.1016/j.buildenv.2018.04.034.
[61] S. Dabirian, K. Panchabikesan, and U. Eicker, “Occupant-centric urban building energy modeling: Approaches, inputs, and data sources - A review,” Energy Build., vol. 257, p. 111809, 2022, doi: 10.1016/j.enbuild.2021.111809.
[62] W. Wang, J. Chen, and X. Song, “Modeling and predicting occupancy profile in office space with a Wi-Fi probe-based Dynamic Markov Time-Window Inference approach,” Build. Environ., vol. 124, pp. 130–142, 2017, doi: 10.1016/j.buildenv.2017.08.003.
[63] H. Lee, C. R. Ahn, and N. Choi, “Fine-grained occupant activity monitoring with Wi-Fi channel state information: Practical implementation of multiple receiver settings,” Adv. Eng. Informatics, vol. 46, p. 101147, Oct. 2020, doi: 10.1016/j.aei.2020.101147.
[64] J. Yang, H. Zou, H. Jiang, and L. Xie, “Device-Free Occupant Activity Sensing Using WiFi-Enabled IoT Devices for Smart Homes,” IEEE Internet Things J., vol. 5, no. 5, pp. 3991–4002, 2018, doi: 10.1109/JIOT.2018.2849655.
[65] H. Jiang, C. Cai, X. Ma, Y. Yang, and J. Liu, “Smart Home Based on WiFi Sensing: A Survey,” IEEE Access, vol. 6, pp. 13317–13325, 2018, doi: 10.1109/ACCESS.2018.2812887.
[66] Q. Lin, Y. Hao, and C. Liu, “Wi-Fi based non-invasive detection of indoor wandering using LSTM model,” Front. Comput. Sci., vol. 15, no. 6, 2021, doi: 10.1007/s11704-020-0270-z.
[67] N. Pang, D. Zhu, G. Li, and S. Liu, “WarnFi: Non-invasive wifi-based abnormal activity sensing using non-parametric model,” Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2017-Octob, no. 3, pp. 800–805, 2017, doi: 10.1109/MILCOM.2017.8170747.
[68] H. Zou, Y. Zhou, J. Yang, and C. J. Spanos, “Device-free occupancy detection and crowd counting in smart buildings with WiFi-enabled IoT,” Energy Build., vol. 174, pp. 309–322, 2018, doi: 10.1016/j.enbuild.2018.06.040.
[69] H. Zou, Y. Zhou, J. Yang, and C. J. Spanos, “Towards occupant activity driven smart buildings via WiFi-enabled IoT devices and deep learning,” Energy Build., vol. 177, pp. 12–22, 2018, doi: 10.1016/j.enbuild.2018.08.010.
[70] Z. Yang, Z. Zhou, and Y. Liu, “From RSSI to CSI: Indoor localization via channel response,” ACM Comput. Surv., vol. 46, no. 2, pp. 1–32, 2013, doi: 10.1145/2543581.2543592.
[71] Z. Wang et al., “A Survey on CSI-Based Human Behavior Recognition in Through-The-Wall Scenario,” IEEE Access, vol. 7, pp. 78772–78793, 2019, doi: 10.1109/ACCESS.2019.2922244.
[72] J. Liu, H. Liu, Y. Chen, Y. Wang, and C. Wang, “Wireless Sensing for Human Activity: A Survey,” IEEE Commun. Surv. Tutorials, vol. 22, no. 3, pp. 1629–1645, 2020, doi: 10.1109/COMST.2019.2934489.
[73] H. Lee, C. R. Ahn, and N. Choi, “Fine-grained occupant activity monitoring with Wi-Fi channel state information: Practical implementation of multiple receiver settings,” Adv. Eng. Informatics, vol. 46, no. July, p. 101147, 2020, doi: 10.1016/j.aei.2020.101147.
[74] S. Abdul Samadh, Q. Liu, X. Liu, N. Ghourchian, and M. Allegue, “Indoor Localization Based on Channel State Information,” 2019 IEEE Top. Conf. Wirel. Sensors Sens. Networks, WiSNet 2019, no. 2, pp. 16–19, 2019, doi: 10.1109/WISNET.2019.8711803.
[75] Q. Pu, S. Jiang, and S. Gollakota, “Whole-home gesture recognition using wireless signals (demo),” SIGCOMM 2013 - Proc. ACM SIGCOMM 2013 Conf. Appl. Technol. Archit. Protoc. Comput. Commun., pp. 485–486, 2013, doi: 10.1145/2486001.2491687.
[76] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Gesture Recognition Using Wireless Signals,” GetMobile Mob. Comput. Commun., vol. 18, no. 4, pp. 15–18, 2015, doi: 10.1145/2721914.2721919.
[77] M. Allegue, N. Ghourchian, M. Rozon, and M. Nistal, “WiFi Motion Intelligence: The Fundamentals [White paper],” WiFi Motion Intell. Fundam., 2020.
[78] A. Zandifar, N. Ghourchian, and M. A. Martinez, “Systems and methods for occupancy detection using wifi sensing technologies,” U.S. Pat. Appl., p. 17/367,986, 2021, [Online]. Available: https://patents.google.com/patent/US20210333351A1/en.
