Login | Register

Deep learning-based brain ventricle segmentation in Computed Tomography using domain adaptation

Title:

Deep learning-based brain ventricle segmentation in Computed Tomography using domain adaptation

Teimouri, Reihaneh (2024) Deep learning-based brain ventricle segmentation in Computed Tomography using domain adaptation. Masters thesis, Concordia University.

[thumbnail of Teimouri_MCompSc_S2024.pdf]
Text (application/pdf)
Teimouri_MCompSc_S2024.pdf - Accepted Version
Restricted to Repository staff only until 13 April 2026.
Available under License Spectrum Terms of Access.
1MB

Abstract

Accurate segmentation of brain ventricles from CT scans is crucial for clinical procedures such as ventriculostomy, which involves draining excess fluid from the ventricles to control intracranial pressure. Ventriculostomy is often performed in acute settings, making CT imaging the most commonly available modality. Unlike MRI, there is a lack of publicly available, well-annotated databases for developing CT-based brain segmentation algorithms. Furthermore, there is a need for intuitive confidence measures for segmentation results produced by automated algorithms, such as deep learning methods, which can potentially improve the confidence and accuracy of clinical tasks. To address these needs, we propose an end-to-end uncertainty-aware domain adaptation technique for CT ventricle segmentation. This technique is based on the joint training of translation models and anatomical segmentation, leveraging unpaired MRI and CT scans without segmentation ground truths. For the translation task, we experimented with three different generative models: Cycle-Consistent Adversarial Networks (CycleGAN), Contrastive Learning for Unpaired Image-to-Image Translation (CUT) from GANs, and the Unpaired Neural Schrödinger Bridge (UNSB) from diffusion models, and compared their results. For the segmentation phase, we employed an attention-based residual recurrent U-Net architecture to compare with U-Net and ResNet. Also, considering CycleGAN's challenges with stability and structural consistency, we assessed various methods to understand their impact on translation and segmentation during our end-to-end training process. Additionally, we incorporated Monte Carlo dropouts in both MRI-to-CT translation and CT segmentation to provide an intuitive interpretation of the segmentation results.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Computer Science and Software Engineering
Item Type:Thesis (Masters)
Authors:Teimouri, Reihaneh
Institution:Concordia University
Degree Name:M. Comp. Sc.
Program:Computer Science
Date:11 April 2024
Thesis Supervisor(s):Xiao, Yiming and Marta, Kersten-Oertel
Keywords:Diffusion model· Ventricle segmentation · Domain adapta- tion· Computed tomography· GANs
ID Code:993737
Deposited By: Reihaneh Teimouri
Deposited On:04 Jun 2024 15:16
Last Modified:04 Jun 2024 15:16

References:

[1] A. Amini, W. Schwarting, A. Soleimany, and D. Rus. Deep evidential regression. Advances
in Neural Information Processing Systems, 33:14927–14937, 2020.
[2] L. G. Apostolova et al. Ventricular atrophy and its clinical correlates in the imaging cohort
from the adcs mci donepezil/vitamin e study. Alzheimer Disease and Associated Disorders,
27(2):174, 2013.
[3] B. B. Avants, N. Tustison, G. Song, et al. Advanced normalization tools (ants). Insight j, 2
(365):1–35, 2009.
[4] Y. Balagurunathan, R. Mitchell, and I. El Naqa. Requirements and reliability of ai in the med-
ical context. Phys Med, 83:72–78, 2021. doi: 10.1016/j.ejmp.2021.02.024. PMID: 33721700;
PMCID: PMC8915137.
[5] W. Bradley. Csf flow in the brain in the context of normal pressure hydrocephalus. American
Journal of Neuroradiology, 36(5):831–838, 2015.
[6] A. Brean, H. Fredø, S. Sollid, T. M ̈uller, T. Sundstrøm, and P. Eide. Five-year incidence of
surgery for idiopathic normal pressure hydrocephalus in norway. Acta neurologica Scandinav-
ica, 120(5):314–316, 2009.
[7] C. Chen, Q. Dou, H. Chen, J. Qin, and P.-A. Heng. Synergistic image and feature adaptation:
Towards cross-modality domain adaptation for medical image segmentation. In Proceedings
of the AAAI conference on artificial intelligence, volume 33, pages 865–872, 2019.
[8] W. Chen, R. Smith, S.-Y. Ji, K. R. Ward, and K. Najarian. Automated ventricular systems

