Login | Register

Integrated Optimal Design and Operation of Compressed Air Energy Storage for Decentralized Applications

Title:

Integrated Optimal Design and Operation of Compressed Air Energy Storage for Decentralized Applications

Bazdar, Elaheh (2024) Integrated Optimal Design and Operation of Compressed Air Energy Storage for Decentralized Applications. PhD thesis, Concordia University.

[thumbnail of Bazdar_PhD_F2024.pdf]
Preview
Text (application/pdf)
Bazdar_PhD_F2024.pdf - Accepted Version
Available under License Spectrum Terms of Access.
17MB

Abstract

This thesis aims to investigate the integration of compressed air energy storage (CAES) technology into decentralized energy systems, addressing associated technological and integration challenges within the dynamic energy system environment. A multi-layer simulation-optimization framework is developed to comprehensively evaluate the feasibility of integrating decentralized CAES into local hybrid energy systems (HES) through optimal sizing and operation. In the first layer, an improved energy management operation strategy (I-EMOS) is designed to enhance the integration of adiabatic-CAES (A-CAES) systems into decentralized applications. In doing so, the interaction and limitations of A-CAES subsystems, including power conversion units, air storage tank, and thermal energy storage, are considered to evaluate the long-term performance and dynamic behavior of A-CAES systems, especially when connected to intermittent renewable energy sources and end-user load demand. Subsequently, the second layer develops a holistic sizing-planning framework, including a generic A-CAES model and various alternative power dispatch strategies (PDS), based on the application potentials of A-CAES. This module aims to enhance A-CAES contribution while minimizing the levelized cost of energy and achieving the optimal configuration for the corresponding applications. Eventually, the final layer focuses on improving the resilience of the energy system, incorporating A-CAES technology, within scenarios involving limited energy sources and hybrid energy storage solutions. Therefore, an operational unit-commitment optimization model is developed, considering the A-CAES system's response and charging-discharging transition times. This model is integrated into the sizing-planning module to co-optimize the economic performance and system resilience through two-stage optimization, involving long-term planning and short-term scheduling. The methodology is applied to Concordia University buildings in Montreal, Canada. Validation against data from an existing A-CAES pilot plant shows a 42.5% improvement using I-EMOS compared to traditional EMOS.
Optimal configurations under various PDSs demonstrate energy cost savings between $0.015 and $0.021 per kWh, with significant improvements in electrical load management (52%) and carbon emission reduction (65%) for the system in which A-CAES is planned for both solar energy integration and seasonal load shifting. Furthermore, under the worst-case scenario (zero selling back), the HES achieves a PV self-consumption rate of around 92% and a payback time of 15.5 years. In scenarios of limited grid dependency, a substantial annual resiliency improvement of approximately 41.1% is achieved by integrating the energy storage system. Additionally, despite the superior cost performance of the PV/A-CAES system, the PV-based HES featuring hybrid A-CAES, and battery storage achieves a 47.3% electrical load management ratio and a 96% self-consumption rate, improving by about 6% over HES with only A-CAES system. Furthermore, findings indicate that under optimal operational conditions, even with the highest PV power availability during grid interruptions, the HES could meet 94% of load demand using individual A-CAES, increasing to 100% by integrating fast-response batteries. In conclusion, the proposed framework offers a reliable approach for integrating and customizing decentralized A-CAES systems, considering specific service requirements and constraints. It identifies critical times of loss of power probability, enhances understanding of local energy system design, and facilitates better integration with renewable energy sources and storage systems. The findings provide valuable insights for decision-makers, helping select suitable systems and scenarios based on key performance indicators. The framework also is adaptable to various scale scenarios, accommodating both local and regional generation considerations.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (PhD)
Authors:Bazdar, Elaheh
Institution:Concordia University
Degree Name:Ph. D.
Program:Civil Engineering
Date:19 June 2024
Thesis Supervisor(s):Haghighat, Fariborz and Nasiri, Fuzhan
Keywords:Decentralized hybrid energy system, Adiabatic-compressed air energy storage, Optimal design, Optimal operation, Cost-effectiveness, Resilience, Dynamic modelling
ID Code:994514
Deposited By: Elaheh Bazdar
Deposited On:24 Oct 2024 16:06
Last Modified:24 Oct 2024 16:06

References:

[1] A. Panda, U. Mishra, K.B. Aviso, Optimizing hybrid power systems with compressed air energy storage, Energy. 205 (2020) 117962. https://doi.org/10.1016/j.energy.2020.117962.
[2] J. Bai, W. Wei, L. Chen, S. Mei, Rolling-horizon dispatch of advanced adiabatic compressed air energy storage based energy hub via data-driven stochastic dynamic programming, Energy Convers. Manag. 243 (2021) 114322. https://doi.org/10.1016/j.enconman.2021.114322.
[3] C. Huang, Y. Zong, S. You, C. Træholt, Y. Zheng, J. Wang, Z. Zheng, X. Xiao, Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities, Appl. Energy. 335 (2023). https://doi.org/10.1016/j.apenergy.2023.120762.
[4] N. Shirzadi, H. Rasoulian, F. Nasiri, U. Eicker, Resilience Enhancement of an Urban Microgrid during Off-Grid Mode Operation Using Critical Load Indicators, Energies. 15 (2022). https://doi.org/10.3390/en15207669.
[5] G. Venkataramani, P. Vijayamithran, Y. Li, Y. Ding, H. Chen, V. Ramalingam, Thermodynamic analysis on compressed air energy storage augmenting power / polygeneration for roundtrip efficiency enhancement, Energy. 180 (2019) 107–120. https://doi.org/10.1016/j.energy.2019.05.038.
[6] T.M. Gür, Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage, Energy Environ. Sci. 11 (2018) 2696–2767. https://doi.org/10.1039/c8ee01419a.
[7] S. Zhang, S. Miao, Y. Li, B. Yin, C. Li, Regional integrated energy system dispatch strategy considering advanced adiabatic compressed air energy storage device, Int. J. Electr. Power Energy Syst. 125 (2021) 106519. https://doi.org/10.1016/j.ijepes.2020.106519.
[8] M. Amir, R.G. Deshmukh, H.M. Khalid, Z. Said, A. Raza, S.M. Muyeen, A.S. Nizami, R.M. Elavarasan, R. Saidur, K. Sopian, Energy storage technologies: An integrated survey of developments, global economical/environmental effects, optimal scheduling model, and sustainable adaption policies, J. Energy Storage. 72 (2023) 108694. https://doi.org/10.1016/j.est.2023.108694.
[9] G. Smdani, M.R. Islam, A.N. Ahmad Yahaya, S.I. Bin Safie, Performance Evaluation of Advanced Energy Storage Systems: a Review, Energy Environ. 34 (2023) 1094–1141. https://doi.org/10.1177/0958305X221074729.
[10] J.Y. Lee, A.K. Ramasamy, K.H. Ong, R. Verayiah, H. Mokhlis, M. Marsadek, Energy storage systems: A review of its progress and outlook, potential benefits, barriers and solutions within the Malaysian distribution network, J. Energy Storage. 72 (2023) 108360. https://doi.org/10.1016/j.est.2023.108360.
[11] E. Bazdar, M. Sameti, F. Nasiri, F. Haghighat, Compressed air energy storage in integrated energy systems : A review, Renew. Sustain. Energy Rev. 167 (2022) 112701. https://doi.org/10.1016/j.rser.2022.112701.
[12] M. Heidari, D. Parra, M.K. Patel, Physical design, techno-economic analysis and optimization of distributed compressed air energy storage for renewable energy integration, J. Energy Storage. 35 (2021) 102268. https://doi.org/10.1016/j.est.2021.102268.
[13] S.O. Rey, J.A. Romero, L.T. Romero, À.F. Martínez, X.S. Roger, M.A. Qamar, J.L. Domínguez-García, L. Gevorkov, Powering the Future: A Comprehensive Review of Battery Energy Storage Systems, Energies. 16 (2023). https://doi.org/10.3390/en16176344.
[14] B. Li, Z. Liu, Y. Wu, P. Wang, R. Liu, L. Zhang, Review on photovoltaic with battery energy storage system for power supply to buildings: Challenges and opportunities, J. Energy Storage. 61 (2023) 106763. https://doi.org/https://doi.org/10.1016/j.est.2023.106763.
[15] F. Khalafian, N. Iliaee, E. Diakina, P. Parsa, M.M. Alhaider, M.H. Masali, S. Pirouzi, M. Zhu, Capabilities of compressed air energy storage in the economic design of renewable off-grid system to supply electricity and heat costumers and smart charging-based electric vehicles, J. Energy Storage. 78 (2024) 109888. https://doi.org/10.1016/j.est.2023.109888.