[79] F. Johari, “Urban building energy modeling : A systematic evaluation of modeling and simulation approaches,” 2021, [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-428021.
[80] Y. Q. Ang, Z. M. Berzolla, S. Letellier-Duchesne, V. Jusiega, and C. Reinhart, “UBEM.io: A web-based framework to rapidly generate urban building energy models for carbon reduction technology pathways,” Sustain. Cities Soc., vol. 77, no. November 2021, 2022, doi: 10.1016/j.scs.2021.103534.
[81] C. F. Reinhart and C. Cerezo Davila, “Urban building energy modeling - A review of a nascent field,” Building and Environment. 2016, doi: 10.1016/j.buildenv.2015.12.001.
[82] S. S. Abolhassani, M. Amayri, N. Bouguila, and U. Eicker, “A new workflow for detailed urban scale building energy modeling using spatial joining of attributes for archetype selection,” J. Build. Eng., vol. 46, no. October 2021, p. 103661, 2022, doi: 10.1016/j.jobe.2021.103661.
[83] C. Wang et al., “A systematic method to develop three dimensional geometry models of buildings for urban building energy modeling,” Sustain. Cities Soc., vol. 71, no. May, p. 102998, 2021, doi: 10.1016/j.scs.2021.102998.
[84] Z. Deng, Y. Chen, J. Yang, and Z. Chen, “Archetype identification and urban building energy modeling for city-scale buildings based on GIS datasets,” Build. Simul., vol. 15, no. 9, pp. 1547–1559, 2022, doi: 10.1007/s12273-021-0878-4.
[85] S. Nejadshamsi, U. Eicker, C. Wang, and J. Bentahar, “Data sources and approaches for building occupancy profiles at the urban scale – A review,” Build. Environ., vol. 238, no. April, 2023, doi: 10.1016/j.buildenv.2023.110375.
[86] “Ansi/Ashrae/Iesna Standard 90.1-2004 Energy Standard,” vol. 3, pp. 5–7, 2004.
[87] G. Happle, J. A. Fonseca, and A. Schlueter, “A review on occupant behavior in urban building energy models,” Energy Build., vol. 174, pp. 276–292, 2018, doi: 10.1016/j.enbuild.2018.06.030.
[88] “National Energy Code of Canada for Buildings,” Ottawa, Canada.
[89] S. Carlucci et al., “Modeling occupant behavior in buildings,” Build. Environ., vol. 174, no. February, p. 106768, 2020, doi: 10.1016/j.buildenv.2020.106768.
[90] C. Wang, D. Yan, and Y. Jiang, “A novel approach for building occupancy simulation,” Build. Simul., vol. 4, no. 2, pp. 149–167, 2011, doi: 10.1007/s12273-011-0044-5.
[91] Y. S. Lee and A. M. Malkawi, “Simulating multiple occupant behaviors in buildings: An agent-based modeling approach,” Energy Build., vol. 69, pp. 407–416, 2014, doi: 10.1016/j.enbuild.2013.11.020.
[92] M. Mosteiro-Romero, I. Hischier, J. A. Fonseca, and A. Schlueter, “A novel population-based occupancy modeling approach for district-scale simulations compared to standard-based methods,” Build. Environ., vol. 181, p. 107084, 2020, doi: 10.1016/j.buildenv.2020.107084.
[93] B. Dong, W. Wu, Q. Wang, S. Abdelmutaal, V. Prakash, and N. York, “Derive Urban Scale Occupant Behavior Profiles from Mobile Position Data,” vol. 1, no. 2018, pp. 113–120, 2018.
[94] X. Kang, D. Yan, H. Sun, Y. Jin, and P. Xu, “An approach for obtaining and extracting occupancy patterns in buildings based on mobile positioning data,” Build. Simul. Conf. Proc., vol. 4, pp. 2364–2370, 2019, doi: 10.26868/25222708.2019.211151.
[95] Y. Jin, D. Yan, X. Kang, A. Chong, H. Sun, and S. Zhan, “Forecasting building occupancy: A temporal-sequential analysis and machine learning integrated approach,” Energy Build., vol. 252, p. 111362, 2021, doi: 10.1016/j.enbuild.2021.111362.
[96] Z. Pang et al., “Application of mobile positioning occupancy data for building energy simulation: An engineering case study,” Build. Environ., vol. 141, no. 4800, pp. 1–15, 2018, doi: 10.1016/j.buildenv.2018.05.030.
[97] Y. W. Hwang and I. Y. Lee, “CityBES: A Web-based Platform to Support City-Scale Building Energy Efficiency environment,” no. July, pp. 107–111, 2019.
[98] W. Wu et al., “A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption,” Appl. Energy, vol. 278, no. April, p. 115656, 2020, doi: 10.1016/j.apenergy.2020.115656.
[99] G. Happle, J. A. Fonseca, and A. Schlueter, “Impacts of diversity in commercial building occupancy profiles on district energy demand and supply,” Appl. Energy, vol. 277, p. 115594, 2020, doi: 10.1016/j.apenergy.2020.115594.