segmentation in brain ct images by combining low-level segmentation and high-level template
matching. BMC medical informatics and decision making, 9(1):1–14, 2009.
[9] J. W. Choi. Using out-of-the-box frameworks for contrastive unpaired image translation for
vestibular schwannoma and cochlea segmentation: An approach for the crossmoda challenge.
In International MICCAI Brainlesion Workshop, pages 509–517, 2021.
[10] O. Crystal, A. Khademi, A. Moody, P. Maralani, and S. Black. Domain adaptation using silver
standard masks for lateral ventricle segmentation in flair mri. In Medical Imaging with Deep
Learning, pages 1895–1909. PMLR, 2024.
[11] G. Dawod, N. Henkel, N. Karim, A. Caras, H. Qaqish, L. Mugge, and A. Medhkour. Does the
setting of external ventricular drain placement affect morbidity? a systematic literature review
comparing intensive care unit versus operating room procedures. World Neurosurgery, 140:
131–141, 2020.
[12] C. Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.
[13] L. Ferrarini, W. M. Palm, H. Olofsen, M. A. van Buchem, J. H. C. Reiber, and F. Admiraal-
Behloul. Shape differences of the brain ventricles in alzheimer’s disease. Neuroimage, 32(3):
1060–1069, Sep 2006. doi: 10.1016/j.neuroimage.2006.05.048. URL https://doi.org/
10.1016/j.neuroimage.2006.05.048. Epub 2006 Jul 12.
[14] V. Fonov, A. Evans, R. McKinstry, C. Almli, and D. Collins. Unbiased nonlinear aver-
age age-appropriate brain templates from birth to adulthood. NeuroImage, 47:S102, 2009.
ISSN 1053-8119. doi: https://doi.org/10.1016/S1053-8119(09)70884-5. URL https://
www.sciencedirect.com/science/article/pii/S1053811909708845. Or-
ganization for Human Brain Mapping 2009 Annual Meeting.
[15] Y. Ge, Z. Xue, T. Cao, and S. Liao. Unpaired whole-body mr to ct synthesis with correlation
coefficient constrained adversarial learning. In Medical Imaging 2019: Image Processing,
volume 10949, pages 28–35. SPIE, 2019.

[16] Y. Ge, Z. Xue, T. Cao, and S. Liao. Unpaired whole-body mr to ct synthesis with correlation
coefficient constrained adversarial learning. In Medical Imaging 2019: Image Processing,
volume 10949, pages 28–35. SPIE, 2019.
[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. Advances in neural information processing sys-
tems, 27, 2014.
[18] R. Graf, J. Schmitt, S. Schlaeger, H. K. M ̈oller, V. Sideri-Lampretsa, A. Sekuboyina, S. M.
Krieg, B. Wiestler, B. Menze, D. Rueckert, et al. Denoising diffusion-based mri to ct image
translation enables automated spinal segmentation. European Radiology Experimental, 7(1):
70, 2023.
[19] H. Guan and M. Liu. Domain adaptation for medical image analysis: a survey. IEEE Trans-
actions on Biomedical Engineering, 69(3):1173–1185, 2021.
[20] C. Haegelen, P. Coup ́e, V. Fonov, N. Guizard, P. Jannin, X. Morandi, and D. L. Collins. Au-
tomated segmentation of basal ganglia and deep brain structures in mri of parkinson’s disease.
International Journal of Computer Assisted Radiology and Surgery, 8(1):99–110, 2013. doi:
10.1007/s11548-012-0675-8.
[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.
[22] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems, volume 33, pages 6840–6851, 2020.
[23] T. Huff, P. Ludwig, D. Salazar, et al. Fully automated intracranial ventricle segmentation on ct
with 2d regional convolutional neural network to estimate ventricular volume. International
Journal of Computer Assisted Radiology and Surgery, 14:1923–1932, 2019. doi: 10.1007/
s11548-019-02038-5. URL https://doi.org/10.1007/s11548-019-02038-5.

