Login | Register

Design and Optimization of Sustainable Cementitious Systems Incorporating Microencapsulated Phase Change Materials

Title:

Design and Optimization of Sustainable Cementitious Systems Incorporating Microencapsulated Phase Change Materials

Rady, Mahmoud ORCID: https://orcid.org/0009-0002-5824-4334 (2024) Design and Optimization of Sustainable Cementitious Systems Incorporating Microencapsulated Phase Change Materials. Masters thesis, Concordia University.

[thumbnail of Rady_MASc_F2024.pdf]
Text (application/pdf)
Rady_MASc_F2024.pdf - Accepted Version
Restricted to Repository staff only until 1 August 2026.
Available under License Spectrum Terms of Access.
2MB

Abstract

To improve energy efficiency in concrete buildings and reduce CO2 emissions, this thesis explores the integration of microencapsulated phase change materials (MPCMs) into cementitious materials. This approach can negatively affect the properties of the mixtures, so a multi-response TOPSIS-based Taguchi optimization was used to address these issues.
The first study focused on optimizing mixtures with MPCMs by considering workability, compressive strength, and tensile strength. Key factors included cement content (400, 450, 500 kg/m³), water-to-cement ratio (0.45, 0.50, 0.55), and MPCMs content (5%, 10%, 20% volume replacement of sand). The water-to-cement ratio was found to be crucial for workability, while MPCMs content significantly influenced strength, particularly above 10%. Suitable mixtures with adequate thermal properties were identified, and multivariable regression models were developed for performance prediction.
The second study examined the role of supplementary cementitious materials (SCM), specifically fly ash (FA) and polyvinyl alcohol (PVA) fiber, in enhancing mixtures with MPCMs. PVA fiber notably affected workability and compressive strength, especially above 0.5%. Fly ash improved workability and compensated for later-age strength loss, with regression models predicting mixture performance.
The third study explored MPCMs in ultra-high-performance concrete (UHPC) to enhance thermal storage and reduce energy use. Despite initial negative impacts, the inclusion of micro steel fibers improved both thermal properties and impact energy absorption, increasing the ductility of MPCM-UHPC samples.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (Masters)
Authors:Rady, Mahmoud
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Civil Engineering
Date:12 August 2024
Thesis Supervisor(s):Soliman, Ahmed
Keywords:Phase Change Materials, Fly ash, polyvinyl alcohol fiber, Ultra-high-performance concrete, Thermal performance, Impact resistance, Taguchi method, TOPSIS optimization, ANOVA.
ID Code:994149
Deposited By: Mahmoud Rady
Deposited On:24 Oct 2024 15:41
Last Modified:24 Oct 2024 15:41

References:

[1] D. Chwieduk, “Towards sustainable-energy buildings,” Applied Energy, vol. 76, no. 1, pp. 211–217, Sep. 2003, doi: 10.1016/S0306-2619(03)00059-X.
[2] S. A. Memon, “Phase change materials integrated in building walls: A state of the art review,” Renewable and sustainable energy reviews, vol. 31, pp. 870–906, 2014.
[3] A. Marani and M. Madhkhan, “Thermal performance of concrete sandwich panels incorporating phase change materials: An experimental study,” Journal of Materials Research and Technology, vol. 12, pp. 760–775, 2021.
[4] F. Qiu, S. Song, D. Li, Y. Liu, Y. Wang, and L. Dong, “Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash,” Journal of Cleaner Production, vol. 246, p. 118952, 2020.
[5] A. Marani and M. L. Nehdi, “Integrating phase change materials in construction materials: Critical review,” Construction and Building Materials, vol. 217, pp. 36–49, Aug. 2019, doi: 10.1016/j.conbuildmat.2019.05.064.
[6] A. Marani, L. V. Zhang, and M. L. Nehdi, “Multiphysics study on cement-based composites incorporating green biobased shape-stabilized phase change materials for thermal energy storage,” Journal of Cleaner Production, vol. 372, p. 133826, 2022.
[7] M. Balapour, A. W. Mutua, and Y. Farnam, “Evaluating the thermal efficiency of microencapsulated phase change materials for thermal energy storage in cementitious composites,” Cement and Concrete Composites, vol. 116, p. 103891, 2021.
[8] Y. Tian, Y. Lai, Z. Qin, and W. Pei, “Numerical investigation on the thermal control performance and freeze-thaw resistance of a composite concrete pier with microencapsulated phase change materials,” Solar Energy, vol. 231, pp. 970–984, 2022.
[9] S. Drissi, T.-C. Ling, K. H. Mo, and A. Eddhahak, “A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials,” Renewable and Sustainable Energy Reviews, vol. 110, pp. 467–484, 2019.
[10] L. F. Cabeza et al., “Lithium in thermal energy storage: A state-of-the-art review,” Renewable and Sustainable Energy Reviews, vol. 42, pp. 1106–1112, Feb. 2015, doi: 10.1016/j.rser.2014.10.096.
[11] A. Hesaraki, S. Holmberg, and F. Haghighat, “Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 1199–1213, Mar. 2015, doi: 10.1016/j.rser.2014.12.002.
[12] S. Pintaldi, C. Perfumo, S. Sethuvenkatraman, S. White, and G. Rosengarten, “A review of thermal energy storage technologies and control approaches for solar cooling,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 975–995, Jan. 2015, doi: 10.1016/j.rser.2014.08.062.
[13] T. M. I. Mahlia, T. J. Saktisahdan, A. Jannifar, M. H. Hasan, and H. S. C. Matseelar, “A review of available methods and development on energy storage; technology update,” Renewable and Sustainable Energy Reviews, vol. 33, pp. 532–545, May 2014, doi: 10.1016/j.rser.2014.01.068.
[14] P. B. Salunkhe and P. S. Shembekar, “A review on effect of phase change material encapsulation on the thermal performance of a system,” Renewable and Sustainable Energy Reviews, vol. 16, no. 8, pp. 5603–5616, Oct. 2012, doi: 10.1016/j.rser.2012.05.037.
[15] L. B. Kong, T. Li, H. H. Hng, F. Boey, T. Zhang, and S. Li, Waste energy harvesting: Mechanical and thermal energies, vol. 24. Springer Science & Business Media, 2014.
[16] L. F. Cabeza et al., “Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 1399–1414, Mar. 2015, doi: 10.1016/j.rser.2014.07.191.
[17] D. Aydin, Z. Utlu, and O. Kincay, “Thermal performance analysis of a solar energy sourced latent heat storage,” Renewable and Sustainable Energy Reviews, vol. 50, pp. 1213–1225, Oct. 2015, doi: 10.1016/j.rser.2015.04.195.
[18] Z. Zhou, Z. Zhang, J. Zuo, K. Huang, and L. Zhang, “Phase change materials for solar thermal energy storage in residential buildings in cold climate,” Renewable and Sustainable Energy Reviews, vol. 48, pp. 692–703, Aug. 2015, doi: 10.1016/j.rser.2015.04.048.
[19] A. Solé, L. Miró, C. Barreneche, I. Martorell, and L. F. Cabeza, “Review of the T-history method to determine thermophysical properties of phase change materials (PCM),” Renewable and Sustainable Energy Reviews, vol. 26, pp. 425–436, Oct. 2013, doi: 10.1016/j.rser.2013.05.066.
[20] G. Li, “Energy and exergy performance assessments for latent heat thermal energy storage systems,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 926–954, Nov. 2015, doi: 10.1016/j.rser.2015.06.052.
[21] A. de Gracia and L. F. Cabeza, “Phase change materials and thermal energy storage for buildings,” Energy and Buildings, vol. 103, pp. 414–419, Sep. 2015, doi: 10.1016/j.enbuild.2015.06.007.
[22] X. Sun, Q. Zhang, M. A. Medina, and K. O. Lee, “Experimental observations on the heat transfer enhancement caused by natural convection during melting of solid–liquid phase change materials (PCMs),” Applied Energy, vol. 162, pp. 1453–1461, Jan. 2016, doi: 10.1016/j.apenergy.2015.03.078.
[23] T. Qian, J. Li, X. Min, Y. Deng, W. Guan, and L. Ning, “Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material,” Energy Conversion and Management, vol. 98, pp. 34–45, Jul. 2015, doi: 10.1016/j.enconman.2015.03.071.
[24] M. R. Anisur, M. H. Mahfuz, M. A. Kibria, R. Saidur, I. H. S. C. Metselaar, and T. M. I. Mahlia, “Curbing global warming with phase change materials for energy storage,” Renewable and Sustainable Energy Reviews, vol. 18, pp. 23–30, Feb. 2013, doi: 10.1016/j.rser.2012.10.014.
