Login | Register

Evaluating EEG as a prognostic tool to predict persistent symptoms in adolescents with concussion

Title:

Evaluating EEG as a prognostic tool to predict persistent symptoms in adolescents with concussion

Iuliano, Sofia (2024) Evaluating EEG as a prognostic tool to predict persistent symptoms in adolescents with concussion. Masters thesis, Concordia University.

[thumbnail of Iuliano_MSc_F2024.pdf]
Text (application/pdf)
Iuliano_MSc_F2024.pdf - Accepted Version
Restricted to Repository staff only until 29 August 2025.
Available under License Spectrum Terms of Access.
1MB

Abstract

Approximately 30% of children with concussion experience persistent post-concussion symptoms (PPCS), but no accurate prognostic tools are available. Electroencephalography (EEG) identifies alterations in electrical activity post-concussion, but its prognostic capability is unknown. Our objective was to determine if EEG outperforms current prognostic tools in predicting PPCS at 1-month post-concussion. Thirty-four adolescents (12.9 +/- 2.2 years, 20 males) with concussion were recruited. The treating physician predicted the likelihood of PPCS (0-100) at diagnosis in the emergency room. Participants completed a resting-state EEG and a brief clinical assessment battery 6.4 +/- 2.4 days post-injury and the Post-Concussion Symptom Inventory (PCSI) 28.9 +/- 1.9 days post-injury. PPCS (yes/no) was defined as an increase of ≥7 points on the PCSI compared to pre-injury symptom ratings. Twelve (35.3%) participants experienced PPCS at 1-month post-injury. Independent t-tests found that F3 delta power (p=0.04), F4 delta power (p=0.1), and F4 theta power (p=0.07) differed in adolescents with and without PPCS, which were combined into a multivariable model. Using inferential approaches, the EEG model had an AUC=0.71 (sensitivity=75%, specificity=68.2%) compared to the 5P Score (AUC=0.66, sensitivity=75%, specificity=45.9%) and physician prediction (AUC=0.55, sensitivity=71.4%, specificity=38.9%) models. However, these differences were not statistically significant (p=0.60 and p=0.32 respectively). The optimal machine learning model (SVM radial kernel, C=0.2) found that only the EEG performed significantly better than random chance in the training (72.9% accuracy, p<0.001) and validation set (62%, p<0.001). EEG features have potential as a prognostic biomarker of PPCS. Future studies should include larger samples and different EEG systems and features.

Divisions:Concordia University > Faculty of Arts and Science > Health, Kinesiology and Applied Physiology
Item Type:Thesis (Masters)
Authors:Iuliano, Sofia
Institution:Concordia University
Degree Name:M. Sc.
Program:Health and Exercise Science
Date:3 July 2024
Thesis Supervisor(s):Teel, Elizabeth Fay
ID Code:994392
Deposited By: Sofia Iuliano
Deposited On:24 Oct 2024 17:20
Last Modified:24 Oct 2024 17:20

References:

1. Chadwick L, Sharma MJ, Madigan S, Callahan BL, Owen Yeates K. Classification Criteria and Rates of Persistent Postconcussive Symptoms in Children: A Systematic Review and Meta-Analysis. J Pediatr. 2022;246:131-137.e2. doi:10.1016/j.jpeds.2022.03.039
2. Keays G, Friedman D, Gagnon I. Rates of concussions and minor head injuries in Quebec, 2003 and 2016, in children under 18 years old, and comparisons with Ontario’s rates of mild traumatic brain injuries. Can J Public Health. 2018;109(1):52-60. doi:10.17269/s41997-018-0037-6
3. Zemek R, Osmond MH, Barrowman N. Predicting and preventing postconcussive problems in paediatrics (5P) study: protocol for a prospective multicentre clinical prediction rule derivation study in children with concussion. BMJ Open. 2013;3(8):e003550. doi:10.1136/bmjopen-2013-003550
4. Munia TTK, Haider A, Schneider C, Romanick M, Fazel-Rezai R. A Novel EEG Based Spectral Analysis of Persistent Brain Function Alteration in Athletes with Concussion History. Sci Rep. 2017;7(1):17221. doi:10.1038/s41598-017-17414-x