[100] J. Parker, A. Hardy, D. Glew, and C. Gorse, “A methodology for creating building energy model occupancy schedules using personal location metadata,” Energy Build., vol. 150, pp. 211–223, 2017, doi: 10.1016/j.enbuild.2017.06.014.
[101] X. Lu, F. Feng, Z. Pang, T. Yang, and Z. O’Neill, “Extracting typical occupancy schedules from social media (TOSSM) and its integration with building energy modeling,” Build. Simul., vol. 14, no. 1, pp. 25–41, 2021, doi: 10.1007/s12273-020-0637-y.
[102] X. Lu, F. Feng, and Z. O’Neill, “Acquisition of typical occupancy schedules for commercial buildings from social networks,” UrbSys 2019 - Proc. 1st ACM Int. Work. Urban Build. Energy Sensing, Control. Big Data Anal. Vis. Part BuildSys 2019, pp. 77–81, 2019, doi: 10.1145/3363459.3363537.
[103] S. Sardar, A. K. Mishra, and M. Z. A. Khan, “Indoor occupancy estimation using the LTE-CommSense system,” Int. J. Remote Sens., vol. 41, no. 14, pp. 5609–5619, 2020, doi: 10.1080/2150704X.2020.1734246.
[104] E. Barbour, C. C. Davila, S. Gupta, C. Reinhart, J. Kaur, and M. C. González, “Planning for sustainable cities by estimating building occupancy with mobile phones,” Nat. Commun., vol. 10, no. 1, 2019, doi: 10.1038/s41467-019-11685-w.
[105] C. Horn and R. Kern, “Deriving public transportation timetables with large-scale cell phone data,” Procedia Comput. Sci., vol. 52, no. 1, pp. 67–74, 2015, doi: 10.1016/j.procs.2015.05.026.
[106] F. D. Salim et al., “Modelling Urban-Scale Occupant Behaviour , Mobility , and Energy in Buildings : A Survey Definition of Occupant-Centric Urban Data.”
[107] A. J. Ruiz-Ruiz, H. Blunck, T. S. Prentow, A. Stisen, and M. B. Kjaergaard, “Analysis methods for extracting knowledge from large-scale WiFi monitoring to inform building facility planning,” 2014 IEEE Int. Conf. Pervasive Comput. Commun. PerCom 2014, pp. 130–138, 2014, doi: 10.1109/PerCom.2014.6813953.
[108] J. Y. Park, K. Nweye, E. Mbata, and Z. Nagy, “CROOD: Estimating crude building occupancy from mobile device connections without ground-truth calibration,” Build. Environ., vol. 216, no. April, p. 109040, 2022, doi: 10.1016/j.buildenv.2022.109040.
[109] W. Wang, J. Chen, T. Hong, and N. Zhu, “Occupancy prediction through Markov based feedback recurrent neural network (M-FRNN) algorithm with WiFi probe technology,” Build. Environ., vol. 138, no. April, pp. 160–170, 2018, doi: 10.1016/j.buildenv.2018.04.034.
[110] and Z. N. June Young Park, Thomas Dougherty, “A bluetooth based occupancy detection for buildings,” 2018 Build. Perform. Model. Conf., pp. 807–814, 2018.
[111] Z. D. Tekler, R. Low, B. Gunay, R. K. Andersen, and L. Blessing, “A scalable Bluetooth Low Energy approach to identify occupancy patterns and profiles in office spaces,” Build. Environ., vol. 171, no. January, p. 106681, 2020, doi: 10.1016/j.buildenv.2020.106681.
[112] T. Nicolai and H. Kenn, “About the relationship between people and discoverable Bluetooth devices in urban environments,” Mobil. Conf. 2007 - 4th Int. Conf. Mob. Technol. Appl. Syst. Mobil. 2007, Inc. 1st Int. Symp. Comput. Hum. Interact. Mob. Technol. IS-CHI 2007, pp. 72–78, 2007, doi: 10.1145/1378063.1378076.
[113] A. K. Das, P. H. Pathak, J. Jee, P. Mohapatra, and C. N. Chuah, “Non-intrusive multi-modal estimation of building occupancy,” SenSys 2017 - Proc. 15th ACM Conf. Embed. Networked Sens. Syst., vol. 2017-Janua, 2017, doi: 10.1145/3131672.3131680.
[114] R. El Kontar and T. Rakha, “Profiling Occupancy Patterns to Calibrate Urban Building Energy Models (UBEMs) Using Measured Data Clustering,” Technol. Archit. Des., vol. 2, no. 2, pp. 206–217, 2018, doi: 10.1080/24751448.2018.1497369.
[115] M. Ferrando et al., “UBEM’s archetypes improvement via data-driven occupant-related schedules randomly distributed and their impact assessment,” Sustain. Cities Soc., vol. 87, no. September, p. 104164, 2022, doi: 10.1016/j.scs.2022.104164.
[116] K. Panchabikesan, F. Haghighat, and M. El Mankibi, “Data driven occupancy information for energy simulation and energy use assessment in residential buildings,” Energy, vol. 218, p. 119539, 2021, doi: 10.1016/j.energy.2020.119539.