[25] L. Cao, D. Su, Y. Tang, G. Fang, and F. Tang, “Properties evaluation and applications of thermal energystorage materials in buildings,” Renewable and Sustainable Energy Reviews, vol. 48, pp. 500–522, Aug. 2015, doi: 10.1016/j.rser.2015.04.041.
[26] M. M. Kenisarin, “Thermophysical properties of some organic phase change materials for latent heat storage. A review,” Solar Energy, vol. 107, pp. 553–575, Sep. 2014, doi: 10.1016/j.solener.2014.05.001.
[27] X. Fang et al., “Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets,” Energy Conversion and Management, vol. 80, pp. 103–109, Apr. 2014, doi: 10.1016/j.enconman.2014.01.016.
[28] M. Mehrali, S. Tahan Latibari, M. Mehrali, T. M. I. Mahlia, E. Sadeghinezhad, and H. S. C. Metselaar, “Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage,” Applied Energy, vol. 135, pp. 339–349, Dec. 2014, doi: 10.1016/j.apenergy.2014.08.100.
[29] A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, vol. 13, no. 2, pp. 318–345, Feb. 2009, doi: 10.1016/j.rser.2007.10.005.
[30] Y. Yuan, N. Zhang, W. Tao, X. Cao, and Y. He, “Fatty acids as phase change materials: A review,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 482–498, Jan. 2014, doi: 10.1016/j.rser.2013.08.107.
[31] A. Waqas and Z. Ud Din, “Phase change material (PCM) storage for free cooling of buildings—A review,” Renewable and Sustainable Energy Reviews, vol. 18, pp. 607–625, Feb. 2013, doi: 10.1016/j.rser.2012.10.034.
[32] W. Su, J. Darkwa, and G. Kokogiannakis, “Review of solid–liquid phase change materials and their encapsulation technologies,” Renewable and Sustainable Energy Reviews, vol. 48, pp. 373–391, Aug. 2015, doi: 10.1016/j.rser.2015.04.044.
[33] P. Tatsidjodoung, N. Le Pierrès, and L. Luo, “A review of potential materials for thermal energy storage in building applications,” Renewable and Sustainable Energy Reviews, vol. 18, pp. 327–349, Feb. 2013, doi: 10.1016/j.rser.2012.10.025.
[34] F. Kuznik, D. David, K. Johannes, and J.-J. Roux, “A review on phase change materials integrated in building walls,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 379–391, Jan. 2011, doi: 10.1016/j.rser.2010.08.019.
[35] S. Peng, A. Fuchs, and R. A. Wirtz, “Polymeric phase change composites for thermal energy storage,” Journal of applied polymer science, vol. 93, no. 3, pp. 1240–1251, 2004.
[36] A. Sarı, C. Alkan, and C. Bilgin, “Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties,” Applied Energy, vol. 136, pp. 217–227, Dec. 2014, doi: 10.1016/j.apenergy.2014.09.047.
[37] D. V. Hale, M. J. Hoover, and M. J. ONeill, “Phase change materials handbook,” 1971.
[38] M. Lachheb, M. Karkri, F. Albouchi, F. Mzali, and S. B. Nasrallah, “Thermophysical properties estimation of paraffin/graphite composite phase change material using an inverse method,” Energy Conversion and Management, vol. 82, pp. 229–237, Jun. 2014, doi: 10.1016/j.enconman.2014.03.021.
[39] S. Kamali, “Review of free cooling system using phase change material for building,” Energy and Buildings, vol. 80, pp. 131–136, Sep. 2014, doi: 10.1016/j.enbuild.2014.05.021.
[40] A. Sarı, “Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties,” Energy Conversion and Management, vol. 45, no. 13, pp. 2033–2042, Aug. 2004, doi: 10.1016/j.enconman.2003.10.022.
[41] R. Baetens, B. P. Jelle, and A. Gustavsen, “Phase change materials for building applications: A state-of-the-art review,” Energy and Buildings, vol. 42, no. 9, pp. 1361–1368, Sep. 2010, doi: 10.1016/j.enbuild.2010.03.026.
[42] V. V. Tyagi and D. Buddhi, “PCM thermal storage in buildings: A state of art,” Renewable and Sustainable Energy Reviews, vol. 11, no. 6, pp. 1146–1166, Aug. 2007, doi: 10.1016/j.rser.2005.10.002.
[43] H. Fauzi, H. S. C. Metselaar, T. M. I. Mahlia, and M. Silakhori, “Sodium laurate enhancements the thermal properties and thermal conductivity of eutectic fatty acid as phase change material (PCM),” Solar Energy, vol. 102, pp. 333–337, Apr. 2014, doi: 10.1016/j.solener.2013.07.001.
[44] G. Ferrer, A. Solé, C. Barreneche, I. Martorell, and L. F. Cabeza, “Review on the methodology used in thermal stability characterization of phase change materials,” Renewable and Sustainable Energy Reviews, vol. 50, pp. 665–685, Oct. 2015, doi: 10.1016/j.rser.2015.04.187.
[45] M. Iten and S. Liu, “A work procedure of utilising PCMs as thermal storage systems based on air-TES systems,” Energy Conversion and Management, vol. 77, pp. 608–627, Jan. 2014, doi: 10.1016/j.enconman.2013.10.012.
[46] E. Osterman, V. V. Tyagi, V. Butala, N. A. Rahim, and U. Stritih, “Review of PCM based cooling technologies for buildings,” Energy and Buildings, vol. 49, pp. 37–49, Jun. 2012, doi: 10.1016/j.enbuild.2012.03.022.
[47] S. A. A. Ghani, S. S. Jamari, and S. Z. Abidin, “Waste materials as the potential phase change material substitute in thermal energy storage system: a review,” Chemical Engineering Communications, vol. 208, no. 5, pp. 687–707, 2021.
[48] S. B. Sadineni, S. Madala, and R. F. Boehm, “Passive building energy savings: A review of building envelope components,” Renewable and Sustainable Energy Reviews, vol. 15, no. 8, pp. 3617–3631, Oct. 2011, doi: 10.1016/j.rser.2011.07.014.
[49] S. Behzadi and M. M. Farid, “Long term thermal stability of organic PCMs,” Applied Energy, vol. 122, pp. 11–16, Jun. 2014, doi: 10.1016/j.apenergy.2014.01.032.
[50] S. E. Kalnæs and B. P. Jelle, “Phase change materials and products for building applications: A state-of-the-art review and future research opportunities,” Energy and Buildings, vol. 94, pp. 150–176, May 2015, doi: 10.1016/j.enbuild.2015.02.023.
[51] X. Huang, G. Alva, Y. Jia, and G. Fang, “Morphological characterization and applications of phase change materials in thermal energy storage: A review,” Renewable and Sustainable Energy Reviews, vol. 72, pp. 128–145, 2017.
[52] Y. Cui, J. Xie, J. Liu, J. Wang, and S. Chen, “A review on phase change material application in building,” Advances in Mechanical Engineering, vol. 9, no. 6, p. 1687814017700828, 2017.
[53] L. F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, and A. I. Fernández, “Materials used as PCM in thermal energy storage in buildings: A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 3, pp. 1675–1695, Apr. 2011, doi: 10.1016/j.rser.2010.11.018.
[54] H. Akeiber et al., “A review on phase change material (PCM) for sustainable passive cooling in building envelopes,” Renewable and Sustainable Energy Reviews, vol. 60, pp. 1470–1497, Jul. 2016, doi: 10.1016/j.rser.2016.03.036.
[55] H. Johra and P. Heiselberg, “Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review,” Renewable and Sustainable Energy Reviews, vol. 69, pp. 19–32, Mar. 2017, doi: 10.1016/j.rser.2016.11.145.
[56] M. Kenisarin and K. Mahkamov, “Passive thermal control in residential buildings using phase change materials,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 371–398, Mar. 2016, doi: 10.1016/j.rser.2015.10.128.
[57] V. V. Rao, R. Parameshwaran, and V. V. Ram, “PCM-mortar based construction materials for energy efficient buildings: A review on research trends,” Energy and Buildings, vol. 158, pp. 95–122, Jan. 2018, doi: 10.1016/j.enbuild.2017.09.098.
[58] N. Soares, J. J. Costa, A. R. Gaspar, and P. Santos, “Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency,” Energy and Buildings, vol. 59, pp. 82–103, Apr. 2013, doi: 10.1016/j.enbuild.2012.12.042.