5. Howell DR, Zemek R, Brilliant AN, Mannix RC, Master CL, Meehan WP. Identifying Persistent Postconcussion Symptom Risk in a Pediatric Sports Medicine Clinic. Am J Sports Med. 2018;46(13):3254-3261. doi:10.1177/0363546518796830
6. Rosenbaum PE, Locandro C, Chrisman SPD, et al. Characteristics of Pediatric Mild Traumatic Brain Injury and Recovery in a Concussion Clinic Population. JAMA Netw Open. 2020;3(11):e2021463. doi:10.1001/jamanetworkopen.2020.21463
7. Zemek R, Barrowman N, Freedman SB, et al. Clinical Risk Score for Persistent Postconcussion Symptoms Among Children With Acute Concussion in the ED. JAMA. 2016;315(10):1014. doi:10.1001/jama.2016.1203
8. Novak Z, Aglipay M, Barrowman N, et al. Association of Persistent Postconcussion Symptoms With Pediatric Quality of Life. JAMA Pediatr. 2016;170(12):e162900. doi:10.1001/jamapediatrics.2016.2900
9. Barr WB, Prichep LS, Chabot R, Powell MR, McCrea M. Measuring brain electrical activity to track recovery from sport-related concussion. Brain Inj. 2012;26(1):58-66. doi:10.3109/02699052.2011.608216
10. Fleck-Prediger CM, Ghosh Hajra S, Liu CC, et al. Point-of-care brain injury evaluation of conscious awareness: wide scale deployment of portable HCS EEG evaluation. Neurosci Conscious. 2018;2018(1). doi:10.1093/nc/niy011
11. McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5 th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. Published online April 26, 2017:bjsports-2017-097699. doi:10.1136/bjsports-2017-097699
12. Patricios JS, Schneider KJ, Dvorak J, et al. Consensus statement on concussion in sport: the 6th International Conference on Concussion in Sport–Amsterdam, October 2022. Br J Sports Med. 2023;57(11):695-711. doi:10.1136/bjsports-2023-106898
13. Giza CC, Hovda DA. The New Neurometabolic Cascade of Concussion. Neurosurgery. 2014;75(Supplement 4):S24-S33. doi:10.1227/NEU.0000000000000505
14. Choe MC. The Pathophysiology of Concussion. Curr Pain Headache Rep. 2016;20(6):42. doi:10.1007/s11916-016-0573-9
15. Howell DR, Southard J. The Molecular Pathophysiology of Concussion. Clin Sports Med. 2021;40(1):39-51. doi:10.1016/j.csm.2020.08.001
16. Esterov D, Greenwald B. Autonomic Dysfunction after Mild Traumatic Brain Injury. Brain Sci. 2017;7(12):100. doi:10.3390/brainsci7080100
17. Pertab JL, Merkley TL, Cramond AJ, Cramond K, Paxton H, Wu T. Concussion and the autonomic nervous system: An introduction to the field and the results of a systematic review. NeuroRehabilitation. 2018;42(4):397-427. doi:10.3233/NRE-172298
18. Government of Canada PHA of. Concussion: Sport and recreation. Published October 21, 2020. Accessed November 22, 2022. https://www.canada.ca/en/public-health/services/diseases/concussion-sign-symptoms/sport-recreation.html
19. Zogg CK, Haring RS, Xu L, et al. The Epidemiology of Pediatric Head Injury Treated Outside of Hospital Emergency Departments: Epidemiology. 2018;29(2):269-279. doi:10.1097/EDE.0000000000000791
20. McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported Concussion in High School Football Players. Clin J Sport Med. 2004;14(1).
21. Post A, Hoshizaki TB, Zemek R, et al. Pediatric concussion: biomechanical differences between outcomes of transient and persistent (> 4 weeks) postconcussion symptoms. J Neurosurg Pediatr. 2017;19(6):641-651. doi:10.3171/2016.11.PEDS16383
22. Kerr HA. Concussion Risk Factors and Strategies for Prevention. Pediatr Ann. 2014;43(12). doi:10.3928/00904481-20141124-10
23. Covassin T, Swanik CB, Sachs ML. Sex Differences and the Incidence of Concussions Among Collegiate Athletes. J Athl Train. 2003;38(3):238-244.
24. Reid DBC, Shah KN, Baum EJ, Daniels AH. Concussion: Mechanisms of Injury and Trends from 1997 to 2019. R I Med J 2013. 2020;103(7):71-75.
