Laplante, Amanda (2024) The Effects of Exogenous Cardiolipin on Skeletal Muscle, Aerobic Exercise and Anxiety-Related Behaviour. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
1MBLaplante_MSc_F2024.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
Cardiolipin is a phospholipid found in the inner mitochondrial membrane and, consequently, is involved in energy metabolism. Cardiolipin is released from necrotic cells following myocardial
ischemia and reperfusion injury. Furthermore, increased levels of anxiety have been seen in individuals following myocardial infarction. Despite its various effects on liver, smooth and
cardiac muscle, the impact of increased cardiolipin on skeletal muscle and anxiety-like behaviour remains unknown. PURPOSE. This two-part project investigated the effects of exogenous cardiolipin on voluntary exercise metrics, forced exercise training, functional aerobic capacity, anxiety-related behaviors, and mitochondrial respiration of skeletal muscle in a mouse
model. METHODS. C57BL/6 mice were randomized to an experimental and a control group. The mice were injected 2x/week with 0.1ml of cardiolipin (0.25mg/ml or 0.5mg/ml) or placebo
solution. In-cage running wheels measured voluntary running, while high-intensity interval training was used as a method of exercise training. Aerobic capacity was assessed by maximal
endurance or maximal graded exercise tests. Open-field test and elevated plus maze served to measure anxiety-related behaviours. Lastly, mitochondrial respiratory capacity of the vastus
lateralis muscle was measured by high-resolution respirometry. SIGNIFICANCE. Overall, this
research has significant implications for advancing our understanding of cardiolipin biology,
cardiovascular physiology, skeletal muscle function, and mental health, with potential
implications for developing novel therapeutic interventions and improving patient outcomes.
Divisions: | Concordia University > Faculty of Arts and Science > Exercise Science |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Laplante, Amanda |
Institution: | Concordia University |
Degree Name: | M.A. Sc. |
Program: | Health and Exercise Science |
Date: | 18 July 2024 |
Thesis Supervisor(s): | Bergdahl, Andreas |
Keywords: | Cardiolipin; vastus lateralis; running capacity; voluntary exercise; oxidative phosphorylation |
ID Code: | 994235 |
Deposited By: | Amanda Laplante |
Deposited On: | 24 Oct 2024 17:22 |
Last Modified: | 24 Oct 2024 17:22 |
References:
Aguiar, A.S., Speck, A.E., Amaral, I.M., Canas, P.M., Cunha, R.A., 2018. The exercise sex gap and theimpact of the estrous cycle on exercise performance in mice. Sci Rep 8, 10742.
https://doi.org/10.1038/s41598-018-29050-0
Ahmadpour, S.T., Mahéo, K., Servais, S., Brisson, L., Dumas, J.-F., 2020. Cardiolipin, the Mitochondrial
Signature Lipid: Implication in Cancer. Int J Mol Sci 21, 8031.
https://doi.org/10.3390/ijms21218031
Atakan, M.M., Li, Y., Koşar, Ş.N., Turnagöl, H.H., Yan, X., 2021. Evidence-Based Effects of High�Intensity Interval Training on Exercise Capacity and Health: A Review with Historical
Perspective. Int J Environ Res Public Health 18, 7201. https://doi.org/10.3390/ijerph18137201
Bassett, D.R., Howley, E.T., 2000. Limiting factors for maximum oxygen uptake and determinants of
endurance performance. Med Sci Sports Exerc 32, 70–84. https://doi.org/10.1097/00005768-
200001000-00012
Batacan, R.B., Duncan, M.J., Dalbo, V.J., Connolly, K.J., Fenning, A.S., 2016. Light-intensity and high�intensity interval training improve cardiometabolic health in rats. Appl Physiol Nutr Metab 41,
945–952. https://doi.org/10.1139/apnm-2016-0037
Bouganim, S., Bergdahl, A., 2017. Constructing an inexpensive and versatile homemade rodent treadmill.