[59] M. Song, F. Niu, N. Mao, Y. Hu, and S. Deng, “Review on building energy performance improvement using phase change materials,” Energy and Buildings, vol. 158, pp. 776–793, Jan. 2018, doi: 10.1016/j.enbuild.2017.10.066.
[60] P. Arumugam, V. Ramalingam, and P. Vellaichamy, “Effective PCM, insulation, natural and/or night ventilation techniques to enhance the thermal performance of buildings located in various climates – A review,” Energy and Buildings, vol. 258, p. 111840, Mar. 2022, doi: 10.1016/j.enbuild.2022.111840.
[61] S. R. L. da Cunha and J. L. B. de Aguiar, “Phase change materials and energy efficiency of buildings: A review of knowledge,” Journal of Energy Storage, vol. 27, p. 101083, Feb. 2020, doi: 10.1016/j.est.2019.101083.
[62] M. Frigione, M. Lettieri, and A. Sarcinella, “Phase change materials for energy efficiency in buildings and their use in mortars,” Materials, vol. 12, no. 8, p. 1260, 2019.
[63] S. Afgan and C. Bing, “Scientometric review of international research trends on thermal energy storage cement based composites via integration of phase change materials from 1993 to 2020,” Construction and Building Materials, vol. 278, p. 122344, Apr. 2021, doi: 10.1016/j.conbuildmat.2021.122344.
[64] A. Madene, M. Jacquot, J. Scher, and S. Desobry, “Flavour encapsulation and controlled release–a review,” International journal of food science & technology, vol. 41, no. 1, pp. 1–21, 2006.
[65] M. N. A. Hawlader, M. S. Uddin, and M. M. Khin, “Microencapsulated PCM thermal-energy storage system,” Applied energy, vol. 74, no. 1–2, pp. 195–202, 2003.
[66] X. Huo et al., “Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation,” Carbohydrate polymers, vol. 200, pp. 602–610, 2018.
[67] A. Sivanathan et al., “Phase change materials for building construction: An overview of nano-/micro-encapsulation,” Nanotechnology Reviews, vol. 9, no. 1, pp. 896–921, 2020.
[68] A. Jamekhorshid, S. M. Sadrameli, and M. Farid, “A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium,” Renewable and Sustainable Energy Reviews, vol. 31, pp. 531–542, Mar. 2014, doi: 10.1016/j.rser.2013.12.033.
[69] L. Sánchez-Silva, J. F. Rodríguez, A. Romero, A. M. Borreguero, M. Carmona, and P. Sánchez, “Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation,” Chemical Engineering Journal, vol. 157, no. 1, pp. 216–222, Feb. 2010, doi: 10.1016/j.cej.2009.12.013.
[70] S. S. Lucas, V. M. Ferreira, and J. L. B. de Aguiar, “Latent heat storage in PCM containing mortars—Study of microstructural modifications,” Energy and Buildings, vol. 66, pp. 724–731, Nov. 2013, doi: 10.1016/j.enbuild.2013.07.060.
[71] E. Franquet, S. Gibout, P. Tittelein, L. Zalewski, and J.-P. Dumas, “Experimental and theoretical analysis of a cement mortar containing microencapsulated PCM,” Applied Thermal Engineering, vol. 73, no. 1, pp. 32–40, Dec. 2014, doi: 10.1016/j.applthermaleng.2014.06.053.
[72] A. Joulin, L. Zalewski, S. Lassue, and H. Naji, “Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material,” Applied Thermal Engineering, vol. 66, no. 1, pp. 171–180, May 2014, doi: 10.1016/j.applthermaleng.2014.01.027.
[73] L. Haurie, S. Serrano, M. Bosch, A. I. Fernandez, and L. F. Cabeza, “Single layer mortars with microencapsulated PCM: Study of physical and thermal properties, and fire behaviour,” Energy and Buildings, vol. 111, pp. 393–400, Jan. 2016, doi: 10.1016/j.enbuild.2015.11.028.
[74] A. Figueiredo, J. Lapa, R. Vicente, and C. Cardoso, “Mechanical and thermal characterization of concrete with incorporation of microencapsulated PCM for applications in thermally activated slabs,” Construction and Building Materials, vol. 112, pp. 639–647, Jun. 2016, doi: 10.1016/j.conbuildmat.2016.02.225.
[75] A. Eddhahak-Ouni, S. Drissi, J. Colin, J. Neji, and S. Care, “Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs),” Applied Thermal Engineering, vol. 64, no. 1, pp. 32–39, Mar. 2014, doi: 10.1016/j.applthermaleng.2013.11.050.
[76] M. Lachheb, Z. Younsi, H. Naji, M. Karkri, and S. Ben Nasrallah, “Thermal behavior of a hybrid PCM/plaster: A numerical and experimental investigation,” Applied Thermal Engineering, vol. 111, pp. 49–59, Jan. 2017, doi: 10.1016/j.applthermaleng.2016.09.083.
[77] E. Y. Tuncel and B. Y. Pekmezci, “A sustainable cold bonded lightweight PCM aggregate production: Its effects on concrete properties,” Construction and Building Materials, vol. 181, pp. 199–216, Aug. 2018, doi: 10.1016/j.conbuildmat.2018.05.269.
[78] A. Jayalath et al., “Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials,” Construction and Building Materials, vol. 120, pp. 408–417, Sep. 2016, doi: 10.1016/j.conbuildmat.2016.05.116.
[79] M. Pomianowski, P. Heiselberg, R. L. Jensen, R. Cheng, and Y. Zhang, “A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM,” Cement and Concrete Research, vol. 55, pp. 22–34, Jan. 2014, doi: 10.1016/j.cemconres.2013.09.012.
[80] A. Jamekhorshid, S. M. Sadrameli, R. Barzin, and M. M. Farid, “Composite of wood-plastic and micro-encapsulated phase change material (MEPCM) used for thermal energy storage,” Applied Thermal Engineering, vol. 112, pp. 82–88, Feb. 2017, doi: 10.1016/j.applthermaleng.2016.10.037.
[81] Z. Wei et al., “The durability of cementitious composites containing microencapsulated phase change materials,” Cement and Concrete Composites, vol. 81, pp. 66–76, Aug. 2017, doi: 10.1016/j.cemconcomp.2017.04.010.
[82] A. Ricklefs, A. M. Thiele, G. Falzone, G. Sant, and L. Pilon, “Thermal conductivity of cementitious composites containing microencapsulated phase change materials,” International Journal of Heat and Mass Transfer, vol. 104, pp. 71–82, Jan. 2017, doi: 10.1016/j.ijheatmasstransfer.2016.08.013.
[83] G. Falzone et al., “The influences of soft and stiff inclusions on the mechanical properties of cementitious composites,” Cement and Concrete Composites, vol. 71, pp. 153–165, Aug. 2016, doi: 10.1016/j.cemconcomp.2016.05.008.
[84] Z. Wei et al., “Restrained shrinkage cracking of cementitious composites containing soft PCM inclusions: A paste (matrix) controlled response,” Materials & Design, vol. 132, pp. 367–374, Oct. 2017, doi: 10.1016/j.matdes.2017.06.066.
[85] T. Lecompte, P. Le Bideau, P. Glouannec, D. Nortershauser, and S. Le Masson, “Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material,” Energy and Buildings, vol. 94, pp. 52–60, May 2015, doi: 10.1016/j.enbuild.2015.02.044.
[86] R. Shadnia, L. Zhang, and P. Li, “Experimental study of geopolymer mortar with incorporated PCM,” Construction and Building Materials, vol. 84, pp. 95–102, Jun. 2015, doi: 10.1016/j.conbuildmat.2015.03.066.
[87] B. A. Young et al., “A general method for retrieving thermal deformation properties of microencapsulated phase change materials or other particulate inclusions in cementitious composites,” Materials & Design, vol. 126, pp. 259–267, Jul. 2017, doi: 10.1016/j.matdes.2017.04.023.
[88] M. Bahrar, Z. I. Djamai, M. EL Mankibi, A. Si Larbi, and M. Salvia, “Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage,” Sustainable Cities and Society, vol. 41, pp. 455–468, Aug. 2018, doi: 10.1016/j.scs.2018.06.014.
[89] T. Toppi and L. Mazzarella, “Gypsum based composite materials with micro-encapsulated PCM: Experimental correlations for thermal properties estimation on the basis of the composition,” Energy and Buildings, vol. 57, pp. 227–236, Feb. 2013, doi: 10.1016/j.enbuild.2012.11.009.