[117] B. Dong and K. P. Lam, “Building energy and comfort management through occupant behaviour pattern detection based on a large-scale environmental sensor network,” J. Build. Perform. Simul., vol. 4, no. 4, pp. 359–369, 2011, doi: 10.1080/19401493.2011.577810.
[118] The U.S. Department of Energy (DOE), “EnergyPlus,” 2019. .
[119] S. Samareh Abolhassani, A. Zandifar, N. Ghourchian, M. Amayri, N. Bouguila, and U. Eicker, “Improving residential building energy simulations through occupancy data derived from commercial off-the-shelf Wi-Fi sensing technology,” Energy Build., vol. 272, p. 112354, 2022, doi: 10.1016/j.enbuild.2022.112354.
[120] F. Biljecki, J. Stoter, H. Ledoux, S. Zlatanova, and A. Çöltekin, “Applications of 3D city models: State of the art review,” ISPRS Int. J. Geo-Information, vol. 4, no. 4, pp. 2842–2889, 2015, doi: 10.3390/ijgi4042842.
[121] C. S. Monteiro, A. Pina, C. Cerezo, C. Reinhart, and P. Ferrão, “The Use of Multi-detail Building Archetypes in Urban Energy Modelling,” in Energy Procedia, Mar. 2017, vol. 111, pp. 817–825, doi: 10.1016/j.egypro.2017.03.244.
[122] Y. Chen, T. Hong, and M. A. Piette, “Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis,” Appl. Energy, vol. 205, pp. 323–335, Nov. 2017, doi: 10.1016/j.apenergy.2017.07.128.
[123] E. J. Kim, G. Plessis, J. L. Hubert, and J. J. Roux, “Urban energy simulation: Simplification and reduction of building envelope models,” Energy Build., vol. 84, pp. 193–202, 2014, doi: 10.1016/j.enbuild.2014.07.066.
[124] J. Schiefelbein, J. Rudnick, A. Scholl, P. Remmen, M. Fuchs, and D. Müller, “Automated urban energy system modeling and thermal building simulation based on OpenStreetMap data sets,” Build. Environ., vol. 149, no. July 2018, pp. 630–639, 2019, doi: 10.1016/j.buildenv.2018.12.025.
[125] M. Issermann, F. J. Chang, and P. Y. Kow, “Interactive urban building energy modelling with functional mockup interface of a local residential building stock,” J. Clean. Prod., vol. 289, p. 125683, 2021, doi: 10.1016/j.jclepro.2020.125683.
[126] J. A. Jakubiec, K. Kensek, K. Konis, A. Gamas, and A. Wagdy, “Umi-an urban simulation environment for building energy use, daylighting and walkability,” 13th Conf. Int. Build. Perform. Simul. Assoc., 2013.
[127] “DataSF,” City of San Francisco, 2018. https://data.cityofchicago.org/.
[128] “Chicago Data Portal,” City of Chicago, 2018. https://data.cityofchicago.org/.
[129] “NYC OpenData,” City of New York, 2018. https://opendata.cityofnewyork.us/.
[130] C. S. Monteiro, C. Costa, A. Pina, M. Y. Santos, and P. Ferrão, “An urban building database (UBD) supporting a smart city information system,” Energy Build., vol. 158, pp. 244–260, 2018, doi: 10.1016/j.enbuild.2017.10.009.
[131] J. A. Fonseca and A. Schlueter, “Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts,” Appl. Energy, vol. 142, 2015, doi: 10.1016/j.apenergy.2014.12.068.
[132] G. Mutani and V. Todeschi, “GIS-based urban energy modelling and energy efficiency scenarios using the energy performance certificate database,” Energy Effic., vol. 14, no. 5, pp. 1–28, 2021, doi: 10.1007/s12053-021-09962-z.
[133] V. Todeschi, R. Boghetti, J. H. Kämpf, and G. Mutani, “Evaluation of urban-scale building energy-use models and tools—application for the city of Fribourg, Switzerland,” Sustain., vol. 13, no. 4, pp. 1–22, 2021, doi: 10.3390/su13041595.
[134] N. Diefenbach et al., Application of Building Typologies for Modelling the Energy Balance of the Residential Building Stock, no. June 2009. 2012.
[135] N. Buckley, G. Mills, and R. Fealy, “An Inventory of Buildings in Dublin City for Energy Management An Inventory of Buildings in Dublin City for Energy Management,” Irish Geogr., vol. 53, no. August, pp. 4–22, 2020, doi: 10.2014/igj.v53i1.1408.
[136] T. Hong, Y. Chen, S. H. Lee, and M. A. Piette, “CityBES: A web-based platform to support city-scale building energy efficiency,” 5th Int. Urban Comput. Work. San Fr., no. August, p. 10, 2016.
[137] M. Ahmad and C. H. Culp, “Uncalibrated building energy simulation modeling results,” HVAC R Res., vol. 12, no. 4, pp. 1141–1155, 2006, doi: 10.1080/10789669.2006.10391455.
[138] N. Li, Z. Yang, B. Becerik-Gerber, C. Tang, and N. Chen, “Why is the reliability of building simulation limited as a tool for evaluating energy conservation measures?,” Appl. Energy, vol. 159, no. 2, pp. 196–205, 2015, doi: 10.1016/j.apenergy.2015.09.001.