25. Haarbauer-Krupa J, Arbogast KB, Metzger KB, et al. Variations in Mechanisms of Injury for Children with Concussion. J Pediatr. 2018;197:241-248.e1. doi:10.1016/j.jpeds.2018.01.075
26. Kaufman MW, Su CA, Trivedi NN, et al. The Current Status of Concussion Assessment Scales: A Critical Analysis Review. JBJS Rev. 2021;9(6). doi:10.2106/JBJS.RVW.20.00108
27. Iragorri N, Spackman E. Assessing the value of screening tools: reviewing the challenges and opportunities of cost-effectiveness analysis. Public Health Rev. 2018;39(1):17. doi:10.1186/s40985-018-0093-8
28. Maerlender A, Smith E, Brolinson PG, et al. Psychometric properties of the standardized assessment of concussion in youth football: Validity, reliability, and demographic factors. Appl Neuropsychol Child. 2021;10(4):377-383. doi:10.1080/21622965.2020.1726746
29. Quatman-Yates C, Hugentobler J, Ammon R, Mwase N, Kurowski B, Myer GD. The Utility of the Balance Error Scoring System for Mild Brain Injury Assessments in Children and Adolescents. Phys Sportsmed. 2014;42(3):32-38. doi:10.3810/psm.2014.09.2073
30. Babl FE, Anderson V, Rausa VC, et al. Accuracy of Components of the SCAT5 and ChildSCAT5 to Identify Children with Concussion. Int J Sports Med. 2022;43(03):278-285. doi:10.1055/a-1533-1700
31. Worts PR, Schatz P, Burkhart SO. Test Performance and Test-Retest Reliability of the Vestibular/Ocular Motor Screening and King-Devick Test in Adolescent Athletes During a Competitive Sport Season. Am J Sports Med. 2018;46(8):2004-2010. doi:10.1177/0363546518768750
32. Messa I, Korcsog K, Abeare C. An updated review of the prevalence of invalid performance on the Immediate Post-Concussion and Cognitive Testing (ImPACT). Clin Neuropsychol. 2022;36(7):1613-1636. doi:10.1080/13854046.2020.1866676
33. Newman JB, Reesman JH, Vaughan CG, Gioia GA. Assessment of Processing Speed in Children with Mild TBI: A “First Look” at the Validity of Pediatric ImPACT. Clin Neuropsychol. 2013;27(5):779-793. doi:10.1080/13854046.2013.789552
34. Broglio SP, Collins MW, Williams RM, Mucha A, Kontos AP. Current and Emerging Rehabilitation for Concussion. Clin Sports Med. 2015;34(2):213-231. doi:10.1016/j.csm.2014.12.005
35. Cordingley D, Girardin R, Reimer K, et al. Graded aerobic treadmill testing in pediatric sports-related concussion: safety, clinical use, and patient outcomes. J Neurosurg Pediatr. 2016;18(6):693-702. doi:10.3171/2016.5.PEDS16139
36. Grool AM, Aglipay M, Momoli F, et al. Association Between Early Participation in Physical Activity Following Acute Concussion and Persistent Postconcussive Symptoms in Children and Adolescents. JAMA. 2016;316(23):2504. doi:10.1001/jama.2016.17396
37. Gagnon I, Grilli L, Friedman D, Iverson GL. A pilot study of active rehabilitation for adolescents who are slow to recover from sport-related concussion: Active rehabilitation in concussion. Scand J Med Sci Sports. 2016;26(3):299-306. doi:10.1111/sms.12441
38. Leddy JJ, Kozlowski K, Fung M, Pendergast DR, Willer B. Regulatory and autoregulatory physiological dysfunction as a primary characteristic of post concussion syndrome: Implications for treatment. Willer B, Leddy JJ, eds. NeuroRehabilitation. 2007;22(3):199-205. doi:10.3233/NRE-2007-22306
39. Leddy JJ, Master CL, Mannix R, et al. Early targeted heart rate aerobic exercise versus placebo stretching for sport-related concussion in adolescents: a randomised controlled trial. Lancet Child Adolesc Health. 2021;5(11):792-799. doi:10.1016/S2352-4642(21)00267-4
40. Bhattacharyya N, Baugh RF, Orvidas L, et al. Clinical Practice Guideline: Benign Paroxysmal Positional Vertigo. Otolaryngol Neck Surg. 2008;139(5_suppl):47-81. doi:10.1016/j.otohns.2008.08.022
41. Hoffer ME, Gottshall KR, Moore R, Balough BJ, Wester D. Characterizing and Treating Dizziness after Mild Head Trauma: Otol Neurotol. 2004;25(2):135-138. doi:10.1097/00129492-200403000-00009
42. Pavlou M, Davies RA, Bronstein AM. The assessment of increased sensitivity to visual stimuli in patients with chronic dizziness. J Vestib Res. 2007;16(4-5):223-231. doi:10.3233/VES-2006-164-509
43. Guskiewicz KM, Ross SE, Marshall SW. Postural Stability and Neuropsychological Deficits After Concussion in Collegiate Athletes. J Athl Train. 2001;36(3):263-273.
