Yang, Senwen (2024) Assessment of Urban Microclimate and Its Impact on Outdoor Thermal Comfort and Building Energy Performance. PhD thesis, Concordia University.
Preview |
Text (application/pdf)
7MBYang_PhD_S2024.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
As urbanization and population growth have increased over the past decade, more construction has been built in urban areas to form large metropolitan areas. Researchers are paying more attention to the link between human activities and the immediate surroundings – urban microclimate –to improve the quality of life and minimize adverse impacts on the environment and climate. This thesis focuses on the urban microclimate and its impact on outdoor thermal comfort and building energy performance. This study will start a comprehensive literature review presenting the latest progress in urban microclimate research on urban wind and thermal environment, covering methods and practical issues.
For the short-term analysis, this research studies how urban configuration affects the urban microclimate and outdoor thermal comfort. In the present work, temperature distribution at three different urban areas will be simulated during a summer heatwave in 2013 in Montreal, Canada. The impact of different building configurations on the flow pattern will be investigated. What’s more, thermal comfort and the impact of heatwaves on the human body will be considered by humidex (humidity index). The results show that this model is capable of estimating local microclimate and outdoor thermal comfort.
An artificial neural network (ANN) model is also presented in this study to predict urban microclimates based on long-term measurements from local weather stations near urban buildings and their significance in analyzing building energy consumption. The ANN model could connect local and remote meteorological parameters for a whole year. The 20-year historical weather data at the airport was then used to generate a local TMY, and then building heating and cooling loads were analyzed. This method was evaluated for five weather stations to assess the impact of the local microclimate on the energy consumption of buildings.
This study underscores the crucial role of urban microclimate in building energy consumption through both short-term and long-term evaluations. Accurate prediction of local weather conditions around buildings is essential within urban microclimates. The research introduces a pioneering approach using an artificial neural network model for predicting microclimate parameters based on extensive onsite measurements, emphasizing its significance in building energy analysis.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering |
---|---|
Item Type: | Thesis (PhD) |
Authors: | Yang, Senwen |
Institution: | Concordia University |
Degree Name: | Ph. D. |
Program: | Building Engineering |
Date: | 12 January 2024 |
Thesis Supervisor(s): | Wang, Liangzhu(Leon) and Stathopoulos, Theodore |
Keywords: | urban microclimate; building energy; outdoor thermal comfort; machine learning; numerical simulation |
ID Code: | 993851 |
Deposited By: | Senwen Yang |
Deposited On: | 04 Jun 2024 14:38 |
Last Modified: | 04 Jun 2024 14:38 |
References:
REFERENCES[1] P. Bocquier, World urbanization prospects: An alternative to the UN model of projection compatible with the mobility transition theory, Demogr. Res. 12 (2005) 197–236. https://doi.org/10.4054/DemRes.2005.12.9.
[2] T.B. Williams, Microclimatic temperature relationships over different surfaces, J. Geog. (1991). https://doi.org/10.1080/00221349108979321.
[3] I. Orlanski, A rational subdivision of scales for atmospheric processes, Bull. Amer. Meteor. Soc. (1975).
[4] N. Antoniou, H. Montazeri, M. Neophytou, B. Blocken, CFD simulation of urban microclimate: Validation using high-resolution field measurements, Sci. Total Environ. 695 (2019) 133743. https://doi.org/10.1016/j.scitotenv.2019.133743.
[5] G. Chen, D. Wang, Q. Wang, Y. Li, X. Wang, J. Hang, P. Gao, C. Ou, K. Wang, Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage, Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.138147.
[6] Y. Toparlar, B. Blocken, B. Maiheu, G.J.F. van Heijst, A review on the CFD analysis of urban microclimate, Renew. Sustain. Energy Rev. 80 (2017) 1613–1640. https://doi.org/10.1016/j.rser.2017.05.248.
[7] B. Blocken, J. Carmeliet, Pedestrian wind environment around buildings: Literature review and practical examples, J. Therm. Envel. Build. Sci. 28 (2004) 107–159. https://doi.org/10.1177/1097196304044396.
[8] P. Moonen, T. Defraeye, V. Dorer, B. Blocken, J. Carmeliet, Urban Physics: Effect of the micro-climate on comfort, health and energy demand, Front. Archit. Res. 1 (2012) 197–228. https://doi.org/10.1016/j.foar.2012.05.002.
[9] L. Howard, The Climate of London, vol I, Harvey Dart. (1833).
[10] M. Santamouris, N. Papanikolaou, I. Livada, I. Koronakis, C. Georgakis, A. Argiriou, D.N. Assimakopoulos, On the impact of urban climate on the energy consuption of building, Sol. Energy. 70 (2001) 201–216. https://doi.org/10.1016/S0038-092X(00)00095-5.
[11] B.T. Yang, R.N. Meroney, ON DIFFUSION FROM AN INSTANTANEOUS POINT SOURCE IN A NEUTRALLY STRATIFIED TURBULENT BOUNDARY LAYER WITH A LASER LIGHT SCATTERING PROBE., Colo State Univ (Fort Collins), Proj THEMI. (1972).
[12] P.Y. Cui, Z. Li, W.Q. Tao, Wind-tunnel measurements for thermal effects on the air flow and pollutant dispersion through different scale urban areas, Build. Environ. 97 (2016) 137–151. https://doi.org/10.1016/j.buildenv.2015.12.010.
[13] M. Hadavi, H. Pasdarshahri, Impacts of urban buildings on microclimate and cooling systems efficiency: Coupled CFD and BES simulations, Sustain. Cities Soc. (2021). https://doi.org/10.1016/j.scs.2021.102740.
[14] M. Zeeshan, Z. Ali, Using a blue landscape to mitigate heat stress during a heatwave event: a simulation study in a hot-humid urban environment, J. Water Clim. Chang. (2023). https://doi.org/10.2166/wcc.2023.363.
[15] M. Mortezazadeh, L.L. Wang, M. Albettar, S. Yang, CityFFD – City fast fluid dynamics for urban microclimate simulations on graphics processing units, Urban Clim. (2022). https://doi.org/10.1016/j.uclim.2021.101063.
[16] C. Shu, A. Gaur, L. (Leon) Wang, M. Bartko, A. Laouadi, L. Ji, M. Lacasse, Added value of convection permitting climate modelling in urban overheating assessments, Build. Environ. (2022). https://doi.org/10.1016/j.buildenv.2021.108415.
[17] Z. Gao, Y. Hou, W. Chen, Enhanced sensitivity of the urban heat island effect to summer temperatures induced by urban expansion, Environ. Res. Lett. (2019). https://doi.org/10.1088/1748-9326/ab2740.
[18] F. Binarti, M.D. Koerniawan, S. Triyadi, S.S. Utami, A. Matzarakis, A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions, Urban Clim. (2020). https://doi.org/10.1016/j.uclim.2019.100531.