[24] Y. Huo, Z. Xu, H. Moon, S. Bao, A. Assad, T. K. Moyo, M. R. Savona, R. G. Abramson, and
B. A. Landman. Synseg-net: Synthetic segmentation without target modality ground truth.
IEEE Transactions on Medical Imaging, 38(4):1016–1025, 2018.
[25] J. Jiang, Y.-C. Hu, N. Tyagi, P. Zhang, A. Rimner, J. O. Deasy, and H. Veeraraghavan. Cross-
modality (ct-mri) prior augmented deep learning for robust lung tumor segmentation from
small mr datasets. Medical Physics, 46(10):4392–4404, 2019.
[26] W. Jiangtao, W. Xinhong, J. Xiao, Y. Bing, Z. Lei, and Y. Yidong. Mri to ct synthesis using
contrastive learning. In 2021 IEEE International Conference on Medical Imaging Physics and
Engineering (ICMIPE), pages 1–5. IEEE, 2021.
[27] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon,
A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion
segmentation with adversarial networks. In Information Processing in Medical Imaging: 25th
International Conference, IPMI 2017, pages 597–609. Springer, 2017.
[28] S. K. Kang, H. J. An, H. Jin, J.-i. Kim, E. K. Chie, J. M. Park, and J. S. Lee. Synthetic ct gen-
eration from weakly paired mr images using cycle-consistent gan for mr-guided radiotherapy.
Biomedical engineering letters, 11(3):263–271, 2021.
[29] B. Kim, G. Kwon, K. Kim, and J. C. Ye. Unpaired image-to-image translation via neural
schr\” odinger bridge. arXiv preprint arXiv:2305.15086, 2023.
[30] P. J. LaMontagne, T. L. Benzinger, J. C. Morris, S. Keefe, R. Hornbeck, C. Xiong, E. Grant,
J. Hassenstab, K. Moulder, A. G. Vlassenko, et al. Oasis-3: longitudinal neuroimaging, clin-
ical, and cognitive dataset for normal aging and alzheimer disease. MedRxiv, pages 2019–12,
2019.
[31] K. K. Leung, J. Barnes, M. Modat, G. R. Ridgway, J. W. Bartlett, N. C. Fox, et al. Brain
maps: an automated, accurate and robust brain extraction technique using a template library.
Neuroimage, 55:1091–1108, 2011.

[32] Q. Lyu and G. Wang. Conversion between ct and mri images using diffusion and score-
matching models. arXiv preprint arXiv:2209.12104, 2022.
[33] J. V. Manj ́on and P. Coup ́e. volbrain: an online mri brain volumetry system. Frontiers in
Neuroinformatics, 10:30, 2016.
[34] D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner.
Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged,
nondemented, and demented older adults. Journal of cognitive neuroscience, 19(9):1498–
1507, 2007.
[35] I. M ́erida, J. Jung, S. Bouvard, D. Le Bars, S. Lancelot, F. Lavenne, C. Bouillot, J. Redout ́e,
A. Hammers, and N. Costes. Cermep-idb-mrxfdg: a database of 37 normal adult human brain
[18f] fdg pet, t1 and flair mri, and ct images available for research. EJNMMI research, 11(1):
1–10, 2021.
[36] L. Mescheder, A. Geiger, and S. Nowozin. Which training methods for gans do actually
converge? In International conference on machine learning, pages 3481–3490. PMLR, 2018.
[37] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.
[38] S. Munakomi and J. M. Das. Ventriculostomy. Aug 13 2023. Available from:
https://www.ncbi.nlm.nih.gov/books/NBK538165/.
[39] M. ̈Ozbey, O. Dalmaz, S. U. Dar, H. A. Bedel, S ̧ . ̈Ozturk, A. G ̈ung ̈or, and T. C ̧ ukur. Unsu-
pervised medical image translation with adversarial diffusion models. IEEE Transactions on
Medical Imaging, 2023.
[40] Y. Pang, J. Lin, T. Qin, and Z. Chen. Image-to-image translation: Methods and applications.
IEEE Transactions on Multimedia, 24:3859–3881, 2021.
[41] T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu. Contrastive learning for unpaired image-to-
image translation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part IX 16, pages 319–345. Springer, 2020.