Lab Anim (NY) 46, 67–69. https://doi.org/10.1038/laban.1196
Bourin, M., Petit‐Demoulière, B., Nic Dhonnchadha, B., Hascöet, M., 2007. Animal models of anxiety in
mice. Fundamemntal Clinical Pharma 21, 567–574. https://doi.org/10.1111/j.1472-
8206.2007.00526.x
Bradley, R.M., Stark, K.D., Duncan, R.E., 2016. Influence of tissue, diet, and enzymatic remodeling on
cardiolipin fatty acyl profile. Mol Nutr Food Res 60, 1804–1818.
https://doi.org/10.1002/mnfr.201500966
Brand, M.D., Pakay, J.L., Ocloo, A., Kokoszka, J., Wallace, D.C., Brookes, P.S., Cornwall, E.J., 2005.
The basal proton conductance of mitochondria depends on adenine nucleotide translocase
content. Biochem J 392, 353–362. https://doi.org/10.1042/BJ20050890
Buchheit, M., Laursen, P.B., 2013. High-intensity interval training, solutions to the programming puzzle:
Part I: cardiopulmonary emphasis. Sports Med 43, 313–338. https://doi.org/10.1007/s40279-013-
0029-x
Bugger, H., Pfeil, K., 2020. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling.
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1866, 165768.
https://doi.org/10.1016/j.bbadis.2020.165768
Carnevale, M.L., Bergdahl, A., 2015. Study of the anti-angiogenic effects of cardiolipin by the aortic ring
assay. Can J Physiol Pharmacol 93, 1015–1019. https://doi.org/10.1139/cjpp-2015-0016
Caru, M., Lalonde, F., Legault, E., Curnier, D., St-Pierre, D.H., Comtois, A.S., Tournoux, F., 2019.
Ethical consideration and feasibility demonstration of high-intensity interval training without the
use of electrical shocks in mice with and without doxorubicin exposition. Am J Cancer Res 9,
2813–2820.
Chavanelle, V., Boisseau, N., Otero, Y.F., Combaret, L., Dardevet, D., Montaurier, C., Delcros, G.,
Peltier, S.L., Sirvent, P., 2017. Effects of high-intensity interval training and moderate-intensity
continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db
mice. Sci Rep 7, 204. https://doi.org/10.1038/s41598-017-00276-8
Chrøis, K.M., Dohlmann, T.L., Søgaard, D., Hansen, C.V., Dela, F., Helge, J.W., Larsen, S., 2020.
Mitochondrial adaptations to high intensity interval training in older females and males. European
Journal of Sport Science 20, 135–145. https://doi.org/10.1080/17461391.2019.1615556
49
Claypool, S.M., Koehler, C.M., 2012. The Complexity of Cardiolipin in Health and Disease. Trends
Biochem Sci 37, 32–41. https://doi.org/10.1016/j.tibs.2011.09.003
De Cort, S.C., Innes, J.A., Barstow, T.J., Guz, A., 1991. Cardiac output, oxygen consumption and
arteriovenous oxygen difference following a sudden rise in exercise level in humans. J Physiol
441, 501–512.
de Villiers, D., Potgieter, M., Ambele, M.A., Adam, L., Durandt, C., Pepper, M.S., 2018. The Role of
Reactive Oxygen Species in Adipogenic Differentiation, in: Van Pham, P. (Ed.), Stem Cells:
Biology and Engineering. Springer International Publishing, Cham, pp. 125–144.
https://doi.org/10.1007/5584_2017_119
Dean, E., 2016. Anxiety. Nurs Stand 30, 15. https://doi.org/10.7748/ns.30.46.15.s17
Deguchi, H., Fernandez, J.A., Hackeng, T.M., Banka, C.L., Griffin, J.H., 2000. Cardiolipin is a normal
component of human plasma lipoproteins. Proc Natl Acad Sci U S A 97, 1743–1748.
https://doi.org/10.1073/pnas.97.4.1743
Dudek, J., 2017. Role of Cardiolipin in Mitochondrial Signaling Pathways. Front Cell Dev Biol 5, 90.