44. Alsalaheen BA, Mucha A, Morris LO, et al. Vestibular Rehabilitation for Dizziness and Balance Disorders After Concussion. J Neurol Phys Ther. 2010;34(2):87-93. doi:10.1097/NPT.0b013e3181dde568
45. Storey EP, Wiebe DJ, D’Alonzo BA, et al. Vestibular Rehabilitation Is Associated With Visuovestibular Improvement in Pediatric Concussion. J Neurol Phys Ther. 2018;42(3):134-141. doi:10.1097/NPT.0000000000000228
46. Kapoor N, Ciuffreda KJ. Vision disturbances following traumatic brain injury. Curr Treat Options Neurol. 2002;4(4):271-280. doi:10.1007/s11940-002-0027-z
47. Ciuffreda KJ, Rutner D, Kapoor N, Suchoff IB, Craig S, Han ME. Vision therapy for oculomotor dysfunctions in acquired brain injury: A retrospective analysis. Optom - J Am Optom Assoc. 2008;79(1):18-22. doi:10.1016/j.optm.2007.10.004
48. Brown L, Camarinos J. The Role of Physical Therapy in Concussion Rehabilitation. Semin Pediatr Neurol. 2019;30:68-78. doi:10.1016/j.spen.2019.03.011
49. Schneider KJ, Meeuwisse WH, Nettel-Aguirre A, et al. Cervicovestibular rehabilitation in sport-related concussion: a randomised controlled trial. Br J Sports Med. 2014;48(17):1294-1298. doi:10.1136/bjsports-2013-093267
50. Karlin AM. Concussion in the Pediatric and Adolescent Population: “Different Population, Different Concerns.” PM&R. 2011;3:S369-S379. doi:10.1016/j.pmrj.2011.07.015
51. Schatz P, Moser RS. Current Issues in Pediatric Sports Concussion. Clin Neuropsychol. 2011;25(6):1042-1057. doi:10.1080/13854046.2011.556669
52. Giza CC. Pediatric Issues in Sports Concussions: Contin Lifelong Learn Neurol. 2014;20:1570-1587. doi:10.1212/01.CON.0000458973.71142.7d
53. Martin AK, Petersen AJ, Sesma HW, et al. Concussion symptomology and recovery in children and adolescents with pre-existing anxiety. J Neurol Neurosurg Psychiatry. 2020;91(10):1060-1066. doi:10.1136/jnnp-2020-323137
54. Meehan WP, d’Hemecourt P, Collins CL, Comstock RD. Assessment and Management of Sport-Related Concussions in United States High Schools. Am J Sports Med. 2011;39(11):2304-2310. doi:10.1177/0363546511423503
55. Barlow KM, Crawford S, Stevenson A, Sandhu SS, Belanger F, Dewey D. Epidemiology of Postconcussion Syndrome in Pediatric Mild Traumatic Brain Injury. Pediatrics. 2010;126(2):e374-e381. doi:10.1542/peds.2009-0925
56. Eisenberg MA, Meehan WP, Mannix R. Duration and Course of Post-Concussive Symptoms. Pediatrics. 2014;133(6):999-1006. doi:10.1542/peds.2014-0158
57. Babcock L, Byczkowski T, Wade SL, Ho M, Mookerjee S, Bazarian JJ. Predicting Postconcussion Syndrome After Mild Traumatic Brain Injury in Children and Adolescents Who Present to the Emergency Department. JAMA Pediatr. 2013;167(2):156. doi:10.1001/jamapediatrics.2013.434
58. Mayer AR, Stephenson DD, Dodd AB, et al. Comparison of Methods for Classifying Persistent Post-Concussive Symptoms in Children. J Neurotrauma. 2020;37(13):1504-1511. doi:10.1089/neu.2019.6805
59. World Health Organization. International Statistical Classification of Diseases and Related Health Problem. World Health Organization; 2016. Accessed September 27, 2022. https://apps.who.int/iris/handle/10665/361417
60. Iverson GL, Silverberg ND, Mannix R, et al. Factors Associated With Concussion-like Symptom Reporting in High School Athletes. JAMA Pediatr. 2015;169(12):1132. doi:10.1001/jamapediatrics.2015.2374
61. Brooks BL, Daya H, Khan S, Carlson HL, Mikrogianakis A, Barlow KM. Cognition in the Emergency Department as a Predictor of Recovery after Pediatric Mild Traumatic Brain Injury. J Int Neuropsychol Soc. 2016;22(4):379-387. doi:10.1017/S1355617715001368