[19] A. Abd Razak, A. Hagishima, N. Ikegaya, J. Tanimoto, Analysis of airflow over building arrays for assessment of urban wind environment, Build. Environ. (2013). https://doi.org/10.1016/j.buildenv.2012.08.007.
[20] F. Salata, I. Golasi, A.D.L. Vollaro, R.D.L. Vollaro, How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study, Energy Build. (2015). https://doi.org/10.1016/j.enbuild.2015.04.010.
[21] A. Mochida, I.Y.F. Lun, Prediction of wind environment and thermal comfort at pedestrian level in urban area, J. Wind Eng. Ind. Aerodyn. 96 (2008) 1498–1527. https://doi.org/10.1016/j.jweia.2008.02.033.
[22] J. Allegrini, V. Dorer, J. Carmeliet, Buoyant flows in street canyons: Validation of CFD simulations with wind tunnel measurements, Build. Environ. 72 (2014) 63–74. https://doi.org/10.1016/j.buildenv.2013.10.021.
[23] L.W. Chew, L.R. Glicksman, L.K. Norford, Buoyant flows in street canyons: Comparison of RANS and LES at reduced and full scales, Build. Environ. 146 (2018) 77–87. https://doi.org/10.1016/j.buildenv.2018.09.026.
[24] H. Bherwani, A. Singh, R. Kumar, Assessment methods of urban microclimate and its parameters: A critical review to take the research from lab to land, Urban Clim. (2020). https://doi.org/10.1016/j.uclim.2020.100690.
[25] U.K. Priya, R. Senthil, A review of the impact of the green landscape interventions on the urban microclimate of tropical areas, Build. Environ. (2021). https://doi.org/10.1016/j.buildenv.2021.108190.
[26] P. Ampatzidis, T. Kershaw, A review of the impact of blue space on the urban microclimate, Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.139068.
[27] Z.T. Ai, C.M. Mak, From street canyon microclimate to indoor environmental quality in naturally ventilated urban buildings: Issues and possibilities for improvement, Build. Environ. (2015). https://doi.org/10.1016/j.buildenv.2015.10.008.
[28] A. Shafaghat, G. Manteghi, A. Keyvanfar, H. Bin Lamit, K. Saito, D.R. Ossen, Street geometry factors influence urban microclimate in tropical coastal cities: A review, Environ. Clim. Technol. (2016). https://doi.org/10.1515/rtuect-2016-0006.
[29] D. Lai, W. Liu, T. Gan, K. Liu, Q. Chen, A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces, Sci. Total Environ. (2019). https://doi.org/10.1016/j.scitotenv.2019.01.062.
[30] Z. Liu, K.Y. Cheng, Y. He, C.Y. Jim, R.D. Brown, Y. Shi, K. Lau, E. Ng, Microclimatic measurements in tropical cities: Systematic review and proposed guidelines, Build. Environ. 222 (2022) 109411. https://doi.org/10.1016/j.buildenv.2022.109411.
[31] T. Hu, Y. Hu, K. Qi, Dynamic Evolution of Surface Urban Heat Island in Beijing, in: Int. Geosci. Remote Sens. Symp., 2019. https://doi.org/10.1109/IGARSS.2019.8898624.
[32] D. Mu, N. Gao, T. Zhu, CFD investigation on the effects of wind and thermal wall-flow on pollutant transmission in a high-rise building, Build. Environ. (2018). https://doi.org/10.1016/j.buildenv.2018.03.051.
[33] S. Huttner, M. Bruse, Numerical modeling of the urban climate - a preview on ENVI-MET 4.0, Seventh Int. Conf. Urban Clim. (2009).
[34] M. Neophytou, A. Gowardhan, M. Brown, An inter-comparison of three urban wind models using Oklahoma City Joint Urban 2003 wind field measurements, J. Wind Eng. Ind. Aerodyn. (2011). https://doi.org/10.1016/j.jweia.2011.01.010.
[35] A.C.S. Lai, A.C.T. So, S.K.C. Ng, D. Jonas, The territory-wide airborne light detection and ranging survey for the Hong Kong special administrative region, in: 33rd Asian Conf. Remote Sens. 2012, ACRS 2012, 2012.
[36] R. Byrne, N.J. Hewitt, P. Griffiths, P. MacArtain, A comparison of four microscale wind flow models in predicting the real-world performance of a large-scale peri-urban wind turbine, using onsite LiDAR wind measurements, Sustain. Energy Technol. Assessments. (2021). https://doi.org/10.1016/j.seta.2021.101323.
[37] G. Battista, E. Carnielo, R. De Lieto Vollaro, Thermal impact of a redeveloped area on localized urban microclimate: A case study in Rome, Energy Build. (2016). https://doi.org/10.1016/j.enbuild.2016.10.004.
[38] W. Liu, Y. Zhang, Q. Deng, The effects of urban microclimate on outdoor thermal sensation and neutral temperature in hot-summer and cold-winter climate, Energy Build. (2016). https://doi.org/10.1016/j.enbuild.2016.06.086.
[39] M. Nikolopoulou, S. Lykoudis, Use of outdoor spaces and microclimate in a Mediterranean urban area, Build. Environ. (2007). https://doi.org/10.1016/j.buildenv.2006.09.008.
[40] N. Antoniou, H. Montazeri, M. Neophytou, B. Blocken, CFD simulation of urban microclimate: Validation using high-resolution field measurements, Sci. Total Environ. 695 (2019) 133743. https://doi.org/10.1016/j.scitotenv.2019.133743.
[41] L. Klok, S. Zwart, H. Verhagen, E. Mauri, The surface heat island of Rotterdam and its relationship with urban surface characteristics, Resour. Conserv. Recycl. (2012). https://doi.org/10.1016/j.resconrec.2012.01.009.
[42] A. M’Saouri El Bat, Z. Romani, E. Bozonnet, A. Draoui, Integration of a practical model to assess the local urban interactions in building energy simulation with a street canyon, J. Build. Perform. Simul. (2020). https://doi.org/10.1080/19401493.2020.1818829.
[43] M. Neophytou, P. Fokaides, I. Panagiotou, I. Ioannou, M. Petrou, M. Sandberg, H. Wigo, E. Linden, E. Batchvarova, P. Videnov, B. Dimitroff, A. Ivanov, Towards Optimization of Urban Planning and Architectural Parameters for Energy use Minimization in Mediterranean Cities, in: Proc. World Renew. Energy Congr. – Sweden, 8–13 May, 2011, Linköping, Sweden, 2011. https://doi.org/10.3384/ecp110573372.
[44] M. Doya, E. Bozonnet, F. Allard, Experimental measurement of cool facades’ performance in a dense urban environment, in: Energy Build., 2012. https://doi.org/10.1016/j.enbuild.2011.11.001.