https://doi.org/10.3389/fcell.2017.00090
Dudek, J., Hartmann, M., Rehling, P., 2019. The role of mitochondrial cardiolipin in heart function and
its implication in cardiac disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of
Disease, The power of metabolism: Linking energy supply and demand to contractile function
1865, 810–821. https://doi.org/10.1016/j.bbadis.2018.08.025
Feng, H.-P., Chien, W.-C., Cheng, W.-T., Chung, C.-H., Cheng, S.-M., Tzeng, W.-C., 2016. Risk of
anxiety and depressive disorders in patients with myocardial infarction. Medicine (Baltimore) 95,
e4464. https://doi.org/10.1097/MD.0000000000004464
Fontana-Ayoub, M., Eigentler, A., Fasching, M., Gnaiger, E., 2013. Selected media and chemicals for
respirometry with mitochondrial preparations.
Fontana-Ayoub, M., Fasching, M., Gnaiger, E., 2016. Selected media and chemicals for respirometry
with mitohcondrial preparations. Mitochondrial Physiology Network 03.02, 1–10.
Foroozan, P., Koushkie Jahromi, M., Nemati, J., Sepehri, H., Safari, M.A., Brand, S., 2021. Probiotic
Supplementation and High-Intensity Interval Training Modify Anxiety-Like Behaviors and
Corticosterone in High-Fat Diet-Induced Obesity Mice. Nutrients 13, 1762.
https://doi.org/10.3390/nu13061762
Galambo, D., Bergdahl, A., 2023. Physiological levels of cardiolipin acutely affect mitochondrial
respiration in vascular smooth muscle cells. Curr Res Physiol 6, 100097.
https://doi.org/10.1016/j.crphys.2022.100097
Gasanoff, E.S., Yaguzhinsky, L.S., Garab, G., 2021. Cardiolipin, Non-Bilayer Structures and
Mitochondrial Bioenergetics: Relevance to Cardiovascular Disease. Cells 10, 1721.
https://doi.org/10.3390/cells10071721
Gonçalves, B.S.B., Cavalcanti, P.R.A., Tavares, G.R., Campos, T.F., Araujo, J.F., 2014. Nonparametric
methods in actigraphy: An update. Sleep Science 7, 158–164.
https://doi.org/10.1016/j.slsci.2014.09.013
Gonzalvez, F., Gottlieb, E., 2007. Cardiolipin: Setting the beat of apoptosis. Apoptosis 12, 877–885.
https://doi.org/10.1007/s10495-007-0718-8
Gray, S.R., Ferguson, C., Birch, K., Forrest, L.J., Gill, J.M.R., 2016. High-intensity interval training: key
data needed to bridge the gap from laboratory to public health policy. Br J Sports Med 50, 1231–
1232. https://doi.org/10.1136/bjsports-2015-095705
Grosso, G., Sippl, N., Kjellström, B., Amara, K., de Faire, U., Elvin, K., Lindahl, B., Näsman, P., Rydén,
L., Norhammar, A., Svenungsson, E., 2019. Antiphospholipid Antibodies in Patients With
Myocardial Infarction. Ann Intern Med 170, 277–280. https://doi.org/10.7326/M18-2130
Haines, T.H., Dencher, N.A., 2002. Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett
528, 35–39. https://doi.org/10.1016/s0014-5793(02)03292-1
50
Hamsten, A., Norberg, R., Björkholm, M., de Faire, U., Holm, G., 1986. Antibodies to cardiolipin in
young survivors of myocardial infarction: an association with recurrent cardiovascular events.
Lancet 1, 113–116. https://doi.org/10.1016/s0140-6736(86)92258-0
Hohoff, C., 2009. Anxiety in mice and men: a comparison. J Neural Transm 116, 679–687.
https://doi.org/10.1007/s00702-009-0215-z
Hughes, D.C., Ellefsen, S., Baar, K., 2018. Adaptations to Endurance and Strength Training. Cold Spring
Harb Perspect Med 8, a029769. https://doi.org/10.1101/cshperspect.a029769
Jacobs, R.A., Lundby, C., 2013. Mitochondria express enhanced quality as well as quantity in association
with aerobic fitness across recreationally active individuals up to elite athletes. Journal of Applied
Physiology 114, 344–350. https://doi.org/10.1152/japplphysiol.01081.2012
Jefferies, J.L., 2013. Barth syndrome. Am J Med Genet C Semin Med Genet 163C, 198–205.