[42] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convo-
lutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.
[43] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18, pages 234–241. Springer, 2015.
[44] A. Rozantsev, M. Salzmann, and P. Fua. Beyond sharing weights for deep domain adaptation.
IEEE transactions on pattern analysis and machine intelligence, 41(4):801–814, 2018.
[45] C. L. Scelsi, T. A. Rahim, J. A. Morris, G. J. Kramer, B. C. Gilbert, and S. E. Forseen. The
lateral ventricles: A detailed review of anatomy, development, and anatomic variations. AJNR
American Journal of Neuroradiology, 41(4):566–572, 2020. doi: 10.3174/ajnr.A6456. Epub
2020 Feb 20. PMID: 32079598; PMCID: PMC7144651.
[46] M. Shao, S. Han, A. Carass, X. Li, A. M. Blitz, J. Shin, J. L. Prince, and L. M. Ellingsen.
Brain ventricle parcellation using a deep neural network: Application to patients with ven-
triculomegaly. NeuroImage: Clinical, 23:101871, 2019.
[47] M. Shao, S. Han, A. Carass, X. Li, A. M. Blitz, J. Shin, J. L. Prince, and L. M. Ellingsen.
Brain ventricle parcellation using a deep neural network: Application to patients with ven-
triculomegaly. NeuroImage: Clinical, 23:101871, 2019.
[48] H. Shin, H. Kim, S. Kim, Y. Jun, T. Eo, and D. Hwang. Cosmos: Cross-modality unsuper-
vised domain adaptation for 3d medical image segmentation based on target-aware domain
translation and iterative self-training. arXiv preprint arXiv:2203.16557, 2022.
[49] H. Thanh-Tung and T. Tran. Catastrophic forgetting and mode collapse in gans. In 2020
international joint conference on neural networks (ijcnn), pages 1–10. IEEE, 2020.
[50] K. M. Timmins, I. C. van der Schaaf, E. Bennink, Y. M. Ruigrok, X. An, M. Baumgartner,
P. Bourdon, R. De Feo, T. Di Noto, F. Dubost, et al. Comparing methods of detecting and