[45] M. Shahrestani, R. Yao, Z. Luo, E. Turkbeyler, H. Davies, A field study of urban microclimates in London, Renew. Energy. (2015). https://doi.org/10.1016/j.renene.2014.05.061.
[46] G.K.L. Wong, C.Y. Jim, Urban-microclimate effect on vector mosquito abundance of tropical green roofs, Build. Environ. (2017). https://doi.org/10.1016/j.buildenv.2016.11.028.
[47] S. Tong, N.H. Wong, C.L. Tan, S.K. Jusuf, M. Ignatius, E. Tan, Impact of urban morphology on microclimate and thermal comfort in northern China, Sol. Energy. (2017). https://doi.org/10.1016/j.solener.2017.06.027.
[48] S.A. Zaki, N.E. Othman, S.W. Syahidah, F. Yakub, F. Muhammad-Sukki, J.A. Ardila-Rey, M.F. Shahidan, A.S.M. Saudi, Effects of urban morphology on microclimate parameters in an urban university campus, Sustain. (2020). https://doi.org/10.3390/su12072962.
[49] T. Hong, Y. Xu, K. Sun, W. Zhang, X. Luo, B. Hooper, Urban microclimate and its impact on building performance: A case study of San Francisco, Urban Clim. (2021). https://doi.org/10.1016/j.uclim.2021.100871.
[50] S.W. Kiyoshi Uehara, Shuzo Murakami, Susumu Oikawa, Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons, J. Wind Eng. Ind. Aerodyn. 94 (2006) 621–636. https://doi.org/http://dx.doi.org/10.1016/j.jweia.2006.02.003.
[51] Y. Ogawa, P.G. Diosey, K. Uehara, H. Ueda, A wind tunnel for studying the effects of thermal stratification in the atmosphere, Atmos. Environ. (1981). https://doi.org/10.1016/0004-6981(81)90286-9.
[52] J. Allegrini, V. Dorer, J. Carmeliet, Wind tunnel measurements of buoyant flows in street canyons, Build. Environ. (2013). https://doi.org/10.1016/j.buildenv.2012.08.029.
[53] J. Allegrini, A wind tunnel study on three-dimensional buoyant flows in street canyons with different roof shapes and building lengths, Build. Environ. (2018). https://doi.org/10.1016/j.buildenv.2018.06.056.
[54] Z. Mo, C.H. Liu, Wind tunnel measurements of pollutant plume dispersion over hypothetical urban areas, Build. Environ. (2018). https://doi.org/10.1016/j.buildenv.2018.01.046.
[55] T.S. Larsen, P. Heiselberg, Single-sided natural ventilation driven by wind pressure and temperature difference, Energy Build. (2008). https://doi.org/10.1016/j.enbuild.2006.07.012.
[56] W. Zhang, C.D. Markfort, F. Porté-Agel, Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study, Boundary-Layer Meteorol. (2013). https://doi.org/10.1007/s10546-012-9751-4.
[57] M.F. Yassin, A wind tunnel study on the effect of thermal stability on flow and dispersion of rooftop stack emissions in the near wake of a building, Atmos. Environ. (2013). https://doi.org/10.1016/j.atmosenv.2012.10.013.
[58] L. Zhang, Y. Feng, Q. Meng, Y. Zhang, Experimental study on the building evaporative cooling by using the Climatic Wind Tunnel, Energy Build. (2015). https://doi.org/10.1016/j.enbuild.2015.07.038.
[59] J. Huang, P. Jones, A. Zhang, R. Peng, X. Li, P. wai Chan, Urban Building Energy and Climate (UrBEC) simulation: Example application and field evaluation in Sai Ying Pun, Hong Kong, Energy Build. (2020). https://doi.org/10.1016/j.enbuild.2019.109580.
[60] Y. Lin, T. Ichinose, Y. Yamao, H. Mouri, Wind velocity and temperature fields under different surface heating conditions in a street canyon in wind tunnel experiments, Build. Environ. (2020). https://doi.org/10.1016/j.buildenv.2019.106500.
[61] Y. Jiang, D. Alexander, H. Jenkins, R. Arthur, Q. Chen, Natural ventilation in buildings: Measurement in a wind tunnel and numerical simulation with large-eddy simulation, J. Wind Eng. Ind. Aerodyn. (2003). https://doi.org/10.1016/S0167-6105(02)00380-X.
[62] J. Allegrini, J.H. Kämpf, V. Dorer, J. Carmeliet, Modelling the Urban Microclimate and its Influence on Building Energy Demands of an Urban Neighbourhood, in: Proc. CISBAT 2013 Cleantech Smart Cities Build., EPFL Solar Energy and Building Physics Laboratory (LESO-PB), Lausanne, Switzerland, 2013: pp. 867–872. http://infoscience.epfl.ch/record/195701.
[63] S.M. Salim, R. Buccolieri, A. Chan, S. Di Sabatino, Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES, J. Wind Eng. Ind. Aerodyn. (2011). https://doi.org/10.1016/j.jweia.2010.12.002.
[64] X. Zheng, H. Montazeri, B. Blocken, CFD simulations of wind flow and mean surface pressure for buildings with balconies: Comparison of RANS and LES, Build. Environ. (2020). https://doi.org/10.1016/j.buildenv.2020.106747.
[65] M. Shirzadi, P.A. Mirzaei, Y. Tominaga, CFD analysis of cross-ventilation flow in a group of generic buildings: Comparison between steady RANS, LES and wind tunnel experiments, Build. Simul. (2020). https://doi.org/10.1007/s12273-020-0657-7.
[66] ANSYS Fluent Theory Guide, ANSYS Fluent Theory Guide, ANSYS Inc., USA. (2020).
[67] M. Bruse, ENVI-met 3.0: Updated Model Overview, (2004) 1–12.
[68] N.G. Jacobsen, D.R. Fuhrman, J. Fredsøe, A wave generation toolbox for the open-source CFD library: OpenFoam®, Int. J. Numer. Methods Fluids. (2012). https://doi.org/10.1002/fld.2726.
[69] A. Kamal, S.M.H. Abidi, A. Mahfouz, S. Kadam, A. Rahman, I.G. Hassan, L.L. Wang, Impact of urban morphology on urban microclimate and building energy loads, Energy Build. (2021). https://doi.org/10.1016/j.enbuild.2021.111499.
[70] J. Pfafferott, S. Rißmann, M. Sühring, F. Kanani-Sühring, B. Maronga, Building indoor model in PALM-4U: Indoor climate, energy demand, and the interaction between buildings and the urban microclimate, Geosci. Model Dev. (2021). https://doi.org/10.5194/gmd-14-3511-2021.
[71] J. Vogel, A. Afshari, G. Chockalingam, S. Stadler, Evaluation of a novel WRF/PALM-4U coupling scheme incorporating a roughness-corrected surface layer representation, Urban Clim. (2022). https://doi.org/10.1016/j.uclim.2022.101311.