[139] M. Narayanan, G. Mengedoht, and W. Commerell, “Importance of buildings and their influence in control system: a simulation case study with different building standards from Germany,” Int. J. Energy Environ. Eng., vol. 9, no. 4, pp. 413–433, 2018, doi: 10.1007/s40095-018-0281-9.
[140] NREL (National Renewable Energy Laboratory), “Building Component Library,” 2020. https://bcl.nrel.gov/search/site?f%5B0%5D=im_field_component_tags%3A127.
[141] A. Ghaedi, H. Ghaedi, and H. Ghaedi, “The Role of Roof Shapes in Design of Green Building Systems (Case Study: Iran, BandarAbbas),” APCBEE Procedia, vol. 1, no. January, pp. 335–340, 2012, doi: 10.1016/j.apcbee.2012.03.055.
[142] G. Gröger and L. Plümer, “CityGML - Interoperable semantic 3D city models,” ISPRS J. Photogramm. Remote Sens., vol. 71, pp. 12–33, 2012, doi: 10.1016/j.isprsjprs.2012.04.004.
[143] R. McNeel, “Rhinoceros,” 2013. https://www.rhino3d.com/.
[144] Ville de Montréal, “Plan d’action de Montréal durable 2016-2020,” 2016.
[145] K. U. Ahn, D. W. Kim, C. S. Park, and P. de Wilde, “Predictability of occupant presence and performance gap in building energy simulation,” Appl. Energy, vol. 208, pp. 1639–1652, 2017, doi: 10.1016/j.apenergy.2017.04.083.
[146] W. O’Brien, I. Gaetani, S. Carlucci, P. J. Hoes, and J. L. M. Hensen, “On occupant-centric building performance metrics,” Build. Environ., vol. 122, pp. 373–385, 2017, doi: 10.1016/j.buildenv.2017.06.028.
[147] The U.S. Department of Energy (DOE), “Commercial Prototype Building Models,” Department of Energy, 2020. https://www.energycodes.gov/development/commercial/prototype_models.
[148] F. Causone, S. Carlucci, M. Ferrando, A. Marchenko, and S. Erba, “A data-driven procedure to model occupancy and occupant-related electric load profiles in residential buildings for energy simulation,” Energy Build., vol. 202, p. 109342, 2019, doi: 10.1016/j.enbuild.2019.109342.
[149] M. Deru et al., “US Department of Energy commercial reference building models of the national building stock,” UNLV Libr., pp. 1–118, 2011.
[150] Ville de Montréal, “Property assessment units,” City of Montreal, 2020. https://www.google.com/search?q=uniteevaluationfonciere&rlz=1C1DIMC_enCA879CA879&oq=uniteevaluationfonciere&aqs=chrome.0.69i59l2.352j0j7&sourceid=chrome&ie=UTF-8.
[151] A. Mucherino, k-Nearest Neighbor Classification. 2005.
[152] A. W. Moore, “An intoductory tutorial on kd-trees,” Effic. Mem. Learn. Robot Control, no. 209, pp. 1–20, 1991.
[153] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Commun. ACM 18, 1975, [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multidimensional+binary+search+trees+used+for+associative+searching&btnG=#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3AVTzXghcDJHEJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den.
[154] Y. J. Kim, S. H. Yoon, and C. S. Park, “Stochastic comparison between simplified energy calculation and dynamic simulation,” Energy Build., vol. 64, pp. 332–342, 2013, doi: 10.1016/j.enbuild.2013.05.026.
[155] A. S. Ancrossed D Signelković, I. Mujan, and S. Dakić, “Experimental validation of a EnergyPlus model: Application of a multi-storey naturally ventilated double skin façade,” Energy Build., vol. 118, pp. 27–36, 2016, doi: 10.1016/j.enbuild.2016.02.045.
[156] O. Sarfraz, C. K. Bach, and C. K. Wilkins, “Plug load design factors,” ASHRAE J., vol. 60, no. 1, pp. 14–19, 2018.
[157] S. Zhan and A. Chong, “Building occupancy and energy consumption: Case studies across building types,” Energy Built Environ., vol. 2, no. 2, pp. 167–174, 2021, doi: 10.1016/j.enbenv.2020.08.001.
[158] D. Coakley, P. Raftery, and M. Keane, “A review of methods to match building energy simulation models to measured data,” Renew. Sustain. Energy Rev., vol. 37, pp. 123–141, 2014, doi: 10.1016/j.rser.2014.05.007.
[159] D. Robinson et al., “Citysim: Comprehensive micro-simulation of resource flows for sustainable urban planning,” IBPSA 2009 - Int. Build. Perform. Simul. Assoc. 2009, pp. 1083–1090, 2009.
[160] R. NOUVEL et al., “SimStadt, a new workflow-driven urban energy simulation platform for CityGML city models,” Proc. Int. Conf. CISBAT 2015 �Future Build. Dist. � Sustain. from Nano to Urban Scale�, pp. 889–894, 2015, [Online]. Available: https://infoscience.epfl.ch/record/213437.
[161] Y. W. Hwang and I. Y. Lee, “CityBES: A Web-based Platform to Support City-Scale Building Energy Efficiency environment,” no. August, pp. 107–111, 2019.
