Login | Register

Novel Thermal Controller for Active Stabilization of Microring Modulators

Title:

Novel Thermal Controller for Active Stabilization of Microring Modulators

Musat, Daniel (2024) Novel Thermal Controller for Active Stabilization of Microring Modulators. Masters thesis, Concordia University.

[thumbnail of Musat_MASc_S2024.pdf]
Preview
Text (application/pdf)
Musat_MASc_S2024.pdf - Accepted Version
Available under License Spectrum Terms of Access.
13MB

Abstract

The bandwidth of electrical interconnects is reaching a bottleneck, leading to a surge of interest in silicon photonic interconnects. Microring modulators (MRM) are particularly attractive because of their high bandwidth, energy efficiency, and small size. However, implementing MRMs in commercial products is challenging due to their high thermal sensitivity caused by their high thermo-optic coefficient. Control systems that actively stabilize MRM have demonstrated the ability to compensate for thermal fluctuations, but none have addressed all system requirements for large-scale commercial applications. This work presents a simple and calibration-free method to stabilize MRM that can potentially fulfill all system prerequisites.

The proposed thermal controller requires a double-bus microring resonator (MRR) to monitor the through and drop averages and lock the operation where the through and drop power outputs are identical. This operating point has been shown to be within 3 \% of the optimal optical modulation amplitude (OMA), making it an excellent operating point. Furthermore, this controller is proven to be immune to any external perturbations and requires only analog components. After designing and building a printed circuit board (PCB) that incorporated the proposed thermal tuner, experimental tests were conducted on the controller using an MRM. The obtained results served to validate the functionality of the controller.

Finally, in applications where MRMs have unbalanced input data, the original proposed design is demonstrated to suffer from a region of locking instead of a single operating wavelength. A modified design was then developed and validated to extend that approach to unbalanced data.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (Masters)
Authors:Musat, Daniel
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Electrical and Computer Engineering
Date:27 March 2024
Thesis Supervisor(s):Cowan, Glenn
ID Code:993817
Deposited By: Daniel Musat
Deposited On:05 Jun 2024 15:20
Last Modified:05 Jun 2024 15:20

References:

[1] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Reviews, vol. 6, no. 1, pp. 47–73, 2012. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201100017
[2] K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Optics Express, vol. 20, no. 27, Dec 2012.
[3] K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Optics Express, vol. 21, no. 12, p. 14342, Jun 2013.
[4] K. Padmaraju, D. F. Logan, J. J. Ackert, A. P. Knights, and K. Bergman, “Microring resonance stabilization using thermal dithering,” in 2013 Optical Interconnects Conference, 2013, pp. 58–59.
[5] V. Grimaldi, F. Zanetto, F. Toso, I. Roumpos, T. Chrysostomidis, A. Perino, M. Petrini, F. Morichetti, A. Melloni, N. Pleros, M. Moralis-Pegios, K. Vyrsokinos, G. Ferrari, and M. Sampietro, “Self-stabilized 50 gb/s silicon photonic microring modulator using a power-independent and calibration-free control loop,” Journal of Lightwave Technology, vol. 41, no. 1, pp. 218–225, 2023.
[6] S. Saeedi and A. Emami, “Silicon-photonic ptat temperature sensor for micro-ring resonator thermal stabilization,” Opt. Express, vol. 23, no. 17, pp. 21 875–21 883, Aug 2015. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?URI=oe-23-17-21875
[7] W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro, vol. 33, no. 1, pp. 42–52, 2013.
[8] S. Agarwal, M. Ingels, M. Pantouvaki, M. Steyaert, P. Absil, and J. Van Campenhout, “Wavelength locking of a si ring modulator using an integrated drop-port oma monitoring circuit,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2328–2344, 2016.
[9] J. Sharma, Z. Xuan, H. Li, T. Kim, R. Kumar, M. N. Sakib, C.-M. Hsu, C. Ma, H. Rong, G. Balamurugan, and J. Jaussi, “Silicon photonic microring-based 4 × 112 gb/s wdm transmitter with photocurrent-based thermal control in 28-nm cmos,” IEEE Journal of Solid-State Circuits, vol. 57, no. 4, pp. 1187–1198, 2022.
[10] J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao,
G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators
by overlaying a polymer cladding on narrowed waveguides,” Opt. Express,
vol. 17, no. 17, pp. 14 627–14 633, Aug 2009. [Online]. Available: https:
//opg.optica.org/oe/abstract.cfm?URI=oe-17-17-14627
[11] A. V. Krishnamoorthy, H. D. Thacker, O. Torudbakken, S. M¨uller, A. Srinivasan, P. J. Decker, H. Opheim, J. E. Cunningham, I. Shubin, X. Zheng, M. Dignum, K. Raj, E. Rongved, and R. Penumatcha, “From chip to cloud: Optical interconnects in engineered systems,” Journal of Lightwave Technology, vol. 35, no. 15, pp. 3103–3115, 2017.
[12] R. Mahajan, X. Li, J. Fryman, Z. Zhang, S. Nekkanty, P. Tadayon, J. Jaussi, S. Shumarayev,
A. Agrawal, S. Jadhav, K. A. Singh, A. Alduino, S. Gujjula, C.-P. Chiu,
T. Nordstog, K. J. Hosseini, S. Sane, N. Deshpande, K. Ayg¨un, A. Sarkar, P. Dobriyal, S. Pothukuchi, V. A. Pogue, and D. Hui, “Co-packaged photonics for high performance computing: Status, challenges and opportunities,” Journal of Lightwave Technology, vol. 40, no. 2, pp. 379–392, 2022.
[13] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. F´ed´eli, and et al., “Roadmap on silicon photonics,” Journal of Optics, vol. 18, no. 7, p. 073003, Jun 2016.
[14] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photonics, vol. 4, no. 8, p. 518–526, Jul 2010.
[15] Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express,
vol. 25, no. 9, pp. 9712–9733, May 2017. [Online]. Available: https:
//opg.optica.org/oe/abstract.cfm?URI=oe-25-9-9712
[16] M. Pantouvaki, P. Verheyen, G. Lepage, J. De Coster, H. Yu, P. De Heyn, P. Absil, and J. Van Campenhout, “20gb/s silicon ring modulator co-integrated with a ge monitor photodetector,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), 2013, pp. 1–3.
[17] M. Nawrocka, T. Liu, X. Wang, and R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Applied Physics Letters - APPL PHYS LETT, vol. 89, 08 2006.
[18] P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng,
A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring
modulator,” Opt. Express, vol. 18, no. 11, pp. 10 941–10 946, May 2010. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?URI=oe-18-11-10941
[19] S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 1, pp. 316–324, 2010.
[20] J. Garcia-Echeverria, G. Cowan, O. Liboiron-Ladouceur, and D. Rolston, “Towards combinational logic circuits based on optical logic gates,” in 2023 Photonics North (PN), 2023, pp. 1–2.
[21] B. Guha, B. B. C. Kyotoku, and M. Lipson, “Cmos-compatible athermal silicon microring resonators,” Opt. Express, vol. 18, no. 4, pp. 3487–3493, Feb 2010. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?URI=oe-18-4-3487
[22] B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express, vol. 21, no. 22, pp. 26 557–26 563, Nov 2013. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?URI=oe-21-22-26557
[23] K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” Journal of Lightwave Technology, vol. 32, no. 3, pp. 505–512, 2014.
[24] C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in CLEO/QELS: 2010 Laser Science to Photonic Applications, 2010, pp. 1–2.
[25] S. Yang, X. Zhu, Y. Zhang, Y. Li, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Thermal stabilization of a microring resonator using bandgap temperature sensor,” in 2015 IEEE Optical Interconnects Conference (OI), 2015, pp. 44–45.
[26] R. Nandi, V. Ruparelia, V. R. Kuppireddy, I. Som, P. K. Sharma, A. Chatterjee, A. Aboketaf, C. Hedges, C. Pike, F. Pavlik, and et al., “Thermal stabilization of micro-ring modulator using a monolithically integrated analog feedback circuit,” in Presented at 24th European Conference on Integrated Optics, 2023.
[27] C. Li, R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C.-H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, “Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm cmos,” IEEE Journal of Solid-State Circuits, vol. 49, no. 6, pp. 1419–1436, 2014.
[28] K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic
stabilization of a microring modulator under thermal perturbation,” in Optical Fiber Communication Conference. Optica Publishing Group, 2012, p. OW4F.2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=OFC-2012-OW4F.2
[29] X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker,
S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E.
Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express, vol. 22, no. 10, pp. 12 628–12 633, May 2014. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?URI=oe-22-10-12628
[30] H. Li, Z. Xuan, A. Titriku, C. Li, K. Yu, B. Wang, A. Shafik, N. Qi, Y. Liu, R. Ding, T. Baehr-Jones, M. Fiorentino, M. Hochberg, S. Palermo, and P. Y. Chiang, “A 25 gb/s, 4.4 v-swing, ac-coupled ring modulator-based wdm transmitter with wavelength stabilization in 65 nm cmos,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 3145–3159, 2015.
[31] S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Optics Letters, vol. 33, no. 19, p. 2185–2187, Oct 2008.
[32] K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics, vol. 3, no. 4–5, p. 269–281, 2014.
[33] C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” Opt. Express, vol. 19, no. 6, pp. 5143–5148, Mar 2011. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?URI=oe-19-6-5143
[34] M. Kim, M.-H. Kim, Y. Jo, H.-K. Kim, S. Lischke, C. Mai, L. Zimmermann, and W.- Y. Choi, “Silicon electronic photonic integrated 25 gb/s ring modulator transmitter with a built-in temperature controller,” Photon. Res., vol. 9, no. 4, pp. 507–513, Apr 2021. [Online]. Available: https: //opg.optica.org/prj/abstract.cfm?URI=prj-9-4-507
[35] Y. Kokubun, N. Funato, and M. Takizawa, “Athermal waveguides for temperatureindependent lightwave devices,” IEEE Photonics Technology Letters, vol. 5, no. 11, pp. 1297–1300, 1993.
[36] X. Guan, W. Shi, and L. A. Rusch, “Ultra-dense wavelength-division multiplexing with microring modulator,” Journal of Lightwave Technology, vol. 39, no. 13, pp. 4300–4306, 2021.
[37] C. Sun, M.Wade, M. Georgas, S. Lin, L. Alloatti, B. Moss, R. Kumar, A. H. Atabaki, F. Pavanello, J. M. Shainline, J. S. Orcutt, R. J. Ram, M. Popovi´c, and V. Stojanovi´c, “A 45 nm cmos-soi monolithic photonics platform with bit-statistics-based resonant
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top