segmenting unruptured intracranial aneurysms on tof-mras: the adam challenge. Neuroimage,
238:118216, 2021.
[51] N. Tustison, B. Avants, P. Cook, Y. Zheng, A. Egan, P. Yushkevich, and J. Gee. N4itk: im-
proved n3 bias correction. IEEE Transactions on Medical Imaging, 29(6):1310–1320, 2010.
[52] J. A. van Doormaal, T. Fick, M. Ali, M. K ̈ollen, V. van der Kuijp, and T. P. van Doormaal.
Fully automatic adaptive meshing based segmentation of the ventricular system for augmented
reality visualization and navigation. World Neurosurgery, 156:e9–e24, 2021.
[53] J.-C. Walter and G. Barkema. An introduction to monte carlo methods. Physica A: Statistical
Mechanics and its Applications, 418:78–87, 2015.
[54] H. Wang, J. W. Suh, S. R. Das, J. B. Pluta, C. Craige, and P. A. Yushkevich. Multi-atlas
segmentation with joint label fusion. IEEE transactions on pattern analysis and machine
intelligence, 35(3):611–623, 2012.
[55] J. Wang, B. Yan, X. Wu, X. Jiang, Y. Zuo, and Y. Yang. Development of an unsupervised cycle
contrastive unpaired translation network for mri-to-ct synthesis. Journal of Applied Clinical
Medical Physics, 23(11):e13775, 2022.
[56] J. Wang, Q. J. Wu, and F. Pourpanah. Dc-cyclegan: bidirectional ct-to-mr synthesis from
unpaired data. Computerized Medical Imaging and Graphics, page 102249, 2023.
[57] J. Wang, Q. M. J. Wu, and F. Pourpanah. Dc-cyclegan: bidirectional ct-to-mr synthesis from
unpaired data. Computerized Medical Imaging and Graphics, page 102249, 2023.
[58] Z. Xiao, K. Kreis, and A. Vahdat. Tackling the generative learning trilemma with denoising
diffusion gans. arXiv preprint arXiv:2112.07804, 2021.
[59] Z. Xu, J. Luo, D. Lu, J. Yan, S. Frisken, J. Jagadeesan, W. M. Wells III, X. Li, Y. Zheng,
and R. K.-y. Tong. Double-uncertainty guided spatial and temporal consistency regularization
weighting for learning-based abdominal registration. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 14–24. Springer, 2022.

[60] H. Yang, J. Sun, A. Carass, C. Zhao, J. Lee, Z. Xu, and J. Prince. Unpaired brain mr-to-ct
synthesis using a structure-constrained cyclegan. In Deep Learning in Medical Image Analysis
and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA
2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI
2018, Granada, Spain, September 20, 2018, Proceedings 4, pages 174–182. Springer, 2018.
[61] H. Yang, J. Sun, A. Carass, C. Zhao, J. Lee, Z. Xu, and J. Prince. Unpaired brain mr-to-ct
synthesis using a structure-constrained cyclegan. In Deep Learning in Medical Image Analysis
and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA
2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI
2018, Granada, Spain, September 20, 2018, Proceedings 4, pages 174–182. Springer, 2018.
[62] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang.
Diffusion models: A comprehensive survey of methods and applications. ACM Computing
Surveys, 2022.
[63] L. Yu, S. Wang, X. Li, C.-W. Fu, and P.-A. Heng. Uncertainty-aware self-ensembling model
for semi-supervised 3d left atrium segmentation. In Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China,
October 13–17, 2019, Proceedings, Part II 22, pages 605–613. Springer, 2019.
[64] Y. Zhang, R. Jiao, Q. Liao, D. Li, and J. Zhang. Uncertainty-guided mutual consistency
learning for semi-supervised medical image segmentation. Artificial Intelligence in Medicine,
138:102476, 2023.
[65] Z. Zhang, A. Romero, M. J. Muckley, P. Vincent, L. Yang, and M. Drozdzal. Reducing un-
certainty in undersampled mri reconstruction with active acquisition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2049–2058, 2019.
[66] X. Zhou, Q. Ye, Y. Jiang, M. Wang, Z. Niu, W. Menpes-Smith, E. F. Fang, Z. Liu, J. Xia,
and G. Yang. Systematic and comprehensive automated ventricle segmentation on ventricle
images of the elderly patients: A retrospective study. Frontiers in Aging Neuroscience, 12:
618538, 2020.

[67] H. Zhu, R. Rohling, and S. Salcudean. Multi-task unet: Jointly boosting saliency prediction
and disease classification on chest x-ray images. arXiv preprint arXiv:2202.07118, 2022.
[68] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE international conference on com-
puter vision, pages 2223–2232, 2017.
[69] Y. Zou, Z. Yu, X. Liu, B. Kumar, and J. Wang. Confidence regularized self-training. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5982–
5991, 2019.
[70] Q. Zuo, S. Chen, and Z. Wang. R2au-net: Attention recurrent residual convolutional neural
network for multimodal medical image segmentation. Security and Communication Networks,
2021:1–10, 2021.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top