[72] J. Geletič, M. Lehnert, P. Krč, J. Resler, E.S. Krayenhoff, High-resolution modelling of thermal exposure during a hot spell: A case study using palm-4u in prague, czech republic, Atmosphere (Basel). (2021). https://doi.org/10.3390/atmos12020175.
[73] J. Liu, M. Heidarinejad, S.K. Nikkho, N.W. Mattise, J. Srebric, Quantifying impacts of urban microclimate on a building energy consumption-a case study, Sustain. (2019). https://doi.org/10.3390/su11184921.
[74] Z. Zhai, Q. Chen, P. Haves, J.H. Klems, On approaches to couple energy simulation and computational fluid dynamics programs, Build. Environ. (2002). https://doi.org/10.1016/S0360-1323(02)00054-9.
[75] J. Allegrini, V. Dorer, J. Carmeliet, Influence of the urban microclimate in street canyons on the energy demand for space cooling and heating of buildings, Energy Build. (2012). https://doi.org/10.1016/j.enbuild.2012.10.013.
[76] A. Katal, M. Mortezazadeh, L. (Leon) Wang, Modeling building resilience against extreme weather by integrated CityFFD and CityBEM simulations, Appl. Energy. 250 (2019) 1402–1417. https://doi.org/10.1016/j.apenergy.2019.04.192.
[77] Y. Miao, S. Liu, B. Chen, B. Zhang, S. Wang, S. Li, Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model, Adv. Atmos. Sci. (2013). https://doi.org/10.1007/s00376-013-2234-9.
[78] F. Miguet, D. Groleau, Urban bioclimatic indicators for urban planers with the software tool SOLENE, in: Port. SB 2007 - Sustain. Constr. Mater. Pract. Chall. Ind. New Millenn., 2007.
[79] R. Zhang, K.P. Lam, S. chune Yao, Y. Zhang, Coupled EnergyPlus and computational fluid dynamics simulation for natural ventilation, Build. Environ. (2013). https://doi.org/10.1016/j.buildenv.2013.04.002.
[80] K. Perini, A. Chokhachian, S. Dong, T. Auer, Modeling and simulating urban outdoor comfort: Coupling ENVI-Met and TRNSYS by grasshopper, Energy Build. (2017). https://doi.org/10.1016/j.enbuild.2017.07.061.
[81] J. Brozovsky, A. Simonsen, N. Gaitani, Validation of a CFD model for the evaluation of urban microclimate at high latitudes: A case study in Trondheim, Norway, Build. Environ. (2021). https://doi.org/10.1016/j.buildenv.2021.108175.
[82] N. Fintikakis, N. Gaitani, M. Santamouris, M. Assimakopoulos, D.N. Assimakopoulos, M. Fintikaki, G. Albanis, K. Papadimitriou, E. Chryssochoides, K. Katopodi, P. Doumas, Bioclimatic design of open public spaces in the historic centre of Tirana, Albania, Sustain. Cities Soc. (2011). https://doi.org/10.1016/j.scs.2010.12.001.
[83] M.F. Shahidan, P.J. Jones, J. Gwilliam, E. Salleh, An evaluation of outdoor and building environment cooling achieved through combination modification of trees with ground materials, Build. Environ. (2012). https://doi.org/10.1016/j.buildenv.2012.07.012.
[84] Y. Toparlar, B. Blocken, P. Vos, G.J.F. Van Heijst, W.D. Janssen, T. van Hooff, H. Montazeri, H.J.P. Timmermans, CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam, Build. Environ. (2015). https://doi.org/10.1016/j.buildenv.2014.08.004.
[85] X. Yang, L. Zhao, M. Bruse, Q. Meng, Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces, Build. Environ. (2013). https://doi.org/10.1016/j.buildenv.2012.11.008.
[86] J. Ma, X. Li, Y. Zhu, A simplified method to predict the outdoor thermal environment in residential district, Build. Simul. (2012). https://doi.org/10.1007/s12273-012-0079-2.
[87] J. Brozovsky, S. Corio, N. Gaitani, A. Gustavsen, Evaluation of sustainable strategies and design solutions at high-latitude urban settlements to enhance outdoor thermal comfort, Energy Build. (2021). https://doi.org/10.1016/j.enbuild.2021.111037.
[88] U. Berardi, Y. Wang, The effect of a denser city over the urban microclimate: The case of Toronto, Sustain. (2016). https://doi.org/10.3390/su8080822.
[89] Y. Tominaga, Y. Sato, S. Sadohara, CFD simulations of the effect of evaporative cooling from water bodies in a micro-scale urban environment: Validation and application studies, Sustain. Cities Soc. 19 (2015) 259–270. https://doi.org/10.1016/j.scs.2015.03.011.
[90] M. Mortezazadeh, Z. Jandaghian, L.L. Wang, Integrating CityFFD and WRF for modeling urban microclimate under heatwaves, Sustain. Cities Soc. (2021). https://doi.org/10.1016/j.scs.2020.102670.
[91] D. Clarke, R. Kinghorn, A. Cam, M. Chui, B. Hall, N. Robert, R. STEFAN, G. CARUTASU, S. Caner, F. Bhatti, H. Michael, K. Andreas, N.R. Mosteanu, S. Weber, A Brief History of Artificial Intelligence: On the Past, Present, and Futur...: Search KCenter resources, McKinsey. (2019).
[92] K. Häb, A. Middel, B.L. Ruddell, H. Hagen, A Data-Driven Approach to Categorize Climatic Microenvironments, in: EnvirVis 2016 - Work. Vis. Environ. Sci., 2016. https://doi.org/10.2312/envirvis.20161105.
[93] L. Alonso, F. Renard, A new approach for understanding urban microclimate by integrating complementary predictors at different scales in regression and machine learning models, Remote Sens. (2020). https://doi.org/10.3390/RS12152434.
[94] M. Zhang, X. Zhang, S. Guo, X. Xu, J. Chen, W. Wang, Urban micro-climate prediction through long short-term memory network with long-term monitoring for on-site building energy estimation, Sustain. Cities Soc. (2021). https://doi.org/10.1016/j.scs.2021.103227.
[95] S. Higgins, T. Stathopoulos, Application of artificial intelligence to urban wind energy, Build. Environ. (2021). https://doi.org/10.1016/j.buildenv.2021.107848.
[96] G.Y. Oukawa, P. Krecl, A.C. Targino, Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches, Sci. Total Environ. 815 (2022) 152836. https://doi.org/10.1016/j.scitotenv.2021.152836.
[97] C. Ding, K.P. Lam, Data-driven model for cross ventilation potential in high-density cities based on coupled CFD simulation and machine learning, Build. Environ. (2019). https://doi.org/10.1016/j.buildenv.2019.106394.