[162] R. Baetens, R. De Coninck, F. Jorissen, D. Picard, L. Helsen, and D. Saelens, “Openideas - An open framework for integrated district energy simulations,” 14th Int. Conf. IBPSA - Build. Simul. 2015, BS 2015, Conf. Proc., no. September, pp. 347–354, 2015.
[163] J. A. Fonseca, T. A. Nguyen, A. Schlueter, and F. Marechal, “City Energy Analyst (CEA): Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts,” Energy Build., vol. 113, pp. 202–226, Feb. 2016, doi: 10.1016/j.enbuild.2015.11.055.
[164] R. El Kontar et al., “URBANopt: An Open-source Software Development Kit for Community and Urban District Energy Modeling,” 2020 Build. Perform. Anal. Conf. SimBuild, no. October, pp. 293–301, 2020, [Online]. Available: https://www.nrel.gov/docs/fy21osti/76781.pdf.
[165] P. Remmen, M. Lauster, M. Mans, M. Fuchs, T. Osterhage, and D. Müller, “TEASER: an open tool for urban energy modelling of building stocks,” J. Build. Perform. Simul., vol. 11, no. 1, pp. 84–98, 2018, doi: 10.1080/19401493.2017.1283539.
[166] T. Vermeulen, J. H. Kämpf, and B. Beckers, “Urban Form Optimization for the Energy Performance of Buildings Using CitySim,” CISBAT 2013 Proc. Vol.II, pp. 915–920, 2013.
[167] A. Sola, C. Corchero, J. Salom, and M. Sanmarti, “Multi-domain urban-scale energy modelling tools: A review,” Sustain. Cities Soc., vol. 54, no. October 2019, p. 101872, 2020, doi: 10.1016/j.scs.2019.101872.
[168] C. León-Sánchez, D. Giannelli, G. Agugiaro, and J. Stoter, “TESTING the NEW 3D BAG DATASET for ENERGY DEMAND ESTIMATION of RESIDENTIAL BUILDINGS,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 46, no. 4/W1-2021, pp. 69–76, 2021, doi: 10.5194/isprs-archives-XLVI-4-W1-2021-69-2021.
[169] R. Nouvel, A. Mastrucci, U. Leopold, O. Baume, V. Coors, and U. Eicker, “Combining GIS-based statistical and engineering urban heat consumption models: Towards a new framework for multi-scale policy support,” Energy Build., vol. 107, pp. 204–212, 2015, doi: 10.1016/j.enbuild.2015.08.021.
[170] G. Agugiaro, J. Benner, P. Cipriano, and R. Nouvel, “The Energy Application Domain Extension for CityGML: enhancing interoperability for urban energy simulations,” Open Geospatial Data, Softw. Stand., vol. 3, no. 1, 2018, doi: 10.1186/s40965-018-0042-y.
[171] V. Weiler, H. Harter, and U. Eicker, “Life cycle assessment of buildings and city quarters comparing demolition and reconstruction with refurbishment,” Energy Build., vol. 134, pp. 319–328, 2017, doi: 10.1016/j.enbuild.2016.11.004.
[172] N. Buckley, G. Mills, C. Reinhart, and Z. M. Berzolla, “Using urban building energy modelling (UBEM) to support the new European Union’s Green Deal: Case study of Dublin Ireland,” Energy Build., vol. 247, p. 111115, 2021, doi: 10.1016/j.enbuild.2021.111115.
[173] T. Loga, B. Stein, and N. Diefenbach, “TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable,” Energy Build., vol. 132, pp. 4–12, 2016, doi: 10.1016/j.enbuild.2016.06.094.
[174] B. Bueno, L. Norford, J. Hidalgo, and G. Pigeon, “The urban weather generator,” J. Build. Perform. Simul., vol. 6, no. 4, pp. 269–281, 2013, doi: 10.1080/19401493.2012.718797.
[175] J. Le Bras and V. Masson, “A fast and spatialized urban weather generator for long-term urban studies at the city-scale,” Front. Earth Sci., vol. 3, no. June, pp. 1–12, 2015, doi: 10.3389/feart.2015.00027.
[176] R. Baetens, R. De Coninck, F. Jorissen, D. Picard, L. Helsen, and D. Saelens, “Openideas - An open framework for integrated district energy simulations,” 14th Int. Conf. IBPSA - Build. Simul. 2015, BS 2015, Conf. Proc., no. September, pp. 347–354, 2015, doi: 10.26868/25222708.2015.2243.
[177] U. Ali, M. H. Shamsi, C. Hoare, E. Mangina, and J. O’Donnell, “Review of urban building energy modeling (UBEM) approaches, methods and tools using qualitative and quantitative analysis,” Energy Build., vol. 246, p. 111073, 2021, doi: 10.1016/j.enbuild.2021.111073.
[178] M. Mosteiro-Romero, D. Maiullari, M. Pijpers-van Esch, and A. Schlueter, “An Integrated Microclimate-Energy Demand Simulation Method for the Assessment of Urban Districts,” Front. Built Environ., vol. 6, no. September, pp. 1–18, 2020, doi: 10.3389/fbuil.2020.553946.