https://doi.org/10.1002/ajmg.c.31372
Kehrer, J.P., Robertson, J.D., Smith, C.V., 2010. 1.14 - Free Radicals and Reactive Oxygen Species, in:
McQueen, C.A. (Ed.), Comprehensive Toxicology (Second Edition). Elsevier, Oxford, pp. 277–
307. https://doi.org/10.1016/B978-0-08-046884-6.00114-7
Komada, M., Takao, K., Miyakawa, T., 2008. Elevated Plus Maze for Mice. JoVE (Journal of Visualized
Experiments) e1088. https://doi.org/10.3791/1088
Kraeuter, A.-K., Guest, P.C., Sarnyai, Z., 2019. The Open Field Test for Measuring Locomotor Activity
and Anxiety-Like Behavior. Methods Mol Biol 1916, 99–103. https://doi.org/10.1007/978-1-
4939-8994-2_9
Kumar, V., Bhat, Z.A., Kumar, D., 2013. Animal models of anxiety: a comprehensive review. J
Pharmacol Toxicol Methods 68, 175–183. https://doi.org/10.1016/j.vascn.2013.05.003
Kuznetsov, A.V., Veksler, V., Gellerich, F.N., Saks, V., Margreiter, R., Kunz, W.S., 2008. Analysis of
mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3,
965–976. https://doi.org/10.1038/nprot.2008.61
Ledesma, A., de Lacoba, M.G., Rial, E., 2002. The mitochondrial uncoupling proteins. Genome Biol 3,
reviews3015.1-reviews3015.9.
Little, J.P., Safdar, A., Wilkin, G.P., Tarnopolsky, M.A., Gibala, M.J., 2010. A practical model of low�volume high-intensity interval training induces mitochondrial biogenesis in human skeletal
muscle: potential mechanisms. J Physiol 588, 1011–1022.
https://doi.org/10.1113/jphysiol.2009.181743
Lu, L., Liu, M., Sun, R., Zheng, Y., Zhang, P., 2015. Myocardial Infarction: Symptoms and Treatments.
Cell Biochem Biophys 72, 865–867. https://doi.org/10.1007/s12013-015-0553-4
MacInnis, M.J., Gibala, M.J., 2017. Physiological adaptations to interval training and the role of exercise
intensity. J Physiol 595, 2915–2930. https://doi.org/10.1113/JP273196
Mangiamarchi, P., Caniuqueo, A., Ramírez-Campillo, R., Cárdenas, P., Morales, S., Cano-Montoya, J.,
Bresciani, G., Álvarez, C., 2017. [Effects of high-intensity interval training and nutritional
education in patients with type 2 diabetes]. Rev Med Chil 145, 845–853.
https://doi.org/10.4067/s0034-98872017000700845
Manzanares, G., Brito-da-Silva, G., Gandra, P.G., 2018a. Voluntary wheel running: patterns and
physiological effects in mice. Braz J Med Biol Res 52, e7830. https://doi.org/10.1590/1414-
431X20187830
McKenzie, M., Lazarou, M., Thorburn, D.R., Ryan, M.T., 2006. Mitochondrial respiratory chain
supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361, 462–469.
https://doi.org/10.1016/j.jmb.2006.06.057
Mileykovskaya, E., Dowhan, W., 2014. Cardiolipin-Dependent Formation of Mitochondrial Respiratory
Supercomplexes. Chem Phys Lipids 179, 42–48.
https://doi.org/10.1016/j.chemphyslip.2013.10.012
Müller, C.P., Reichel, M., Mühle, C., Rhein, C., Gulbins, E., Kornhuber, J., 2015. Brain membrane lipids
in major depression and anxiety disorders. Biochimica et Biophysica Acta (BBA) - Molecular and
51
Cell Biology of Lipids, Brain Lipids 1851, 1052–1065.