[98] N. Nazarian, J. Fan, T. Sin, L. Norford, J. Kleissl, Predicting outdoor thermal comfort in urban environments: A 3D numerical model for standard effective temperature, Urban Clim. (2017). https://doi.org/10.1016/j.uclim.2017.04.011.
[99] M. Mortezazadeh, J. Zou, M. Hosseini, S. Yang, L. Wang, Estimating Urban Wind Speeds and Wind Power Potentials Based on Machine Learning with City Fast Fluid Dynamics Training Data, Atmosphere (Basel). (2022). https://doi.org/10.3390/atmos13020214.
[100] Y. Yao, C. Chang, F. Ndayisaba, S. Wang, A new approach for surface urban heat island monitoring based on machine learning algorithm and spatiotemporal fusion model, IEEE Access. (2020). https://doi.org/10.1109/ACCESS.2020.3022047.
[101] I. Abohela, N. Hamza, S. Dudek, Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines, Renew. Energy. (2013). https://doi.org/10.1016/j.renene.2012.08.068.
[102] J. Liu, J. Niu, Y. Du, C.M. Mak, Y. Zhang, LES for pedestrian level wind around an idealized building array—Assessment of sensitivity to influencing parameters, Sustain. Cities Soc. (2019). https://doi.org/10.1016/j.scs.2018.10.034.
[103] Q.M. Zahid Iqbal, A.L.S. Chan, Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings: Effect of building shape, separation and orientation, Build. Environ. (2016). https://doi.org/10.1016/j.buildenv.2016.02.015.
[104] W.D. Janssen, B. Blocken, T. van Hooff, Pedestrian wind comfort around buildings: Comparison of wind comfort criteria based on whole-flow field data for a complex case study, Build. Environ. 59 (2013) 547–562. https://doi.org/10.1016/j.buildenv.2012.10.012.
[105] A. Khalilzadeh, H. Ge, H.D. Ng, Effect of turbulence modeling schemes on wind-driven rain deposition on a mid-rise building: CFD modeling and validation, J. Wind Eng. Ind. Aerodyn. (2019). https://doi.org/10.1016/j.jweia.2018.11.012.
[106] K. Pettersson, S. Krajnovic, A.S. Kalagasidis, P. Johansson, Simulating wind-driven rain on building facades using Eulerian multiphase with rain phase turbulence model, Build. Environ. (2016). https://doi.org/10.1016/j.buildenv.2016.06.012.
[107] C. Yuan, L. Norford, E. Ng, A semi-empirical model for the effect of trees on the urban wind environment, Landsc. Urban Plan. (2017). https://doi.org/10.1016/j.landurbplan.2017.09.029.
[108] M.G. Giometto, A. Christen, P.E. Egli, M.F. Schmid, R.T. Tooke, N.C. Coops, M.B. Parlange, Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment, Adv. Water Resour. (2017). https://doi.org/10.1016/j.advwatres.2017.06.018.
[109] G. Kang, J.J. Kim, W. Choi, Computational fluid dynamics simulation of tree effects on pedestrian wind comfort in an urban area, Sustain. Cities Soc. (2020). https://doi.org/10.1016/j.scs.2020.102086.
[110] P. Höppe, The physiological equivalent temperature - A universal index for the biometeorological assessment of the thermal environment, Int. J. Biometeorol. (1999). https://doi.org/10.1007/s004840050118.
[111] D. Fiala, G. Havenith, P. Bröde, B. Kampmann, G. Jendritzky, UTCI-Fiala multi-node model of human heat transfer and temperature regulation, Int. J. Biometeorol. (2012). https://doi.org/10.1007/s00484-011-0424-7.
[112] P. Kumar, A. Sharma, Study on importance, procedure, and scope of outdoor thermal comfort –A review, Sustain. Cities Soc. (2020). https://doi.org/10.1016/j.scs.2020.102297.
[113] H.M. Imran, J. Kala, A.W.M. Ng, S. Muthukumaran, Effectiveness of vegetated patches as Green Infrastructure in mitigating Urban Heat Island effects during a heatwave event in the city of Melbourne, Weather Clim. Extrem. (2019). https://doi.org/10.1016/j.wace.2019.100217.
[114] Y. Jamei, P. Rajagopalan, Q. (Chayn) Sun, Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia, Sci. Total Environ. (2019). https://doi.org/10.1016/j.scitotenv.2018.12.308.
[115] H. Li, Y. Zhou, X. Wang, X. Zhou, H. Zhang, S. Sodoudi, Quantifying urban heat island intensity and its physical mechanism using WRF/UCM, Sci. Total Environ. (2019). https://doi.org/10.1016/j.scitotenv.2018.10.025.
[116] Y. Li, S. Schubert, J.P. Kropp, D. Rybski, On the influence of density and morphology on the Urban Heat Island intensity, Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-16461-9.
[117] C. Ren, K. Wang, Y. Shi, Y.T. Kwok, T.E. Morakinyo, T. cheung Lee, Y. Li, Investigating the urban heat and cool island effects during extreme heat events in high-density cities: A case study of Hong Kong from 2000 to 2018, Int. J. Climatol. (2021). https://doi.org/10.1002/joc.7222.
[118] F. Salamanca, M. Georgescu, A. Mahalov, M. Moustaoui, M. Wang, Anthropogenic heating of the urban environment due to air conditioning, J. Geophys. Res. (2014). https://doi.org/10.1002/2013JD021225.
[119] S.W. Kim, R.D. Brown, Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review, Sci. Total Environ. (2021). https://doi.org/10.1016/j.scitotenv.2021.146389.
[120] J. Kong, Y. Zhao, J. Carmeliet, C. Lei, Urban heat island and its interaction with heatwaves: A review of studies on mesoscale, Sustain. (2021). https://doi.org/10.3390/su131910923.
[121] G. Xian, H. Shi, R. Auch, K. Gallo, Q. Zhou, Z. Wu, M. Kolian, The effects of urban land cover dynamics on urban heat Island intensity and temporal trends, GIScience Remote Sens. (2021). https://doi.org/10.1080/15481603.2021.1903282.
[122] K.B. Moffett, Y. Makido, V. Shandas, Urban-rural surface temperature deviation and intra-urban variations contained by an urban growth boundary, Remote Sens. (2019). https://doi.org/10.3390/rs11222683.
[123] R. Yao, L. Wang, X. Huang, W. Gong, X. Xia, Greening in Rural Areas Increases the Surface Urban Heat Island Intensity, Geophys. Res. Lett. (2019). https://doi.org/10.1029/2018GL081816.
[124] D. Zhou, S. Zhao, S. Liu, L. Zhang, C. Zhu, Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers, Remote Sens. Environ. (2014). https://doi.org/10.1016/j.rse.2014.05.017.