[90] C. Castellón et al., “Effect of microencapsulated phase change material in sandwich panels,” Renewable Energy, vol. 35, no. 10, pp. 2370–2374, Oct. 2010, doi: 10.1016/j.renene.2010.03.030.
[91] M. Kheradmand, M. Azenha, J. L. B. de Aguiar, and K. J. Krakowiak, “Thermal behavior of cement based plastering mortar containing hybrid microencapsulated phase change materials,” Energy and Buildings, vol. 84, pp. 526–536, Dec. 2014, doi: 10.1016/j.enbuild.2014.08.010.
[92] B. A. Young et al., “Early-age temperature evolutions in concrete pavements containing microencapsulated phase change materials,” Construction and Building Materials, vol. 147, pp. 466–477, Aug. 2017, doi: 10.1016/j.conbuildmat.2017.04.150.
[93] H.-W. Min, S. Kim, and H. S. Kim, “Investigation on thermal and mechanical characteristics of concrete mixed with shape stabilized phase change material for mix design,” Construction and Building Materials, vol. 149, pp. 749–762, Sep. 2017, doi: 10.1016/j.conbuildmat.2017.05.176.
[94] X. Li, J. G. Sanjayan, and J. L. Wilson, “Fabrication and stability of form-stable diatomite/paraffin phase change material composites,” Energy and Buildings, vol. 76, pp. 284–294, Jun. 2014, doi: 10.1016/j.enbuild.2014.02.082.
[95] A. R. Sakulich and D. P. Bentz, “Incorporation of phase change materials in cementitious systems via fine lightweight aggregate,” Construction and Building Materials, vol. 35, pp. 483–490, Oct. 2012, doi: 10.1016/j.conbuildmat.2012.04.042.
[96] S. A. Memon, H. Z. Cui, H. Zhang, and F. Xing, “Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete,” Applied Energy, vol. 139, pp. 43–55, Feb. 2015, doi: 10.1016/j.apenergy.2014.11.022.
[97] S. A. Memon, H. Cui, T. Y. Lo, and Q. Li, “Development of structural–functional integrated concrete with macro-encapsulated PCM for thermal energy storage,” Applied Energy, vol. 150, pp. 245–257, Jul. 2015, doi: 10.1016/j.apenergy.2015.03.137.
[98] H. Cui, S. A. Memon, and R. Liu, “Development, mechanical properties and numerical simulation of macro encapsulated thermal energy storage concrete,” Energy and Buildings, vol. 96, pp. 162–174, Jun. 2015, doi: 10.1016/j.enbuild.2015.03.014.
[99] M. Kheradmand, J. Castro-Gomes, M. Azenha, P. D. Silva, J. L. B. de Aguiar, and S. E. Zoorob, “Assessing the feasibility of impregnating phase change materials in lightweight aggregate for development of thermal energy storage systems,” Construction and Building Materials, vol. 89, pp. 48–59, Aug. 2015, doi: 10.1016/j.conbuildmat.2015.04.031.
[100] M. C. S. Nepomuceno and P. D. Silva, “Experimental evaluation of cement mortars with phase change material incorporated via lightweight expanded clay aggregate,” Construction and Building Materials, vol. 63, pp. 89–96, Jul. 2014, doi: 10.1016/j.conbuildmat.2014.04.027.
[101] N. P. Sharifi and A. Sakulich, “Application of phase change materials to improve the thermal performance of cementitious material,” Energy and Buildings, vol. 103, pp. 83–95, Sep. 2015, doi: 10.1016/j.enbuild.2015.06.040.
[102] Y. Farnam, H. S. Esmaeeli, P. D. Zavattieri, J. Haddock, and J. Weiss, “Incorporating phase change materials in concrete pavement to melt snow and ice,” Cement and Concrete Composites, vol. 84, pp. 134–145, Nov. 2017, doi: 10.1016/j.cemconcomp.2017.09.002.
[103] M. Sayyar, R. R. Weerasiri, P. Soroushian, and J. Lu, “Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions,” Energy and Buildings, vol. 75, pp. 249–255, Jun. 2014, doi: 10.1016/j.enbuild.2014.02.018.
[104] K. Biswas, J. Lu, P. Soroushian, and S. Shrestha, “Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard,” Applied Energy, vol. 131, pp. 517–529, Oct. 2014, doi: 10.1016/j.apenergy.2014.02.047.
[105] S.-G. Jeong, S. Jin Chang, S. We, and S. Kim, “Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets,” Solar Energy Materials and Solar Cells, vol. 139, pp. 65–70, Aug. 2015, doi: 10.1016/j.solmat.2015.03.010.
[106] Y. Lv, W. Zhou, and W. Jin, “Experimental and numerical study on thermal energy storage of polyethylene glycol/expanded graphite composite phase change material,” Energy and Buildings, vol. 111, pp. 242–252, Jan. 2016, doi: 10.1016/j.enbuild.2015.11.042.
[107] X. Wang, H. Yu, L. Li, and M. Zhao, “Experimental assessment on a kind of composite wall incorporated with shape-stabilized phase change materials (SSPCMs),” Energy and Buildings, vol. 128, pp. 567–574, Sep. 2016, doi: 10.1016/j.enbuild.2016.07.031.
[108] Z. Zhang, G. Shi, S. Wang, X. Fang, and X. Liu, “Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material,” Renewable Energy, vol. 50, pp. 670–675, Feb. 2013, doi: 10.1016/j.renene.2012.08.024.
[109] S. Kim, S. J. Chang, O. Chung, S.-G. Jeong, and S. Kim, “Thermal characteristics of mortar containing hexadecane/xGnP SSPCM and energy storage behaviors of envelopes integrated with enhanced heat storage composites for energy efficient buildings,” Energy and Buildings, vol. 70, pp. 472–479, Feb. 2014, doi: 10.1016/j.enbuild.2013.11.087.
[110] Y. Kang, S.-G. Jeong, S. Wi, and S. Kim, “Energy efficient Bio-based PCM with silica fume composites to apply in concrete for energy saving in buildings,” Solar Energy Materials and Solar Cells, vol. 143, pp. 430–434, Dec. 2015, doi: 10.1016/j.solmat.2015.07.026.
[111] S.-G. Jeong, J. Jeon, J. Cha, J. Kim, and S. Kim, “Preparation and evaluation of thermal enhanced silica fume by incorporating organic PCM, for application to concrete,” Energy and Buildings, vol. 62, pp. 190–195, Jul. 2013, doi: 10.1016/j.enbuild.2013.02.053.
[112] T. Xu, Q. Chen, Z. Zhang, X. Gao, and G. Huang, “Investigation on the properties of a new type of concrete blocks incorporated with PEG/SiO2 composite phase change material,” Building and Environment, vol. 104, pp. 172–177, Aug. 2016, doi: 10.1016/j.buildenv.2016.05.003.
[113] S. Karaman, A. Karaipekli, A. Sarı, and A. Biçer, “Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage,” Solar Energy Materials and Solar Cells, vol. 95, no. 7, pp. 1647–1653, Jul. 2011, doi: 10.1016/j.solmat.2011.01.022.
[114] X. Li et al., “Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage,” Applied Energy, vol. 159, pp. 601–609, Dec. 2015, doi: 10.1016/j.apenergy.2015.09.031.
[115] Y. Wang, T. D. Xia, H. Zheng, and H. X. Feng, “Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage,” Energy and Buildings, vol. 43, no. 9, pp. 2365–2370, Sep. 2011, doi: 10.1016/j.enbuild.2011.05.019.
[116] A. Sarı, “Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials,” Energy Conversion and Management, vol. 117, pp. 132–141, Jun. 2016, doi: 10.1016/j.enconman.2016.02.078.
[117] C. Yao, X. Kong, Y. Li, Y. Du, and C. Qi, “Numerical and experimental research of cold storage for a novel expanded perlite-based shape-stabilized phase change material wallboard used in building,” Energy Conversion and Management, vol. 155, pp. 20–31, Jan. 2018, doi: 10.1016/j.enconman.2017.10.052.
[118] P. Suttaphakdee, N. Dulsang, N. Lorwanishpaisarn, P. Kasemsiri, P. Posi, and P. Chindaprasirt, “Optimizing mix proportion and properties of lightweight concrete incorporated phase change material paraffin/recycled concrete block composite,” Construction and Building Materials, vol. 127, pp. 475–483, Nov. 2016, doi: 10.1016/j.conbuildmat.2016.10.037.
[119] S. Ramakrishnan, J. Sanjayan, X. Wang, M. Alam, and J. Wilson, “A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites,” Applied Energy, vol. 157, pp. 85–94, Nov. 2015, doi: 10.1016/j.apenergy.2015.08.019.