62. Jacobson NS, Truax P. Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol. 1991;59(1):12-19. doi:10.1037/0022-006X.59.1.12
63. Wang EX, Hwang CE, Nguyen JN, Segovia NA, Abrams GD, Kussman A. Factors Associated With a Prolonged Time to Return to Play After a Concussion. Am J Sports Med. 2022;50(6):1695-1701. doi:10.1177/03635465221083646
64. Davis-Hayes C, Gossett JD, Levine WN, et al. Sex-specific Outcomes and Predictors of Concussion Recovery. J Am Acad Orthop Surg. 2017;25(12):818-828. doi:10.5435/JAAOS-D-17-00276
65. Vedung F, Hänni S, Tegner Y, Johansson J, Marklund N. Concussion incidence and recovery in Swedish elite soccer — Prolonged recovery in female players. Scand J Med Sci Sports. 2020;30(5):947-957. doi:10.1111/sms.13644
66. Ledoux AA, Tang K, Yeates KO, et al. Natural Progression of Symptom Change and Recovery From Concussion in a Pediatric Population. JAMA Pediatr. 2019;173(1):e183820. doi:10.1001/jamapediatrics.2018.3820
67. Tierney RT, Sitler MR, Swanik CB, Swanik KA, Higgins M, Torg J. Gender Differences in Head-Neck Segment Dynamic Stabilization during Head Acceleration: Med Sci Sports Exerc. 2005;37(2):272-279. doi:10.1249/01.MSS.0000152734.47516.AA
68. Yeates KO, Kaizar E, Rusin J, et al. Reliable Change in Postconcussive Symptoms and Its Functional Consequences Among Children With Mild Traumatic Brain Injury. Arch Pediatr Adolesc Med. 2012;166(7). doi:10.1001/archpediatrics.2011.1082
69. Howell DR, Wilson JC, Kirkwood MW, Grubenhoff JA. Quality of Life and Symptom Burden 1 Month After Concussion in Children and Adolescents. Clin Pediatr (Phila). 2019;58(1):42-49. doi:10.1177/0009922818806308
70. Ransom DM, Vaughan CG, Pratson L, Sady MD, McGill CA, Gioia GA. Academic Effects of Concussion in Children and Adolescents. Pediatrics. 2015;135(6):1043-1050. doi:10.1542/peds.2014-3434
71. Moran LM, Taylor HG, Rusin J, et al. Quality of Life in Pediatric Mild Traumatic Brain Injury and its Relationship to Postconcussive Symptoms. J Pediatr Psychol. 2012;37(7):736-744. doi:10.1093/jpepsy/jsr087
72. Anderson V, Brown S, Newitt H, Hoile H. Educational, Vocational, Psychosocial, and Quality-of-Life Outcomes for Adult Survivors of Childhood Traumatic Brain Injury. J Head Trauma Rehabil. 2009;24(5):303-312. doi:10.1097/HTR.0b013e3181ada830
73. Sariaslan A, Sharp DJ, D’Onofrio BM, Larsson H, Fazel S. Long-Term Outcomes Associated with Traumatic Brain Injury in Childhood and Adolescence: A Nationwide Swedish Cohort Study of a Wide Range of Medical and Social Outcomes. Hay PJ, ed. PLOS Med. 2016;13(8):e1002103. doi:10.1371/journal.pmed.1002103
74. Stiell I, Wells G. Methodologic Standards for the Development of Clinical Decision Rules in Emergency Medicine. Ann Emerg Med. 1999;33(4):437-447. doi:10.1016/S0196-0644(99)70309-4
75. Zemek R, Eady K, Moreau K, et al. Knowledge of paediatric concussion among front-line primary care providers. Paediatr Child Health. 2014;19(9):475-480. doi:10.1093/pch/19.9.475
76. Zemek R, Eady K, Moreau K, et al. Canadian pediatric emergency physician knowledge of concussion diagnosis and initial management. CJEM. 2015;17(2):115-122. doi:10.1017/cem.2014.38
77. Nahmias DO, Kontson KL, Soltysik DA, Civillico EF. Consistency of quantitative electroencephalography features in a large clinical data set. J Neural Eng. 2019;16(6):066044. doi:10.1088/1741-2552/ab4af3
78. Müller-Putz GR, Riedl R, Wriessnegger SC. Electroencephalography (EEG) as a Research Tool in the Information Systems Discipline: Foundations, Measurement, and Applications. Commun Assoc Inf Syst. 2015;37. doi:10.17705/1CAIS.03746