[125] S.I. Bohnenstengel, S. Evans, P.A. Clark, S.E. Belcher, Simulations of the London urban heat island, Q. J. R. Meteorol. Soc. (2011). https://doi.org/10.1002/qj.855.
[126] S. Peng, S. Piao, P. Ciais, P. Friedlingstein, C. Ottle, F.M. Bréon, H. Nan, L. Zhou, R.B. Myneni, Surface urban heat island across 419 global big cities, Environ. Sci. Technol. (2012). https://doi.org/10.1021/es2030438.
[127] M. Santamouris, Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions, Sci. Total Environ. (2015). https://doi.org/10.1016/j.scitotenv.2015.01.060.
[128] A. Dimoudi, A. Kantzioura, S. Zoras, C. Pallas, P. Kosmopoulos, Investigation of urban microclimate parameters in an urban center, Energy Build. (2013). https://doi.org/10.1016/j.enbuild.2013.04.014.
[129] F. Peron, M.M. De Maria, F. Spinazzè, U. Mazzali, An analysis of the urban heat island of Venice mainland, Sustain. Cities Soc. (2015). https://doi.org/10.1016/j.scs.2015.05.008.
[130] P. Rajagopalan, K.C. Lim, E. Jamei, Urban heat island and wind flow characteristics of a tropical city, Sol. Energy. (2014). https://doi.org/10.1016/j.solener.2014.05.042.
[131] E.L. Ndetto, A. Matzarakis, Effects of urban configuration on human thermal conditions in a typical tropical African coastal city, Adv. Meteorol. (2013). https://doi.org/10.1155/2013/549096.
[132] C.A.Souch, C.Souch, The effect of trees on summertime below canopy urban climates: a case study Bloomington, Indiana, J. Arboric. (1993).
[133] A. Aboelata, S. Sodoudi, Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo, Build. Environ. (2020). https://doi.org/10.1016/j.buildenv.2019.106490.
[134] X.X. Li, L.K. Norford, Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore, Urban Clim. (2016). https://doi.org/10.1016/j.uclim.2015.12.002.
[135] M.O. Mughal, A. Kubilay, S. Fatichi, N. Meili, J. Carmeliet, P. Edwards, P. Burlando, Detailed investigation of vegetation effects on microclimate by means of computational fluid dynamics (CFD) in a tropical urban environment, Urban Clim. (2021). https://doi.org/10.1016/j.uclim.2021.100939.
[136] P. Ramamurthy, E. Bou-Zeid, Heatwaves and urban heat islands: A comparative analysis of multiple cities, J. Geophys. Res. (2017). https://doi.org/10.1002/2016JD025357.
[137] D. Li, E. Bou-Zeid, Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts, J. Appl. Meteorol. Climatol. (2013). https://doi.org/10.1175/JAMC-D-13-02.1.
[138] D. Founda, M. Santamouris, Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012), Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-11407-6.
[139] D. Founda, F. Pierros, M. Petrakis, C. Zerefos, Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves, Atmos. Res. (2015). https://doi.org/10.1016/j.atmosres.2015.03.016.
[140] S. Jiang, X. Lee, J. Wang, K. Wang, Amplified Urban Heat Islands during Heat Wave Periods, J. Geophys. Res. Atmos. (2019). https://doi.org/10.1029/2018JD030230.
[141] L.W. Chew, X. Liu, X.X. Li, L.K. Norford, Interaction between heat wave and urban heat island: A case study in a tropical coastal city, Singapore, Atmos. Res. (2021). https://doi.org/10.1016/j.atmosres.2020.105134.
[142] A. Dimoudi, S. Zoras, A. Kantzioura, X. Stogiannou, P. Kosmopoulos, C. Pallas, Use of cool materials and other bioclimatic interventions in outdoor places in order to mitigate the urban heat island in a medium size city in Greece, Sustain. Cities Soc. (2014). https://doi.org/10.1016/j.scs.2014.04.003.
[143] J.P. Gastellu-Etchegorry, F. Zagolski, J. Romier, A simple anisotropic reflectance model for homogeneous multilayer canopies, Remote Sens. Environ. (1996). https://doi.org/10.1016/0034-4257(95)00221-9.
[144] F. Lindberg, B. Holmer, S. Thorsson, SOLWEIG 1.0 - Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings, Int. J. Biometeorol. (2008). https://doi.org/10.1007/s00484-008-0162-7.
[145] V. Dorer, J. Allegrini, K. Orehounig, P. Moonen, G. Upadhyay, J. Kämpf, J. Carmeliet, Modelling the urban microclimate and its impact on the energy demand of buildings and building clusters, in: Proc. BS 2013 13th Conf. Int. Build. Perform. Simul. Assoc., 2013.
[146] Y. Toparlar, B. Blocken, B. Maiheu, G.J.F. van Heijst, Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium, Appl. Energy. (2018). https://doi.org/10.1016/j.apenergy.2018.06.110.
[147] L. Malys, M. Musy, C. Inard, A hydrothermal model to assess the impact of green walls on urban microclimate and building energy consumption, Build. Environ. (2014). https://doi.org/10.1016/j.buildenv.2013.12.012.
[148] M. Shirzadi, M. Naghashzadegan, P. A. Mirzaei, Improving the CFD modelling of cross-ventilation in highly-packed urban areas, Sustain. Cities Soc. (2018). https://doi.org/10.1016/j.scs.2017.11.020.
[149] M. Shirzadi, Y. Tominaga, P.A. Mirzaei, Wind tunnel experiments on cross-ventilation flow of a generic sheltered building in urban areas, Build. Environ. (2019). https://doi.org/10.1016/j.buildenv.2019.04.057.
[150] M. Shirzadi, Y. Tominaga, P.A. Mirzaei, Experimental and steady-RANS CFD modelling of cross-ventilation in moderately-dense urban areas, Sustain. Cities Soc. (2020). https://doi.org/10.1016/j.scs.2019.101849.
[151] Y. Tominaga, T. Stathopoulos, CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques, Atmos. Environ. (2013). https://doi.org/10.1016/j.atmosenv.2013.07.028.
[152] B. Blocken, Y. Tominaga, T. Stathopoulos, CFD simulation of micro-scale pollutant dispersion in the built environment, Build. Environ. (2013). https://doi.org/10.1016/j.buildenv.2013.01.001.
[153] P. Gousseau, B. Blocken, T. Stathopoulos, G.J.F. van Heijst, CFD simulation of near-field pollutant dispersion on a high-resolution grid: A case study by LES and RANS for a building group in downtown Montreal, Atmos. Environ. 45 (2011) 428–438. https://doi.org/10.1016/j.atmosenv.2010.09.065.