[179] B. Polly, C. Kutscher, D. Macumber, and M. Schott, “From Zero Energy Buildings to Zero Energy Districts,” 2016 ACEEE Summer Study Energy Effic. Build., no. August, pp. 1–16, 2016, [Online]. Available: https://www.researchgate.net/publication/307955877_From_Zero_Energy_Buildings_to_Zero_Energy_Districts.
[180] U.S. EPA, “Benchmarking to Save Energy Protect Our Environment Through Energy Efficiency,” pp. 1–5, 2006, [Online]. Available: http://www.energystar.gov/ia/partners/publications/pubdocs/Benchmarking_to_Save_Energy.pdf.
[181] Z. Fallahi et al., “Designing for Zero Energy and Zero Carbon on a Multi-Building Scale using URBANopt Preprint Designing for Zero Energy and Zero Carbon on a Multi-Building Scale using URBANopt Preprint,” no. September, 2022.
[182] S. Ofluoglu, O. O. Ozener, and U. Isikdag, Advances in Building Information Modeling., vol. 2. 2019.
[183] N. Artiges, S. Rouchier, B. Delinchant, and F. Wurtz, “Bayesian inference of dwellings energy signature at national scale: Case of the French residential stock,” Energies, vol. 14, no. 18, pp. 1–26, 2021, doi: 10.3390/en14185651.
[184] A. Malhotra, M. Shamovich, J. Frisch, and C. van Treeck, “Urban energy simulations using open CityGML models: A comparative analysis,” Energy Build., vol. 255, p. 111658, 2022, doi: 10.1016/j.enbuild.2021.111658.
[185] T. Rentsch, “Object Oriented Programming,” ACM SIGPLAN Not., vol. 17, no. 9, pp. 51–57, 1982, doi: 10.1145/947955.947961.
[186] N. Singh, S. S. Chouhan, and K. Verma, “Object Oriented Programming: Concepts, Limitations and Application Trends,” 2021 5th Int. Conf. Inf. Syst. Comput. Networks, ISCON 2021, pp. 1–4, 2021, doi: 10.1109/ISCON52037.2021.9702463.
[187] K. R. Srinath, “Python -The Fastest Growing Programming Language,” Int. Res. J. Eng. Technol., vol. 4, no. 12, pp. 354–357, 2017, [Online]. Available: www.irjet.net.
[188] K. Pimparkhede, “Software Development Life Cycle,” Comput. Program. with C++, pp. 999–1001, 2018, doi: 10.1017/9781316534489.021.
[189] K. Williams, “Using object oriented analysis and design in a non-object oriented environment - experience report,” Conf. Softw. Maint., pp. 109–114, 1995, doi: 10.1109/icsm.1995.526532.
[190] L. Dahlström, T. Broström, and J. Widén, “Advancing urban building energy modelling through new model components and applications: A review,” Energy Build., vol. 266, 2022, doi: 10.1016/j.enbuild.2022.112099.
[191] “EnergyPlus, ‘Weather data download - Toronto 716240.,’” [Online]. Available. https://energyplus.net/weather-location/north_and_central_america_wmo_region_4/CAN/ON/CAN_ON_Toronto.716240_CWEC.
[192] “National Climatic Center, ‘Typical Meteorlogical Year - User’s Manual - TD-9734,’ 1981,” [Online]. Available: ftp.ncdc.noaa.gov/pub/data/metadata/documents/C00045_TD-9734-TMY-manual-1981.pdf.
[193] G. Mustafaraj, D. Marini, A. Costa, and M. Keane, “Model calibration for building energy efficiency simulation,” Appl. Energy, vol. 130, pp. 72–85, 2014, doi: 10.1016/j.apenergy.2014.05.019.
[194] D. B. Crawley et al., “EnergyPlus: Creating a new-generation building energy simulation program,” Energy Build., vol. 33, no. 4, pp. 319–331, 2001, doi: 10.1016/S0378-7788(00)00114-6.
[195] V. M. Barthelmes, R. Li, R. K. Andersen, W. Bahnfleth, S. P. Corgnati, and C. Rode, “Profiling occupant behaviour in Danish dwellings using time use survey data,” Energy and Buildings, vol. 177. pp. 329–340, 2018, doi: 10.1016/j.enbuild.2018.07.044.
[196] J. Li, K. Panchabikesan, Z. Yu, F. Haghighat, M. El Mankibi, and D. Corgier, “Systematic data mining-based framework to discover potential energy waste patterns in residential buildings,” Energy Build., vol. 199, pp. 562–578, 2019, doi: 10.1016/j.enbuild.2019.07.032.
[197] N. Alishahi, M. M. Ouf, and M. Nik-Bakht, “Using WiFi connection counts and camera-based occupancy counts to estimate and predict building occupancy,” Energy Build., vol. 257, p. 111759, 2022, doi: 10.1016/j.enbuild.2021.111759.
[198] S. Alexander C, “Architectural Design with SketchUp: 3D Modeling, Extensions, BIM, Rendering, Making, and Scripting,” John Wiley Sons, 2015.