79. Beniczky S, Schomer DL. Electroencephalography: basic biophysical and technological aspects important for clinical applications. Epileptic Disord. 2020;22(6):697-715. doi:10.1684/epd.2020.1217
80. Feyissa AM, Tatum WO. Adult EEG. In: Handbook of Clinical Neurology. Vol 160. Elsevier; 2019:103-124. doi:10.1016/B978-0-444-64032-1.00007-2
81. Ruijter BJ, Hofmeijer J, Meijer HGE, van Putten MJAM. Synaptic damage underlies EEG abnormalities in postanoxic encephalopathy: A computational study. Clin Neurophysiol. 2017;128(9):1682-1695. doi:10.1016/j.clinph.2017.06.245
82. Mizuno-Matsumoto Y, Inoguchi Y, Carpels SMA, Muramatsu A, Yamamoto Y. Cerebral cortex and autonomic nervous system responses during emotional memory processing. Ito E, ed. PLOS ONE. 2020;15(3):e0229890. doi:10.1371/journal.pone.0229890
83. Subhani AR, Xia Likun, Malik AS. Association of Autonomic Nervous System and EEG Scalp Potential During Playing 2D Grand Turismo 5. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2012:3420-3423. doi:10.1109/EMBC.2012.6346700
84. Ingvar DH, Sjölund B, Ardö A. Correlation between dominant EEG frequency, cerebral oxygen uptake and blood flow. Electroencephalogr Clin Neurophysiol. 1976;41(3):268-276. doi:10.1016/0013-4694(76)90119-X
85. Zhou M, Tian C, Cao R, et al. Epileptic Seizure Detection Based on EEG Signals and CNN. Front Neuroinformatics. 2018;12:95. doi:10.3389/fninf.2018.00095
86. Muthukumaraswamy SD. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci. 2013;7. doi:10.3389/fnhum.2013.00138
87. Malik AS, Amin HU. Designing an EEG Experiment. In: Designing EEG Experiments for Studying the Brain. Elsevier; 2017:1-30. doi:10.1016/B978-0-12-811140-6.00001-1
88. Amo C, Luis De Santiago, Barea R, López-Dorado A, Boquete L. Analysis of Gamma-Band Activity from Human EEG Using Empirical Mode Decomposition. Sensors. 2017;17(5):989. doi:10.3390/s17050989
89. Nicolaou N, Georgiou J. Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines. Expert Syst Appl. 2012;39(1):202-209. doi:10.1016/j.eswa.2011.07.008
90. Bandt C, Pompe B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys Rev Lett. 2002;88(17):174102. doi:10.1103/PhysRevLett.88.174102
91. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186-198. doi:10.1038/nrn2575
92. Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CMA. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage. 2011;55(4):1548-1565. doi:10.1016/j.neuroimage.2011.01.055
93. Stam CJ, van Straaten ECW. Go with the flow: Use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics. NeuroImage. 2012;62(3):1415-1428. doi:10.1016/j.neuroimage.2012.05.050
94. Brookes MJ, Hale JR, Zumer JM, et al. Measuring functional connectivity using MEG: Methodology and comparison with fcMRI. NeuroImage. 2011;56(3):1082-1104. doi:10.1016/j.neuroimage.2011.02.054
95. Freeman LC. A Set of Measures of Centrality Based on Betweenness. Sociometry. 1977;40(1):35. doi:10.2307/3033543
96. Thatcher RW, Walker RA, Gerson I, Geisler FH. EEG discriminant analyses of mild head trauma. Electroencephalogr Clin Neurophysiol. 1989;73(2):94-106. doi:10.1016/0013-4694(89)90188-0
97. Duff J. The Usefulness of Quantitative EEG (QEEG) and Neurotherapy in the Assessment and Treatment of Post-Concussion Syndrome. Clin EEG Neurosci. 2004;35(4):198-209. doi:10.1177/155005940403500410
98. Meyer JS, Denny-Brown D. Studies of cerebral circulation in brain injury. Electroencephalogr Clin Neurophysiol. 1955;7(4):529-544. doi:10.1016/0013-4694(55)90078-X
99. McCrea M, Prichep L, Powell MR, Chabot R, Barr WB. Acute Effects and Recovery After Sport-Related Concussion: A Neurocognitive and Quantitative Brain Electrical Activity Study. J HEAD TRAUMA Rehabil. Published online 2010.