https://doi.org/10.1016/j.bbalip.2014.12.014
Munk, P.S., Butt, N., Larsen, A.I., 2010. High-intensity interval exercise training improves heart rate
variability in patients following percutaneous coronary intervention for angina pectoris. Int J
Cardiol 145, 312–314. https://doi.org/10.1016/j.ijcard.2009.11.015
Murray, T.E., Wenzel, T.J., Simtchouk, S., Greuel, B.K., Gibon, J., Klegeris, A., 2022. Extracellular
Cardiolipin Modulates Select Immune Functions of Astrocytes in Toll-Like Receptor (TLR) 4-
Dependent Manner. Mediators Inflamm 2022, 9946439. https://doi.org/10.1155/2022/9946439
Novack, G.V., Galeano, P., Castaño, E.M., Morelli, L., 2020. Mitochondrial Supercomplexes:
Physiological Organization and Dysregulation in Age-Related Neurodegenerative Disorders.
Front Endocrinol (Lausanne) 11, 600. https://doi.org/10.3389/fendo.2020.00600
Orumiyehei, A., Khoramipour, K., Rezaei, M.H., Madadizadeh, E., Meymandi, M.S., Mohammadi, F.,
Chamanara, M., Bashiri, H., Suzuki, K., 2022. High-Intensity Interval Training-Induced
Hippocampal Molecular Changes Associated with Improvement in Anxiety-like Behavior but Not
Cognitive Function in Rats with Type 2 Diabetes. Brain Sci 12, 1280.
https://doi.org/10.3390/brainsci12101280
Ott, M., Zhivotovsky, B., Orrenius, S., 2007. Role of cardiolipin in cytochrome c release from
mitochondria. Cell death and differentiation 14, 1243–7. https://doi.org/10.1038/sj.cdd.4402135
Pizzuto, M., Pelegrin, P., 2020. Cardiolipin in Immune Signaling and Cell Death. Trends in Cell Biology
30, 892–903. https://doi.org/10.1016/j.tcb.2020.09.004
Plag, J., Schmidt-Hellinger, P., Klippstein, T., Mumm, J.L.M., Wolfarth, B., Petzold, M.B., Ströhle, A.,
2020. Working out the worries: A randomized controlled trial of high intensity interval training in
generalized anxiety disorder. Journal of Anxiety Disorders 76, 102311.
https://doi.org/10.1016/j.janxdis.2020.102311
Prola, A., Blondelle, J., Vandestienne, A., Piquereau, J., Denis, R.G.P., Guyot, S., Chauvin, H., Mourier,
A., Maurer, M., Henry, C., Khadhraoui, N., Gallerne, C., Molinié, T., Courtin, G., Guillaud, L.,
Gressette, M., Solgadi, A., Dumont, F., Castel, J., Ternacle, J., Demarquoy, J., Malgoyre, A.,
Koulmann, N., Derumeaux, G., Giraud, M.-F., Joubert, F., Veksler, V., Luquet, S., Relaix, F.,
Tiret, L., Pilot-Storck, F., 2021. Cardiolipin content controls mitochondrial coupling and
energetic efficiency in muscle. Sci Adv 7, eabd6322. https://doi.org/10.1126/sciadv.abd6322
Ripperger, J.A., Jud, C., Albrecht, U., 2011. The daily rhythm of mice. FEBS Letters, Circadian Rhythms
585, 1384–1392. https://doi.org/10.1016/j.febslet.2011.02.027
Sabbah, H.N., 2021. Barth syndrome cardiomyopathy: targeting the mitochondria with elamipretide.
Heart Fail Rev 26, 237–253. https://doi.org/10.1007/s10741-020-10031-3
Schilders, E., Dimitrakopoulou, A., Cooke, M., Bismil, Q., Cooke, C., 2013. Effectiveness of a selective
partial adductor release for chronic adductor-related groin pain in professional athletes. Am J
Sports Med 41, 603–607. https://doi.org/10.1177/0363546513475790
Schlame, M., Rua, D., Greenberg, M.L., 2000. The biosynthesis and functional role of cardiolipin.