[154] S. Yang, L. (Leon) Wang, P. Raftery, M. Ivanovich, C. Taber, W.P. Bahnfleth, P. Wargocki, J. Pantelic, J. Zou, M. Mortezazadeh, C. Shu, R. Wang, S. Arnold, Comparing airborne infectious aerosol exposures in sparsely occupied large spaces utilizing large-diameter ceiling fans, Build. Environ. (2023). https://doi.org/10.1016/j.buildenv.2023.110022.
[155] M. Chavez, B. Hajra, T. Stathopoulos, A. Bahloul, Near-field pollutant dispersion in the built environment by CFD and wind tunnel simulations, J. Wind Eng. Ind. Aerodyn. 99 (2011) 330–339. https://doi.org/10.1016/j.jweia.2011.01.003.
[156] L. Soulhac, P. Salizzoni, P. Mejean, R.J. Perkins, Parametric laws to model urban pollutant dispersion with a street network approach, Atmos. Environ. (2013). https://doi.org/10.1016/j.atmosenv.2012.10.053.
[157] M. Carpentieri, P. Hayden, A.G. Robins, Wind tunnel measurements of pollutant turbulent fluxes in urban intersections, Atmos. Environ. (2012). https://doi.org/10.1016/j.atmosenv.2011.09.083.
[158] C. Yuan, E. Ng, L.K. Norford, Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies, Build. Environ. (2014). https://doi.org/10.1016/j.buildenv.2013.10.008.
[159] J.F. Sini, S. Anquetin, P.G. Mestayer, Pollutant dispersion and thermal effects in urban street canyons, Atmos. Environ. (1996). https://doi.org/10.1016/1352-2310(95)00321-5.
[160] B. Blocken, Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations, Build. Environ. 91 (2015) 219–245. https://doi.org/10.1016/j.buildenv.2015.02.015.
[161] B. Blocken, 50 years of Computational Wind Engineering: Past, present and future, J. Wind Eng. Ind. Aerodyn. (2014). https://doi.org/10.1016/j.jweia.2014.03.008.
[162] A. Zhang, C. Gao, L. Zhang, Numerical simulation of the wind field around different building arrangements, J. Wind Eng. Ind. Aerodyn. 93 (2005) 891–904. https://doi.org/10.1016/j.jweia.2005.09.001.
[163] Y. Jiang, Q. Chen, Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation, Build. Environ. (2002). https://doi.org/10.1016/S0360-1323(01)00036-1.
[164] Y. Tominaga, R. Yoshie, A. Mochida, H. Kataoka, K. Harimoto, T. Nozu, Cross Comparisons of CFD Prediction for Wind Environment at Pedestrian Level around Buildings Part 2 : Comparison of Results for Flowfield around Building Complex in Actual Urban Area, Sixth Asia-Pacific Conf. Wind Eng. (2005).
[165] Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, T. Shirasawa, AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, J. Wind Eng. Ind. Aerodyn. 96 (2008) 1749–1761. https://doi.org/10.1016/j.jweia.2008.02.058.
[166] M. Mortezazadeh, L. (Leon) Wang, Solving city and building microclimates by fast fluid dynamics with large timesteps and coarse meshes, Build. Environ. (2020). https://doi.org/10.1016/j.buildenv.2020.106955.
[167] A. Katal, M. Mortezazadeh, L. (Leon) Wang, Modeling building resilience against extreme weather by integrated CityFFD and CityBEM simulations, Appl. Energy. (2019). https://doi.org/10.1016/j.apenergy.2019.04.192.
[168] J. Hensen, Modelling Coupled Heat and Air Flow: Ping-Pong vs Onions, IEA Air Infiltration Vent. (1995).
[169] J.M. Masterton, F.A. Richardson, C.E. Canada, C.A.E. Service, Humidex: A Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity, Environment Canada, Atmospheric Environment, 1979. https://books.google.ca/books?id=lVETzQEACAAJ.
[170] L. Monteiro, M. Alucci, Outdoor thermal comfort: comparison of results of empirical field research and predictive models simulation, in: Comf. Energy Use Build. Get. It Right, 2006.
[171] É. Mekis, L.A. Vincent, M.W. Shephard, X. Zhang, Observed Trends in Severe Weather Conditions Based on Humidex, Wind Chill, and Heavy Rainfall Events in Canada for 1953-2012, Atmos. - Ocean. 53 (2015) 383–397. https://doi.org/10.1080/07055900.2015.1086970.
[172] J.M. Sobstyl, T. Emig, M.J.A. Qomi, F.J. Ulm, R.J.M. Pellenq, Role of City Texture in Urban Heat Islands at Nighttime, Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevLett.120.108701.
[173] L. Ji, A. Laouadi, C. Shu, A. Gaur, M. Lacasse, L. (Leon) Wang, Evaluating approaches of selecting extreme hot years for assessing building overheating conditions during heatwaves, Energy Build. (2022). https://doi.org/10.1016/j.enbuild.2021.111610.
[174] C. Shu, A. Gaur, L. Wang, M.A. Lacasse, Evolution of the local climate in Montreal and Ottawa before, during and after a heatwave and the effects on urban heat islands, Sci. Total Environ. (2023). https://doi.org/10.1016/j.scitotenv.2023.164497.
[175] L.H.U.W. Abeydeera, J.W. Mesthrige, T.I. Samarasinghalage, Global research on carbon emissions: A scientometric review, Sustain. (2019). https://doi.org/10.3390/su11143972.
[176] Z. Zeng, X. Zhou, L. Li, The Impact of Water on Microclimate in Lingnan Area, in: Procedia Eng., 2017. https://doi.org/10.1016/j.proeng.2017.10.082.
[177] S. Yang, L. (Leon) Wang, T. Stathopoulos, A.M. Marey, Urban microclimate and its impact on built environment – A review, Build. Environ. 238 (2023) 110334. https://doi.org/10.1016/j.buildenv.2023.110334.
[178] K. Lundgren, T. Kjellstrom, Sustainability challenges from climate change and air conditioning use in urban areas, Sustain. (2013). https://doi.org/10.3390/su5073116.
[179] J. Allegrini, V. Dorer, J. Carmeliet, Coupled CFD, radiation and building energy model for studying heat fluxes in an urban environment with generic building configurations, Sustain. Cities Soc. (2015). https://doi.org/10.1016/j.scs.2015.07.009.
[180] A. Aboelata, Vegetation in different street orientations of aspect ratio (H/W 1:1) to mitigate UHI and reduce buildings’ energy in arid climate, Build. Environ. (2020). https://doi.org/10.1016/j.buildenv.2020.106712.
[181] A. Katal, S. Leroyer, J. Zou, O. Nikiema, M. Albettar, S. Belair, L. (Leon) Wang, Outdoor heat stress assessment using an integrated multi-scale numerical weather prediction system: A case study of a heatwave in Montreal, Sci. Total Environ. (2023). https://doi.org/10.1016/j.scitotenv.2022.161276.