100. Gosselin N, Lassonde M, Petit D, et al. Sleep following sport-related concussions. Sleep Med. 2009;10(1):35-46. doi:10.1016/j.sleep.2007.11.023
101. Chen XP, Tao LY, Chen AC. Electroencephalogram and evoked potential parameters examined in Chinese mild head injury patients for forensic medicine. Published online 2006.
102. Watson MR, Fenton GW, McClelland RJ, Lumsden J, Headley M, Rutherford WH. The Post-Concussional State: Neurophysiological Aspects. Br J Psychiatry. 1995;167(4):514-521. doi:10.1192/bjp.167.4.514
103. Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci. 2014;18(8):414-421. doi:10.1016/j.tics.2014.04.012
104. Nuwer MR, Hovda DA, Schrader LM, Vespa PM. Routine and quantitative EEG in mild traumatic brain injury. Clin Neurophysiol. 2005;116(9):2001-2025. doi:10.1016/j.clinph.2005.05.008
105. Korn A, Golan H, Melamed I, Pascual-Marqui R, Friedman A. Focal Cortical Dysfunction and Blood???Brain Barrier Disruption in Patients With Postconcussion Syndrome: J Clin Neurophysiol. 2005;22(1):1-9. doi:10.1097/01.WNP.0000150973.24324.A7
106. Virji-Babul N, Hilderman CGE, Makan N, et al. Changes in Functional Brain Networks following Sports-Related Concussion in Adolescents. J Neurotrauma. 2014;31(23):1914-1919. doi:10.1089/neu.2014.3450
107. Arciniegas DB. Clinical electrophysiologic assessments and mild traumatic brain injury: State-of-the-science and implications for clinical practice. Int J Psychophysiol. 2011;82(1):41-52. doi:10.1016/j.ijpsycho.2011.03.004
108. Corbin-Berrigan LA, Teel E, Vinet SA, et al. The Use of Electroencephalography as an Informative Tool in Assisting Early Clinical Management after Sport-Related Concussion: a Systematic Review. Neuropsychol Rev. Published online June 23, 2020. doi:10.1007/s11065-020-09442-8
109. Haneef Z, Levin HS, Frost JD, Mizrahi EM. Electroencephalography and Quantitative Electroencephalography in Mild Traumatic Brain Injury. J Neurotrauma. 2013;30(8):653-656. doi:10.1089/neu.2012.2585
110. Conley AC, Cooper PS, Karayanidis F, et al. Resting State Electroencephalography and Sports-Related Concussion: A Systematic Review. J Neurotrauma. 2019;36(1):1-13. doi:10.1089/neu.2018.5761
111. DSI-24 - Wearable Sensing | Dry EEG. Accessed November 11, 2022. https://wearablesensing.com/dsi-24/
112. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9-21. doi:10.1016/j.jneumeth.2003.10.009
113. Bzdok D. Classical Statistics and Statistical Learning in Imaging Neuroscience. Front Neurosci. 2017;11:543. doi:10.3389/fnins.2017.00543
114. Posit team. RStudio: Integrated Development Environment for R. Published online 2023. http://www.posit.co/
115. Dahiru T. P-Value, a true test of statistical significance? a cautionary note. Ann Ib Postgrad Med. 2011;6(1):21-26. doi:10.4314/aipm.v6i1.64038
116. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python. Mach Learn PYTHON. 2011;12:2825-2830. doi:10.5555/1953048.2078195
117. Vet HCW de, Terwee CB, Mokkink LB, Knol DL. Measurement in Medicine: A Practical Guide. Cambridge University Press; 2011.