[120] B. Xu, H. Ma, Z. Lu, and Z. Li, “Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites,” Applied Energy, vol. 160, pp. 358–367, Dec. 2015, doi: 10.1016/j.apenergy.2015.09.069.
[121] S. Ramakrishnan, X. Wang, J. Sanjayan, E. Petinakis, and J. Wilson, “Development of thermal energy storage cementitious composites (TESC) containing a novel paraffin/hydrophobic expanded perlite composite phase change material,” Solar Energy, vol. 158, pp. 626–635, Dec. 2017, doi: 10.1016/j.solener.2017.09.064.
[122] G. Kastiukas, X. Zhou, and J. Castro-Gomes, “Development and optimisation of phase change material-impregnated lightweight aggregates for geopolymer composites made from aluminosilicate rich mud and milled glass powder,” Construction and Building Materials, vol. 110, pp. 201–210, May 2016, doi: 10.1016/j.conbuildmat.2016.02.029.
[123] Y. He, X. Zhang, and Y. Zhang, “Preparation technology of phase change perlite and performance research of phase change and temperature control mortar,” Energy and Buildings, vol. 85, pp. 506–514, Dec. 2014, doi: 10.1016/j.enbuild.2014.09.023.
[124] O. Chung, S.-G. Jeong, and S. Kim, “Preparation of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings,” Solar Energy Materials and Solar Cells, vol. 137, pp. 107–112, Jun. 2015, doi: 10.1016/j.solmat.2014.11.001.
[125] A. Karaipekli and A. Sarı, “Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings,” Solar Energy Materials and Solar Cells, vol. 149, pp. 19–28, May 2016, doi: 10.1016/j.solmat.2015.12.034.
[126] M. Aguayo, S. Das, C. Castro, N. Kabay, G. Sant, and N. Neithalath, “Porous inclusions as hosts for phase change materials in cementitious composites: Characterization, thermal performance, and analytical models,” Construction and Building Materials, vol. 134, pp. 574–584, Mar. 2017, doi: 10.1016/j.conbuildmat.2016.12.185.
[127] S. Ramakrishnan, X. Wang, J. Sanjayan, and J. Wilson, “Assessing the feasibility of integrating form-stable phase change material composites with cementitious composites and prevention of PCM leakage,” Materials Letters, vol. 192, pp. 88–91, Apr. 2017, doi: 10.1016/j.matlet.2016.12.052.
[128] Y. Cai, G. Sun, M. Liu, J. Zhang, Q. Wang, and Q. Wei, “Fabrication and characterization of capric–lauric–palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval,” Solar Energy, vol. 118, pp. 87–95, Aug. 2015, doi: 10.1016/j.solener.2015.04.042.
[129] A. Sarı, “Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage,” Energy and Buildings, vol. 69, pp. 184–192, Feb. 2014, doi: 10.1016/j.enbuild.2013.10.034.
[130] G. Zhou, Y. Zhang, X. Wang, K. Lin, and W. Xiao, “An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating,” Solar Energy, vol. 81, no. 11, pp. 1351–1360, Nov. 2007, doi: 10.1016/j.solener.2007.01.014.
[131] H. B. Kim, M. Mae, and Y. Choi, “Application of shape-stabilized phase-change material sheets as thermal energy storage to reduce heating load in Japanese climate,” Building and Environment, vol. 125, pp. 1–14, Nov. 2017, doi: 10.1016/j.buildenv.2017.08.038.
[132] M. Aguayo et al., “The influence of microencapsulated phase change material (PCM) characteristics on the microstructure and strength of cementitious composites: Experiments and finite element simulations,” Cement and Concrete Composites, vol. 73, pp. 29–41, Oct. 2016, doi: 10.1016/j.cemconcomp.2016.06.018.
[133] A. Eddhahak, S. Drissi, J. Colin, S. Caré, and J. Neji, “Effect of phase change materials on the hydration reaction and kinetic of PCM-mortars,” Journal of thermal analysis and calorimetry, vol. 117, pp. 537–545, 2014.
[134] V. D. Cao et al., “Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications,” Energy Conversion and Management, vol. 133, pp. 56–66, Feb. 2017, doi: 10.1016/j.enconman.2016.11.061.
[135] P. K. Dehdezi, M. R. Hall, A. R. Dawson, and S. P. Casey, “Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials,” International Journal of Pavement Engineering, vol. 14, no. 5, pp. 449–462, 2013.
[136] S. Pilehvar et al., “Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials,” Cement and Concrete Research, vol. 100, pp. 341–349, Oct. 2017, doi: 10.1016/j.cemconres.2017.07.012.
[137] F. Liu, J. Wang, and X. Qian, “Integrating phase change materials into concrete through microencapsulation using cenospheres,” Cement and Concrete Composites, vol. 80, pp. 317–325, Jul. 2017, doi: 10.1016/j.cemconcomp.2017.04.001.
[138] A. Sieminski, “International energy outlook,” Energy information administration (EIA), vol. 18, p. 2, 2014.
[139] J. E. Braun, K. W. Montgomery, and N. Chaturvedi, “Evaluating the Performance of Building Thermal Mass Control Strategies,” HVAC&R Research, vol. 7, no. 4, pp. 403–428, Oct. 2001, doi: 10.1080/10789669.2001.10391283.
[140] M. D. Ruud, J. W. Mitchell, and S. A. Klein, “Use of building thermal mass to offset cooling loads,” ASHRAE Transactions (American Society of Heating, Refrigerating and Air-Conditioning Engineers);(United States), vol. 96, no. CONF-9006117-, 1990.
[141] A. M. Khudhair and M. M. Farid, “A review on energy conservation in building applications with thermal storage by latent heat using phase change materials,” Energy Conversion and Management, vol. 45, no. 2, pp. 263–275, Jan. 2004, doi: 10.1016/S0196-8904(03)00131-6.
[142] P. Schossig, H.-M. Henning, S. Gschwander, and T. Haussmann, “Micro-encapsulated phase-change materials integrated into construction materials,” Solar Energy Materials and Solar Cells, vol. 89, no. 2, pp. 297–306, Nov. 2005, doi: 10.1016/j.solmat.2005.01.017.
[143] B. Zalba, J. M. Marı́n, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications,” Applied Thermal Engineering, vol. 23, no. 3, pp. 251–283, Feb. 2003, doi: 10.1016/S1359-4311(02)00192-8.
[144] D. Zhou, C. Y. Zhao, and Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Applied Energy, vol. 92, pp. 593–605, Apr. 2012, doi: 10.1016/j.apenergy.2011.08.025.
[145] F. Fernandes et al., “On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials,” Cement and Concrete Composites, vol. 51, pp. 14–26, Aug. 2014, doi: 10.1016/j.cemconcomp.2014.03.003.
[146] Y.-R. Kim, B.-S. Khil, S.-J. Jang, W.-C. Choi, and H.-D. Yun, “Effect of barium-based phase change material (PCM) to control the heat of hydration on the mechanical properties of mass concrete,” Thermochimica Acta, vol. 613, pp. 100–107, Aug. 2015, doi: 10.1016/j.tca.2015.05.025.
[147] B. Šavija and E. Schlangen, “Use of phase change materials (PCMs) to mitigate early age thermal cracking in concrete: Theoretical considerations,” Construction and Building Materials, vol. 126, pp. 332–344, Nov. 2016, doi: 10.1016/j.conbuildmat.2016.09.046.
[148] H. S. Esmaeeli, Y. Farnam, J. E. Haddock, P. D. Zavattieri, and W. J. Weiss, “Numerical analysis of the freeze-thaw performance of cementitious composites that contain phase change material (PCM),” Materials & Design, vol. 145, pp. 74–87, May 2018, doi: 10.1016/j.matdes.2018.02.056.
[149] S. Pilehvar et al., “Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials,” Construction and Building Materials, vol. 200, pp. 94–103, Mar. 2019, doi: 10.1016/j.conbuildmat.2018.12.057.
[150] A. R. Sakulich and D. P. Bentz, “Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles,” Journal of Materials in Civil Engineering, vol. 24, no. 8, pp. 1034–1042, 2012.
[151] N. P. Sharifi and K. C. Mahboub, “Application of a PCM-rich concrete overlay to control thermal induced curling stresses in concrete pavements,” Construction and Building Materials, vol. 183, pp. 502–512, Sep. 2018, doi: 10.1016/j.conbuildmat.2018.06.179.