[182] X. Li, Y. Zhou, S. Yu, G. Jia, H. Li, W. Li, Urban heat island impacts on building energy consumption: A review of approaches and findings, Energy. (2019). https://doi.org/10.1016/j.energy.2019.02.183.
[183] M. Palme, L. Inostroza, G. Villacreses, A. Lobato, C. Carrasco, Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation, Data Br. (2017). https://doi.org/10.1016/j.dib.2017.08.035.
[184] N. Sezer, H. Yoonus, D. Zhan, L. (Leon) Wang, I.G. Hassan, M.A. Rahman, Urban microclimate and building energy models: A review of the latest progress in coupling strategies, Renew. Sustain. Energy Rev. (2023). https://doi.org/10.1016/j.rser.2023.113577.
[185] N. Lauzet, A. Rodler, M. Musy, M.H. Azam, S. Guernouti, D. Mauree, T. Colinart, How building energy models take the local climate into account in an urban context – A review, Renew. Sustain. Energy Rev. (2019). https://doi.org/10.1016/j.rser.2019.109390.
[186] S. Tsoka, K. Tolika, T. Theodosiou, K. Tsikaloudaki, D. Bikas, A method to account for the urban microclimate on the creation of ‘typical weather year’ datasets for building energy simulation, using stochastically generated data, Energy Build. (2018). https://doi.org/10.1016/j.enbuild.2018.01.016.
[187] S. Moghanlo, M. Alavinejad, V. Oskoei, H. Najafi Saleh, A.A. Mohammadi, H. Mohammadi, Z. DerakhshanNejad, Using artificial neural networks to model the impacts of climate change on dust phenomenon in the Zanjan region, north-west Iran, Urban Clim. (2021). https://doi.org/10.1016/j.uclim.2020.100750.
[188] Y. Xie, W. Hu, X. Zhou, S. Yan, C. Li, Artificial Neural Network Modeling for Predicting and Evaluating the Mean Radiant Temperature around Buildings on Hot Summer Days, Buildings. (2022). https://doi.org/10.3390/buildings12050513.
[189] B. Shboul, I. AL-Arfi, S. Michailos, D. Ingham, L. Ma, K.J. Hughes, M. Pourkashanian, A new ANN model for hourly solar radiation and wind speed prediction: A case study over the north & south of the Arabian Peninsula, Sustain. Energy Technol. Assessments. (2021). https://doi.org/10.1016/j.seta.2021.101248.
[190] D.B. Crawley, L.K. Lawrie, F.C. Winkelmann, W.F. Buhl, Y.J. Huang, C.O. Pedersen, R.K. Strand, R.J. Liesen, D.E. Fisher, M.J. Witte, J. Glazer, EnergyPlus: creating a new-generation building energy simulation program, Energy Build. 33 (2001) 319–331. https://doi.org/10.1016/S0378-7788(00)00114-6.
[191] C.Y. Siu, Z. Liao, Is building energy simulation based on TMY representative: A comparative simulation study on doe reference buildings in Toronto with typical year and historical year type weather files, Energy Build. (2020). https://doi.org/10.1016/j.enbuild.2020.109760.
[192] J. Zhang, F. Zhang, Z. Gou, J. Liu, Assessment of macroclimate and microclimate effects on outdoor thermal comfort via artificial neural network models, Urban Clim. (2022). https://doi.org/10.1016/j.uclim.2022.101134.
[193] X. Wu, J. Hou, J. Hui, Z. Tang, W. Wang, Revealing Microclimate around Buildings with Long-Term Monitoring through the Neural Network Algorithms, Buildings. (2022). https://doi.org/10.3390/buildings12040395.
[194] M. Mangiameli, G. Mussumeci, A. Gagliano, Evaluation of the Urban Microclimate in Catania using Multispectral Remote Sensing and GIS Technology, Climate. (2022). https://doi.org/10.3390/cli10020018.
[195] C. Shu, Assessment of the Effects of Extreme Heat Events on Buildings, (2021).
[196] J. Zou, A. Gaur, L. (Leon) Wang, A. Laouadi, M. Lacasse, Assessment of future overheating conditions in Canadian cities using a reference year selection method, Build. Environ. (2022). https://doi.org/10.1016/j.buildenv.2022.109102.
[197] J. Zou, H. Lu, C. Shu, L. Ji, A. Gaur, L. (Leon) Wang, Multiscale numerical assessment of urban overheating under climate projections: A review, Urban Clim. 49 (2023) 101551. https://doi.org/https://doi.org/10.1016/j.uclim.2023.101551.
[198] C.; Zhang, O.B. Kazanci, S. Attia, R. Levinson, S.H. Lee, P. Holzer, A. Salvatif, A. Machard, M. Pourabdollahtootkaboni, A. Gaur, B.W. Olesen, P. Heiselberg, General rights IEA EBC Annex 80-Dynamic simulation guideline for the performance testing of resilient cooling strategies, Citation. (2021).
[199] M. P.tootkaboni, I. Ballarini, M. Zinzi, V. Corrado, A comparative analysis of different future weather data for building energy performance simulation, Climate. (2021). https://doi.org/10.3390/cli9020037.
[200] M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M. Halverson, D. Winiarski, M. Rosenberg, M. Yazdanian, J. Huang, D. Crawley, U.S. Department of Energy commercial reference building models of the national building stock, Publ. (2011) 1–118. http://digitalscholarship.unlv.edu/renew_pubs/44.
[201] K. Menberg, Y. Heo, R. Choudhary, Sensitivity analysis methods for building energy models: Comparing computational costs and extractable information, Energy Build. (2016). https://doi.org/10.1016/j.enbuild.2016.10.005.
[202] T. Wei, A review of sensitivity analysis methods in building energy analysis, Renew. Sustain. Energy Rev. (2013). https://doi.org/10.1016/j.rser.2012.12.014.
[203] H. Lim, Z.J. Zhai, Comprehensive evaluation of the influence of meta-models on Bayesian calibration, Energy Build. (2017). https://doi.org/10.1016/j.enbuild.2017.09.009.
[204] E.W. Peterson, J.P. Hennessey, ON THE USE OF POWER LAWS FOR ESTIMATES OF WIND POWER POTENTIAL., J. Appl. Meteorol. (1978). https://doi.org/10.1175/1520-0450(1978)017<0390:OTUOPL>2.0.CO;2.
[205] S. Magli, C. Lodi, L. Lombroso, A. Muscio, S. Teggi, Analysis of the urban heat island effects on building energy consumption, Int. J. Energy Environ. Eng. (2015). https://doi.org/10.1007/s40095-014-0154-9.
[206] D. Hou, I.G. Hassan, L. Wang, Review on building energy model calibration by Bayesian inference, Renew. Sustain. Energy Rev. (2021). https://doi.org/10.1016/j.rser.2021.110930.
Repository Staff Only: item control page