118. Kamins J, Bigler E, Covassin T, et al. What is the physiological time to recovery after concussion? A systematic review. Br J Sports Med. 2017;51(12):935-940. doi:10.1136/bjsports-2016-097464
119. Mortazavi M, Lucini FA, Joffe D, Oakley DS. Electrophysiological trajectories of concussion recovery: From acute to prolonged stages in late teenagers. J Pediatr Rehabil Med. 2023;16(2):287-299. doi:10.3233/PRM-210114
120. Safar K, Zhang J, Emami Z, Gharehgazlou A, Ibrahim G, Dunkley BT. Mild traumatic brain injury is associated with dysregulated neural network functioning in children and adolescents. Brain Commun. 2021;3(2):fcab044. doi:10.1093/braincomms/fcab044
121. Morawska MM, Büchele F, Moreira CG, Imbach LL, Noain D, Baumann CR. Sleep Modulation Alleviates Axonal Damage and Cognitive Decline after Rodent Traumatic Brain Injury. J Neurosci. 2016;36(12):3422-3429. doi:10.1523/JNEUROSCI.3274-15.2016
122. Nagata K. WS-25-1 Metabolic and hemodynamic correlates of quantitative EEG mapping. Electroencephalogr Clin Neurophysiol Mot Control. 1995;97(4):S49-S50. doi:10.1016/0924-980X(95)92594-C
123. Hofle N, Paus T, Reutens D, et al. Regional Cerebral Blood Flow Changes as a Function of Delta and Spindle Activity during Slow Wave Sleep in Humans. J Neurosci. 1997;17(12):4800-4808. doi:10.1523/JNEUROSCI.17-12-04800.1997
124. Li F, Lu L, Shang S, et al. Cerebral Blood Flow and Its Connectivity Deficits in Mild Traumatic Brain Injury at the Acute Stage. Neural Plast. 2020;2020:1-10. doi:10.1155/2020/2174371
125. Vacchiano C, Silva S. Characterization of bilateral frontal lobe cerebral oxygen saturation in patients with mild traumatic brain injury. Nurs Outlook. 2017;65(5):S36-S43. doi:10.1016/j.outlook.2017.07.013
126. Brickman A, Paul R, Cohen R, et al. Category and letter verbal fluency across the adult lifespan: relationship to EEG theta power. Arch Clin Neuropsychol. 2005;20(5):561-573. doi:10.1016/j.acn.2004.12.006
127. Pathania A, Euler MJ, Clark M, Cowan RL, Duff K, Lohse KR. Resting EEG spectral slopes are associated with age-related differences in information processing speed. Biol Psychol. 2022;168:108261. doi:10.1016/j.biopsycho.2022.108261
128. Itthipuripat S, Wessel JR, Aron AR. Frontal theta is a signature of successful working memory manipulation. Exp Brain Res. 2013;224(2):255-262. doi:10.1007/s00221-012-3305-3
129. Chadwick L, Roth E, Minich NM, et al. Cognitive Outcomes in Children with Mild Traumatic Brain Injury: An Examination Using the National Institutes of Health Toolbox Cognition Battery. J Neurotrauma. 2021;38(18):2590-2599. doi:10.1089/neu.2020.7513
130. Churchill N, Hutchison M, Richards D, Leung G, Graham S, Schweizer TA. Brain Structure and Function Associated with a History of Sport Concussion: A Multi-Modal Magnetic Resonance Imaging Study. J Neurotrauma. 2017;34(4):765-771. doi:10.1089/neu.2016.4531
131. Herceg M, Kalcina LL, Lusic I. Concussion knowledge among family physicians in Croatia. Concussion. 2018;3(4):CNC59. doi:10.2217/cnc-2018-0002
132. Boggild M, Tator CH. Concussion Knowledge among Medical Students and Neurology/Neurosurgery Residents. Can J Neurol Sci J Can Sci Neurol. 2012;39(3):361-368. doi:10.1017/S0317167100013524
133. Corwin DJ, Zonfrillo MR, Master CL, et al. Characteristics of Prolonged Concussion Recovery in a Pediatric Subspecialty Referral Population. J Pediatr. 2014;165(6):1207-1215. doi:10.1016/j.jpeds.2014.08.034
134. Ellis M, Krisko C, Selci E, Russell K. Effect of concussion history on symptom burden and recovery following pediatric sports-related concussion. J Neurosurg Pediatr. 2018;21(4):401-408. doi:10.3171/2017.9.PEDS17392
135. Donaworth MA, Grandhi RK, Logan K, Gubanich PJ, Myer GD. Is current medical education adequately preparing future physicians to manage concussion: an initial evaluation. Phys Sportsmed. 2016;44(1):1-7. doi:10.1080/00913847.2016.1135039
136. Lopez-Gordo M, Sanchez-Morillo D, Valle F. Dry EEG Electrodes. Sensors. 2014;14(7):12847-12870. doi:10.3390/s140712847
137. Lantz G, Grave De Peralta R, Spinelli L, Seeck M, Michel CM. Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol. 2003;114(1):63-69. doi:10.1016/S1388-2457(02)00337-1
138. Gioia GA, Schneider JC, Vaughan CG, Isquith PK. Which symptom assessments and approaches are uniquely appropriate for paediatric concussion? Br J Sports Med. 2009;43(Suppl_1):i13-i22. doi:10.1136/bjsm.2009.058255
139. Schilling S, Mansour A, Sullivan L, Ding K, Pommering T, Yang J. Symptom Burden and Profiles in Concussed Children with and without Prolonged Recovery. Int J Environ Res Public Health. 2020;17(1):351. doi:10.3390/ijerph17010351
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top