[152] H. Cui, W. Tang, Q. Qin, F. Xing, W. Liao, and H. Wen, “Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball,” Applied Energy, vol. 185, pp. 107–118, Jan. 2017, doi: 10.1016/j.apenergy.2016.10.072.
[153] M. Hunger, A. G. Entrop, I. Mandilaras, H. J. H. Brouwers, and M. Founti, “The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials,” Cement and Concrete Composites, vol. 31, no. 10, pp. 731–743, Nov. 2009, doi: 10.1016/j.cemconcomp.2009.08.002.
[154] P. Meshgin and Y. Xi, “Effect of phase-change materials on properties of concrete,” ACI Materials Journal, vol. 109, no. 1, p. 71, 2012.
[155] A. E. Taiwo, T. N. Madzimbamuto, and T. V. Ojumu, “Optimization of process variables for acetoin production in a bioreactor using Taguchi orthogonal array design,” Heliyon, vol. 6, no. 10, p. e05103, 2020.
[156] S. Ahmad and S. A. Alghamdi, “A statistical approach to optimizing concrete mixture design,” The Scientific World Journal, vol. 2014, 2014.
[157] A. El-Mir, H. El-Hassan, A. El-Dieb, and A. Alsallamin, Development and Optimization of Geopolymers Made with Desert Dune Sand and Blast Furnace Slag. Sustainability 2022, 14, 7845. s Note: MDPI stays neutral with regard to jurisdic-tional claims in …, 2022.
[158] B. Şimşek and T. Uygunoğlu, “Multi-response optimization of polymer blended concrete: A TOPSIS based Taguchi application,” Construction and Building Materials, vol. 117, pp. 251–262, Aug. 2016, doi: 10.1016/j.conbuildmat.2016.05.027.
[159] Y. Kuo, T. Yang, and G.-W. Huang, “The use of a grey-based Taguchi method for optimizing multi-response simulation problems,” Engineering Optimization, vol. 40, no. 6, pp. 517–528, Jun. 2008, doi: 10.1080/03052150701857645.
[160] T.-L. Su, H.-W. Chen, and C.-F. Lu, “Systematic optimization for the evaluation of the microinjection molding parameters of light guide plate with TOPSIS‐based Taguchi method,” Advances in Polymer Technology: Journal of the Polymer Processing Institute, vol. 29, no. 1, pp. 54–63, 2010.
[161] E. Sharifi, S. J. Sadjadi, M. R. M. Aliha, and A. Moniri, “Optimization of high-strength self-consolidating concrete mix design using an improved Taguchi optimization method,” Construction and Building Materials, vol. 236, p. 117547, Mar. 2020, doi: 10.1016/j.conbuildmat.2019.117547.
[162] T. Yang and P. Chou, “Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method,” Mathematics and Computers in Simulation, vol. 68, no. 1, pp. 9–21, Feb. 2005, doi: 10.1016/j.matcom.2004.09.004.
[163] F. Bre, A. Caggiano, and E. A. Koenders, “Multiobjective Optimization of Cement-Based Panels Enhanced with Microencapsulated Phase Change Materials for Building Energy Applications,” Energies, vol. 15, no. 14, p. 5192, 2022.
[164] E. Y. Tuncel and B. Y. Pekmezci, “A Taguchi approach for optimizing the mixture design of cold-bonded PCM aggregates,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–21, 2019.
[165] C. S. Association, “CSA A3000-13 Cementitious Materials Compendium,” CSA Group, Mississauga, Ontario, 2013.
[166] “ASTM C33 - Designation: C33/C33M− 18 Standard Specification for Concrete Aggregates 1 This standard - Studocu.” https://www.studocu.com/en-us/document/ohio-state-university/civil-engineering-materials/astm-c33/17625713 (accessed Mar. 03, 2023).
[167] S. V. Dave and A. Bhogayata, “The strength oriented mix design for geopolymer concrete using Taguchi method and Indian concrete mix design code,” Construction and Building Materials, vol. 262, p. 120853, Nov. 2020, doi: 10.1016/j.conbuildmat.2020.120853.
[168] M. S. Phadke, Quality engineering using robust design. Prentice Hall PTR, 1995.
[169] H. Abbasi Hattan, M. Madhkhan, and A. Marani, “Thermal and mechanical properties of building external walls plastered with cement mortar incorporating shape-stabilized phase change materials (SSPCMs),” Construction and Building Materials, vol. 270, p. 121385, Feb. 2021, doi: 10.1016/j.conbuildmat.2020.121385.
[170] S. Cunha, J. Aguiar, V. Ferreira, and A. Tadeu, “Mortars based in different binders with incorporation of phase-change materials: Physical and mechanical properties,” European Journal of Environmental and Civil Engineering, vol. 19, no. 10, pp. 1216–1233, 2015.
[171] A. Marani, L. Zhang, and M. L. Nehdi, “Design of concrete incorporating microencapsulated phase change materials for clean energy: A ternary machine learning approach based on generative adversarial networks,” Engineering Applications of Artificial Intelligence, vol. 118, p. 105652, 2023.
[172] H. V. Dedania, V. R. Shah, and R. C. Sanghvi, “Portfolio management: Stock ranking by multiple attribute decision making methods,” Technology and Investment, vol. 6, no. 04, p. 141, 2015.
[173] O. Abdel Rahman, M. A. Al-Shdaifat, M. Almakhadmeh, and A. M. Soliman, “Phase change materials sheets for energy-efficient heat curing process: A potential idea and performance evaluation,” Construction and Building Materials, vol. 353, p. 129102, Oct. 2022, doi: 10.1016/j.conbuildmat.2022.129102.
[174] “Standard Specification for Flow Table for Use in Tests of Hydraulic Cement.” https://www.astm.org/c0230_c0230m-20.html (accessed Feb. 22, 2023).
[175] “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens).” https://www.astm.org/c0109_c0109m-21.html (accessed Feb. 19, 2023).
[176] “AASHTO T 132 - Standard Method of Test for Tensile Strength of Hydraulic Cement Mortars | GlobalSpec.” https://standards.globalspec.com/std/10289651/AASHTO%20T%20132 (accessed Mar. 02, 2023).
[177] “Standard Test Method for Pulse Velocity Through Concrete.” https://www.astm.org/c0597-16.html (accessed Feb. 19, 2023).
[178] O. H. Wallevik and J. E. Wallevik, “Rheology as a tool in concrete science: The use of rheographs and workability boxes,” Cement and Concrete Research, vol. 41, no. 12, pp. 1279–1288, Dec. 2011, doi: 10.1016/j.cemconres.2011.01.009.
[179] S. G. Sanfelix, I. Santacruz, A. M. Szczotok, L. M. O. Belloc, A. G. De la Torre, and A.-L. Kjøniksen, “Effect of microencapsulated phase change materials on the flow behavior of cement composites,” Construction and Building Materials, vol. 202, pp. 353–362, Mar. 2019, doi: 10.1016/j.conbuildmat.2018.12.215.
[180] S. Pilehvar, A. M. Szczotok, M. Carmona, R. Pamies, and A.-L. Kjøniksen, “The effect of microencapsulated phase change materials on the rheology of geopolymer and Portland cement mortars,” Journal of the American Ceramic Society, vol. 103, no. 10, pp. 5852–5869, 2020.
[181] S. Pilehvar et al., “Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials,” Construction and Building Materials, vol. 173, pp. 28–39, Jun. 2018, doi: 10.1016/j.conbuildmat.2018.04.016.
[182] M. I. Al Biajawi, R. Embong, K. Muthusamy, N. Ismail, and I. Johari, “Assessing the performance of concrete made with recycled latex gloves and silicone catheter using ultrasonic pulse velocity,” Materials Today: Proceedings, Jul. 2023, doi: 10.1016/j.matpr.2023.06.317.
[183] Y. Rashidi, A. Habibnejad Korayem, S. Farsi, and J. Sadeghi, “Utilizing halloysite nanotube to enhance the properties of cement mortar subjected to freeze-thaw cycles,” Journal of Building Engineering, vol. 75, p. 106832, Sep. 2023, doi: 10.1016/j.jobe.2023.106832.
[184] S. M. A. Kabir, U. J. Alengaram, M. Z. Jumaat, A. Sharmin, and A. Islam, “Influence of Molarity and Chemical Composition on the Development of Compressive Strength in POFA Based Geopolymer Mortar,” Advances in Materials Science and Engineering, vol. 2015, p. 647071, Jun. 2015, doi: 10.1155/2015/647071.