[199] N. Ghourchian, M. Allegue-Martinez, and D. Precup, “Real-Time Indoor Localization in Smart Homes Using Semi-Supervised Learning,” 29th AAAI Conf. Innov. Appl., no. February, pp. 1–8, 2017.
[200] J. Murty, Programming amazon web services: S3, EC2, SQS, FPS, and SimpleDB. O’Reilly Media, Inc., 2008.
[201] S. Gulabani, Practical Amazon EC2, SQS, Kinesis, and S3. 2017.
[202] J. MacQueen, Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967.
[203] J. Paparrizos and L. Gravano, “Fast and accurate time-series clustering,” ACM Trans. Database Syst., vol. 42, no. 2, 2017, doi: 10.1145/3044711.
[204] C. Faloutsos, M. Ranganathan, and A. Manolopoulos, “Fast Subsequence Matching in Time-Series,” ACM Sigmod Rec., pp. 419–429, 1994.
[205] B. W. Hobson, H. Burak Gunay, A. Ashouri, and G. R. Newsham, “Wi-fi based occupancy clustering and motif identification: A case study,” ASHRAE Trans., vol. 126, no. February, pp. 256–264, 2020.
[206] R. Singh, B. C. Pal, and R. A. Jabr, “Statistical Representation of Distribution System Loads Using Gaussian Mixture Model,” Power Syst. IEEE trans., vol. 25, no. 1, pp. 29–37, 2010.
[207] Christopher M. Bishop, Pattern Recognition and Machine Learning. New York: springer, 2006.
[208] C. Robert, “Machine Learning, a Probabilistic Perspective,” Chance, vol. 27, no. 2, pp. 62–63, 2014, doi: 10.1080/09332480.2014.914768.
[209] C. Leung and H. Ge, “Sleep thermal comfort and the energy saving potential due to reduced indoor operative temperature during sleep,” Build. Environ., vol. 59, pp. 91–98, 2013, doi: 10.1016/j.buildenv.2012.08.010.
[210] H. Stopps and M. F. Touchie, “Residential smart thermostat use: An exploration of thermostat programming, environmental attitudes, and the influence of smart controls on energy savings,” Energy Build., vol. 238, p. 110834, 2021, doi: 10.1016/j.enbuild.2021.110834.
[211] C. Wang, K. Pattawi, and H. Lee, “Energy saving impact of occupancy-driven thermostat for residential buildings,” Energy Build., vol. 211, 2020, doi: 10.1016/j.enbuild.2020.109791.
[212] K. Panchabikesan, M. Ouf, U. Eicker, G. Newsham, and H. Knudsen, “Investigating thermostat setpoint preferences in Canadian households,” in In Proc., p. IBPSA, 2021, no. September.
[213] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdiscip. Rev. Comput. Stat., vol. 2, no. 4, pp. 433–459, 2010, doi: 10.1002/wics.101.
[214] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change point detection methods,” Signal Processing, vol. 167, p. 107299, 2020, doi: 10.1016/j.sigpro.2019.107299.
[215] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of changepoints with a linear computational cost,” J. Am. Stat. Assoc., vol. 107, no. 500, pp. 1590–1598, 2012, doi: 10.1080/01621459.2012.737745.
[216] L. Igual and S. Seguí, Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications. 2017.
[217] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp. 2507–2517, 2007, doi: 10.1093/bioinformatics/btm344.
[218] S. Liu, D. Maljovec, B. Wang, P. T. Bremer, and V. Pascucci, “Visualizing High-Dimensional Data: Advances in the Past Decade,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 3, pp. 1249–1268, 2017, doi: 10.1109/TVCG.2016.2640960.
[219] S. Ploix, M. Amayri, and N. Bouguila, Towards Energy Smart Homes. 2021.
[220] and C. L. Junzhong Ji1, Zhijun Liu1, Aidong Zhang2, Lang Jiao1, Information Computing and Applications: Third International Conference, ICICA 2012 Chengde, China, September 14-16, 2012 Proceedings, vol. 9. 2012.
[221] A. Liaw and M. Wiener, “Classification and Regression by randomForest,” R News, vol. 2, no. 3, pp. 18–22, 2002.
[222] M. Kuhn and K. Johnson, Applied predictive modeling. 2013.
[223] S. Dabirian, M. M. Saad, S. Hussain, and S. Peyman, “Structuring Heterogeneous Urban Data : A Framework to Develop Globally , there is accelerating interest in cities and the analysis of their underlying systems to,” Energy Build., vol. 296, no. June, p. 113376, 2023, doi: 10.1016/j.enbuild.2023.113376.
[224] C. M. Guidelines, “FACTSHEET COMNET Overview,” pp. 1–2, 2010.
[225] S. Salimi and A. Hammad, “Critical review and research roadmap of office building energy management based on occupancy monitoring,” Energy Build., vol. 182, pp. 214–241, 2019, doi: 10.1016/j.enbuild.2018.10.007.
[226] K. Prabhakaran, J. Dridi, M. Amayri, and N. Bouguila, “Explainable K-Means Clustering for Occupancy Estimation,” Procedia Comput. Sci., vol. 203, pp. 326–333, 2022, doi: 10.1016/j.procs.2022.07.041.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top