Progress in Lipid Research 39, 257–288. https://doi.org/10.1016/S0163-7827(00)00005-9
Schoettner, K., Alonso, M., Button, M., Goldfarb, C., Herrera, J., Quteishat, N., Meyer, C., Bergdahl, A.,
Amir, S., 2022. Characterization of Affective Behaviors and Motor Functions in Mice With a
Striatal-Specific Deletion of Bmal1 and Per2. Front Physiol 13, 922080.
https://doi.org/10.3389/fphys.2022.922080
Seldeen, K.L., Lasky, G., Leiker, M.M., Pang, M., Personius, K.E., Troen, B.R., 2018. High Intensity
Interval Training Improves Physical Performance and Frailty in Aged Mice. J Gerontol A Biol
Sci Med Sci 73, 429–437. https://doi.org/10.1093/gerona/glx120
Shen, Z., Ye, C., McCain, K., Greenberg, M.L., 2015. The Role of Cardiolipin in Cardiovascular Health.
Biomed Res Int 2015, 891707. https://doi.org/10.1155/2015/891707
Sletnes, K.E., Smith, P., Abdelnoor, M., Arnesen, H., Wisløff, F., 1992. Antiphospholipid antibodies after
myocardial infarction and their relation to mortality, reinfarction, and non-haemorrhagic stroke.
Lancet 339, 451–453. https://doi.org/10.1016/0140-6736(92)91057-f
52
Tanaka, Y., Sagayama, H., Shimizu, K., 2023. Insights into exercise timing to regulate circadian clocks
and phenotypes. Clinical Nutrition Open Science 47, 96–101.
https://doi.org/10.1016/j.nutos.2022.12.007
Tatsuta, T., Langer, T., 2017. Intramitochondrial phospholipid trafficking. Biochimica et Biophysica Acta
(BBA) - Molecular and Cell Biology of Lipids, Lipids of Mitochondria 1862, 81–89.
https://doi.org/10.1016/j.bbalip.2016.08.006
Vos, M., Geens, A., Böhm, C., Deaulmerie, L., Swerts, J., Rossi, M., Craessaerts, K., Leites, E.P.,
Seibler, P., Rakovic, A., Lohnau, T., De Strooper, B., Fendt, S.-M., Morais, V.A., Klein, C.,
Verstreken, P., 2017. Cardiolipin promotes electron transport between ubiquinone and complex I
to rescue PINK1 deficiency. J Cell Biol 216, 695–708. https://doi.org/10.1083/jcb.201511044
Wang, N., Liu, Y., Ma, Y., Wen, D., 2017. High-intensity interval versus moderate-intensity continuous
training: Superior metabolic benefits in diet-induced obesity mice. Life Sci 191, 122–131.
https://doi.org/10.1016/j.lfs.2017.08.023
Weinert, D., Gubin, D., 2022. The Impact of Physical Activity on the Circadian System: Benefits for
Health, Performance and Wellbeing. Applied Sciences 12, 9220.
https://doi.org/10.3390/app12189220
Wolff, C.A., Esser, K.A., 2019. Exercise Timing and Circadian Rhythms. Curr Opin Physiol 10, 64–69.
https://doi.org/10.1016/j.cophys.2019.04.020
Yin, F., Yao, J., Sancheti, H., Feng, T., Melcangi, R.C., Morgan, T.E., Finch, C.E., Pike, C.J., Mack,
W.J., Cadenas, E., Brinton, R.D., 2015. The Perimenopausal Aging Transition in the Female Rat
Brain: Decline in Bioenergetic Systems and Synaptic Plasticity. Neurobiology of aging 36, 2282.
https://doi.org/10.1016/j.neurobiolaging.2015.03.013
Ying, N., Luo, H., Li, B., Gong, K., Shu, Q., Liang, F., Gao, H., Huang, T., Zheng, H., 2023. Exercise
Alleviates Behavioral Disorders but Shapes Brain Metabolism of APP/PS1 Mice in a Region- and
Exercise-Specific Manner. J Proteome Res 22, 1649–1659.
https://doi.org/10.1021/acs.jproteome.2c00691
Repository Staff Only: item control page