[185] C. Norvell, D. J. Sailor, and P. Dusicka, “The effect of microencapsulated phase-change material on the compressive strength of structural concrete,” Journal of Green Building, vol. 8, no. 3, pp. 116–124, 2013.
[186] S. Das, M. Aguayo, N. Kabay, B. Mobasher, G. Sant, and N. Neithalath, “Elucidating the influences of compliant microscale inclusions on the fracture behavior of cementitious composites,” Cement and Concrete Composites, vol. 94, pp. 13–23, Nov. 2018, doi: 10.1016/j.cemconcomp.2018.08.009.
[187] J. L. Myers, A. D. Well, and R. F. Lorch, Research design and statistical analysis. Routledge, 2013.
[188] O. Najm, H. El-Hassan, and A. El-Dieb, “Optimization of alkali-activated ladle slag composites mix design using taguchi-based TOPSIS method,” Construction and Building Materials, vol. 327, p. 126946, Apr. 2022, doi: 10.1016/j.conbuildmat.2022.126946.
[189] R. Davis and P. John, “Application of Taguchi-based design of experiments for industrial chemical processes,” Statistical approaches with emphasis on design of experiments applied to chemical processes, vol. 137, 2018.
[190] M. Pigeon and R. Pleau, “Durability of concretein cold climates,” E&FNSpon, London, 1995.
[191] M. H. Cetin, B. Ozcelik, E. Kuram, and E. Demirbas, “Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method,” Journal of Cleaner Production, vol. 19, no. 17, pp. 2049–2056, Nov. 2011, doi: 10.1016/j.jclepro.2011.07.013.
[192] “GlobalABC Roadmap for Buildings and Construction 2020-2050 – Analysis,” IEA. https://www.iea.org/reports/globalabc-roadmap-for-buildings-and-construction-2020-2050 (accessed Jul. 20, 2023).
[193] M. Sawadogo, M. Duquesne, R. Belarbi, A. E. A. Hamami, and A. Godin, “Review on the integration of phase change materials in building envelopes for passive latent heat storage,” Applied Sciences, vol. 11, no. 19, p. 9305, 2021.
[194] Q. Al-Yasiri and M. Szabó, “Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis,” Journal of Building Engineering, vol. 36, p. 102122, Apr. 2021, doi: 10.1016/j.jobe.2020.102122.
[195] B. Lamrani, K. Johannes, and F. Kuznik, “Phase change materials integrated into building walls: An updated review,” Renewable and Sustainable Energy Reviews, vol. 140, p. 110751, Apr. 2021, doi: 10.1016/j.rser.2021.110751.
[196] S. Ben Romdhane, A. Amamou, R. Ben Khalifa, N. M. Saïd, Z. Younsi, and A. Jemni, “A review on thermal energy storage using phase change materials in passive building applications,” Journal of Building Engineering, vol. 32, p. 101563, Nov. 2020, doi: 10.1016/j.jobe.2020.101563.
[197] K. Faraj, M. Khaled, J. Faraj, F. Hachem, and C. Castelain, “A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications,” Journal of Energy Storage, vol. 33, p. 101913, Jan. 2021, doi: 10.1016/j.est.2020.101913.
[198] M. Valipour, M. Shekarchi, and M. Arezoumandi, “Chlorine diffusion resistivity of sustainable green concrete in harsh marine environments,” Journal of Cleaner Production, vol. 142, pp. 4092–4100, 2017.
[199] C. D. Atiş, “High volume fly ash abrasion resistant concrete,” Journal of Materials in Civil Engineering, vol. 14, no. 3, pp. 274–277, 2002.
[200] T. Yen, T.-H. Hsu, Y.-W. Liu, and S.-H. Chen, “Influence of class F fly ash on the abrasion–erosion resistance of high-strength concrete,” Construction and Building Materials, vol. 21, no. 2, pp. 458–463, 2007.
[201] J. Yu, C. Lu, C. K. Y. Leung, and G. Li, “Mechanical properties of green structural concrete with ultrahigh-volume fly ash,” Construction and Building Materials, vol. 147, pp. 510–518, Aug. 2017, doi: 10.1016/j.conbuildmat.2017.04.188.
[202] P. Chindaprasirt, C. Jaturapitakkul, and T. Sinsiri, “Effect of fly ash fineness on microstructure of blended cement paste,” Construction and Building Materials, vol. 21, no. 7, pp. 1534–1541, Jul. 2007, doi: 10.1016/j.conbuildmat.2005.12.024.
[203] A. Fernández-Jiménez, I. García-Lodeiro, and A. Palomo, “Durability of alkali-activated fly ash cementitious materials,” Journal of materials science, vol. 42, pp. 3055–3065, 2007.
[204] M. Paul and F. P. Glasser, “Impact of prolonged warm (85°C) moist cure on Portland cement paste,” Cement and Concrete Research, vol. 30, no. 12, pp. 1869–1877, Dec. 2000, doi: 10.1016/S0008-8846(00)00286-6.
[205] W. Zhang et al., “Grafting SiO2 nanoparticles on polyvinyl alcohol fibers to enhance the interfacial bonding strength with cement,” Composites Part B: Engineering, vol. 162, pp. 500–507, 2019.
[206] X. Yao et al., “Graphene oxide-coated Poly (vinyl alcohol) fibers for enhanced fiber-reinforced cementitious composites,” Composites Part B: Engineering, vol. 174, p. 107010, 2019.
[207] S. H. Park, D. J. Kim, G. S. Ryu, and K. T. Koh, “Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete,” Cement and Concrete Composites, vol. 34, no. 2, pp. 172–184, Feb. 2012, doi: 10.1016/j.cemconcomp.2011.09.009.
[208] M. El-Hawary and A. Al-Sulily, “Internal curing of recycled aggregates concrete,” Journal of Cleaner Production, vol. 275, p. 122911, Dec. 2020, doi: 10.1016/j.jclepro.2020.122911.
[209] L. Ma, B. Wang, L. Zeng, Y. Xiao, H. Zhang, and Z. Li, “Experimental investigation on the effect of rubber powder on mechanical properties of PVA fiber concrete,” Advances in Civil Engineering, vol. 2021, pp. 1–12, 2021.
[210] F. Aslam et al., “Applications of gene expression programming for estimating compressive strength of high-strength concrete,” Advances in Civil Engineering, vol. 2020, pp. 1–23, 2020.
[211] S. Kashif Ur Rehman, S. Kumarova, S. Ali Memon, M. F. Javed, and M. Jameel, “A review of microscale, rheological, mechanical, thermoelectrical and piezoresistive properties of graphene based cement composite,” Nanomaterials, vol. 10, no. 10, p. 2076, 2020.
[212] “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.” https://www.astm.org/c0618-22.html (accessed Apr. 05, 2023).
[213] Y. Li, W. Thielemans, Q. Yuan, and J. Li, “PVA fiber reinforced cement composites with calcined cutter soil mixing residue as a partial cement replacement,” Construction and Building Materials, vol. 326, p. 126924, Apr. 2022, doi: 10.1016/j.conbuildmat.2022.126924.
[214] K. F. Li et al., “Effects of hybrid fibers on workability, mechanical, and time-dependent properties of high strength fiber-reinforced self-consolidating concrete,” Construction and Building Materials, vol. 277, p. 122325, Mar. 2021, doi: 10.1016/j.conbuildmat.2021.122325.
[215] C. Qian and P. Stroeven, “Fracture properties of concrete reinforced with steel–polypropylene hybrid fibres,” Cement and Concrete Composites, vol. 22, no. 5, pp. 343–351, Oct. 2000, doi: 10.1016/S0958-9465(00)00033-0.
[216] Y. Ling, P. Zhang, J. Wang, and Y. Chen, “Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2,” Construction and Building Materials, vol. 229, p. 117068, Dec. 2019, doi: 10.1016/j.conbuildmat.2019.117068.
[217] M. Cao, Z. Liu, and C. Xie, “Effect of steel-PVA hybrid fibers on compressive behavior of CaCO3 whiskers reinforced cement mortar,” Journal of Building Engineering, vol. 31, p. 101314, Sep. 2020, doi: 10.1016/j.jobe.2020.101314.
[218] M. Cao and L. Li, “New models for predicting workability and toughness of hybrid fiber reinforced cement-based composites,” Construction and Building Materials, vol. 176, pp. 618–628, Jul. 2018, doi: 10.1016/j.conbuildmat.2018.05.075.
[219] R. Siddique, “Properties of concrete incorporating high volumes of class F fly ash and san fibers,” Cement and Concrete Research, vol. 34, no. 1, pp. 37–42, Jan. 2004, doi: 10.1016/S0008-8846(03)00192-3.
[220] A. Beycioğlu and H. Yılmaz Aruntaş, “Workability and mechanical properties of self-compacting concretes containing LLFA, GBFS and MC,” Construction and Building Materials, vol. 73, pp. 626–635, Dec. 2014, doi: 10.1016/j.conbuildmat.2014.09.071.
[221] M. Ahmaruzzaman, “A review on the utilization of fly ash,” Progress in Energy and Combustion Science, vol. 36, no. 3, pp. 327–363, Jun. 2010, doi: 10.1016/j.pecs.2009.11.003.
[222] C. Duran Atiş, “Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition,” Cement and Concrete Research, vol. 35, no. 6, pp. 1112–1121, Jun. 2005, doi: 10.1016/j.cemconres.2004.07.037.
[223] N. Haque and H. Al-Khaiat, “Strength and durability of lightweight concrete in hot marine exposure conditions,” Materials and Structures/Materiaux et Constructions, vol. 32, no. 7, pp. 533–538, 1999, doi: 10.1007/bf02481638.
[224] T. Bilir, O. Gencel, and I. B. Topcu, “Properties of mortars with fly ash as fine aggregate,” Construction and Building Materials, vol. 93, pp. 782–789, Sep. 2015, doi: 10.1016/j.conbuildmat.2015.05.095.
[225] A. K. Saha, “Effect of class F fly ash on the durability properties of concrete,” Sustainable Environment Research, vol. 28, no. 1, pp. 25–31, Jan. 2018, doi: 10.1016/j.serj.2017.09.001.
[226] A. Yerramala and B. Desai, “INFLUENCE OF FLY ASH REPLACEMENT ON STRENGTH PROPERTIES OF CEMENT MORTAR,” International Journal of Engineering Science and Technology, vol. 4, Aug. 2012.
[227] H. Nematian Jelodar, A. Hojatkashani, R. Madandoust, A. Akbarpour, and S. A. Hosseini, “Experimental Investigation on the Mechanical Characteristics of Cement-Based Mortar Containing Nano-Silica, Micro-Silica, and PVA Fiber,” Processes, vol. 10, no. 9, Art. no. 9, Sep. 2022, doi: 10.3390/pr10091814.
[228] J. Huang, Z. Wang, D. Li, and G. Li, “Effect of Nano-SiO2/PVA Fiber on Sulfate Resistance of Cement Mortar Containing High-Volume Fly Ash,” Nanomaterials, vol. 12, no. 3, Art. no. 3, Jan. 2022, doi: 10.3390/nano12030323.
[229] C. Xue, M. Yu, H. Xu, L. Xu, M. Saafi, and J. Ye, “Experimental study on thermal performance of ultra-high performance concrete with coarse aggregates at high temperature,” Construction and Building Materials, vol. 314, p. 125585, Jan. 2022, doi: 10.1016/j.conbuildmat.2021.125585.
[230] M. Ren, X. Wen, X. Gao, and Y. Liu, “Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material,” Construction and Building Materials, vol. 273, p. 121714, Mar. 2021, doi: 10.1016/j.conbuildmat.2020.121714.
[231] “Standard Specification for Silica Fume Used in Cementitious Mixtures.” https://www.astm.org/c1240-20.html (accessed Feb. 19, 2023).
[232] “Standard Test Method for Flow of Hydraulic Cement Mortar.” https://www.astm.org/c1437-15.html (accessed Feb. 19, 2023).
[233] “Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars.” https://www.astm.org/c0348-21.html (accessed Feb. 19, 2023).
[234] R. Yu, L. Van Beers, P. Spiesz, and H. J. H. Brouwers, “Impact resistance of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) under pendulum impact loadings,” Construction and Building Materials, vol. 107, pp. 203–215, 2016.
[235] R. Yu, P. Spiesz, and H. J. H. Brouwers, “Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC),” Cement and Concrete Research, vol. 56, pp. 29–39, Feb. 2014, doi: 10.1016/j.cemconres.2013.11.002.
[236] X. M. Gao, “Effect of steel fiber on the performance of ultra-high performance concrete,” Hunan University, Changsha, 2013.
[237] N. Essid, A. Loulizi, and J. Neji, “Compressive strength and hygric properties of concretes incorporating microencapsulated phase change material,” Construction and Building Materials, vol. 222, pp. 254–262, Oct. 2019, doi: 10.1016/j.conbuildmat.2019.06.156.
[238] Z. Yunsheng, S. Wei, L. Sifeng, J. Chujie, and L. Jianzhong, “Preparation of C200 green reactive powder concrete and its static–dynamic behaviors,” Cement and Concrete Composites, vol. 30, no. 9, pp. 831–838, Oct. 2008, doi: 10.1016/j.cemconcomp.2008.06.008.
[239] N. Banthia and J.-F. Trottier, “Concrete reinforced with deformed steel fibres. Part II: Toughness characterization,” ACI Materials Journal, vol. 92, no. 2, pp. 146–154, 1995.
[240] E. Gürbüz and S. Erdem, “Development and thermo-mechanical analysis of high-performance hybrid fibre engineered cementitious composites with microencapsulated phase change materials,” Construction and Building Materials, vol. 263, p. 120139, Dec. 2020, doi: 10.1016/j.conbuildmat.2020.120139.
[241] Z. Wu, C. Shi, and K. H. Khayat, “Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape,” Composites Part B: Engineering, vol. 174, p. 107021, Oct. 2019, doi: 10.1016/j.compositesb.2019.107021.
[242] S. J. Barnett, J.-F. Lataste, T. Parry, S. G. Millard, and M. N. Soutsos, “Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength,” Materials and Structures, vol. 43, pp. 1009–1023, 2010.
[243] D.-Y. Yoo, H.-O. Shin, J.-M. Yang, and Y.-S. Yoon, “Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers,” Composites Part B: Engineering, vol. 58, pp. 122–133, Mar. 2014, doi: 10.1016/j.compositesb.2013.10.081.
[244] S.-T. Kang and J.-K. Kim, “The relation between fiber orientation and tensile behavior in an Ultra High Performance Fiber Reinforced Cementitious Composites (UHPFRCC),” Cement and Concrete Research, vol. 41, no. 10, pp. 1001–1014, Oct. 2011, doi: 10.1016/j.cemconres.2011.05.009.
[245] H. T. Wang and L. C. Wang, “Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete,” Construction and Building Materials, vol. 38, pp. 1146–1151, Jan. 2013, doi: 10.1016/j.conbuildmat.2012.09.016.
[246] H. W. Song and H. T. Wang, “Statistical Evaluation for Impact Resistance of Steel Fiber Reinforced Lightweight Aggregate Concrete,” in Advanced Materials Research, Trans Tech Publ, 2011, pp. 609–613.
[247] S. Erdem and E. Gürbüz, “Influence of microencapsulated phase change materials on the flexural behavior and micromechanical impact damage of hybrid fibre reinforced engineered cementitious composites,” Composites Part B: Engineering, vol. 166, pp. 633–644, Jun. 2019, doi: 10.1016/j.compositesb.2019.02.059.
[248] H. Cui, J. Zou, Z. Gong, D. Zheng, X. Bao, and X. Chen, “Study on the thermal and mechanical properties of steel fibre reinforced PCM-HSB concrete for high performance in energy piles,” Construction and Building Materials, vol. 350, p. 128822, Oct. 2022, doi: 10.1016/j.conbuildmat.2022.128822.
[249] V. Dorf, R. Krasnovskiy, D. Kapustin, P. Sultygova, and N. Umnyakova, “Influence of fiber content on the conductivity of steel fiber-reinforced concrete,” Special Publication, vol. 326, p. 62.1-62.8, 2018.
[250] I. L. Shubin, V. A. Dorf, R. O. Krasnovskij, D. E. Kapustin, and P. S. Sultygova, “Study of the Thermophysical Characteristics of Steel Fiber Reinforced Concrete,” in Materials Science Forum, Trans Tech Publ, 2020, pp. 41–47.
[251] X. Liang and C. Wu, “Investigation on thermal conductivity of steel fiber reinforced concrete using mesoscale modeling,” International Journal of Thermophysics, vol. 39, pp. 1–19, 2018.
[252] B. Nagy, S. G. Nehme, and D. Szagri, “Thermal Properties and Modeling of Fiber Reinforced Concretes,” Energy Procedia, vol. 78, pp. 2742–2747, Nov. 2015, doi: 10.1016/j.egypro.2015.11.616.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top