[16] G. Venkataramani, E. Ramakrishnan, M. Ram, A.H. Bhaskaran, P. Kumar, V. Ramalingam, J. Wang, Experimental investigation on small capacity compressed air energy storage towards e ffi cient utilization of renewable sources, 20 (2018) 364–370. https://doi.org/10.1016/j.est.2018.10.018.
[17] J. Bai, L. Chen, F. Liu, S. Mei, Interdependence of electricity and heat distribution systems coupled by an AA-CAES-based energy hub, IET Renew. Power Gener. 14 (2020) 399–407. https://doi.org/10.1049/iet-rpg.2019.0660.
[18] X. Zhang, C. (Chris) C. Qin, Y. Xu, W. Li, X. Zhou, R. Li, Y. Huang, H. Chen, Integration of small-scale compressed air energy storage with wind generation for flexible household power supply, J. Energy Storage. 37 (2021) 102430. https://doi.org/10.1016/j.est.2021.102430.
[19] Z. Tong, Z. Cheng, S. Tong, A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization, Renew. Sustain. Energy Rev. 135 (2021) 110178. https://doi.org/10.1016/j.rser.2020.110178.
[20] E. Bazdar, F. Nasiri, F. Haghighat, An improved energy management operation strategy for integrating adiabatic compressed air energy storage with renewables in decentralized applications, Energy Convers. Manag. 286 (2023) 117027. https://doi.org/10.1016/j.enconman.2023.117027.
[21] E. Bazdar, N. Fuzhan, H. Fariborz, Effect of Low-Temperature Thermal Energy Storage on the Hybrid PV-compressed Air Energy Storage Operation, in: 8th World Conf. Photovolt. Energy Convers., Milan, Italy, 2022: pp. 1609–1616. https://doi.org/10.4229/WCPEC-82022-5DV.2.19.
[22] H. Meng, M. Wang, O. Olumayegun, X. Luo, X. Liu, Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation, Renew. Energy. 136 (2019) 923–936. https://doi.org/10.1016/j.renene.2019.01.043.
[23] R. Jiang, X. Yang, Y. Xu, M. Yang, Design/off-design performance analysis and comparison of two different storage modes for trigenerative compressed air energy storage system, Appl. Therm. Eng. 175 (2020) 115335. https://doi.org/10.1016/j.applthermaleng.2020.115335.
[24] C. Guo, Y. Xu, H. Guo, X. Zhang, X. Lin, L. Wang, Y. Zhang, H. Chen, Comprehensive exergy analysis of the dynamic process of compressed air energy storage system with low-temperature thermal energy storage, Appl. Therm. Eng. 147 (2019) 684–693. https://doi.org/10.1016/j.applthermaleng.2018.10.115.
[25] P. Zhao, Y. Dai, J. Wang, Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application, Energy. 70 (2014) 674–684. https://doi.org/10.1016/j.energy.2014.04.055.
[26] P. Zhao, M. Wang, J. Wang, Y. Dai, A preliminary dynamic behaviors analysis of a hybrid energy storage system based on adiabatic compressed air energy storage and flywheel energy storage system for wind power application, Energy. 84 (2015) 825–839. https://doi.org/10.1016/j.energy.2015.03.067.
[27] S.W. Mei, J.J. Wang, F. Tian, L.J. Chen, X.D. Xue, Q. Lu, Y. Zhou, X.X. Zhou, Design and engineering implementation of non-supplementary fired compressed air energy storage system: TICC-500, Sci. China Technol. Sci. 58 (2015) 600–611. https://doi.org/10.1007/s11431-015-5789-0.
[28] B. Castellani, E. Morini, B. Nastasi, A. Nicolini, F. Rossi, Small-scale compressed air energy storage application for renewable energy integration in a listed building, Energies. 11 (2018). https://doi.org/10.3390/en11071921.
[29] K. Rouindej, E. Samadani, R.A. Fraser, CAES by design: A user-centered approach to designing Compressed Air Energy Storage (CAES) systems for future electrical grid: A case study for Ontario, Sustain. Energy Technol. Assessments. 35 (2019) 58–72. https://doi.org/10.1016/j.seta.2019.05.008.
[30] E. Bazdar, F. Nasiri, F. Haghighat, Optimal planning and configuration of adiabatic-compressed air energy storage for urban buildings application : Techno-economic and environmental assessment, J. Energy Storage. 76 (2024) 109720. https://doi.org/10.1016/j.est.2023.109720.
[31] M. Adib, F. Nasiri, F. Haghighat, K. Panchabikesan, G. Venkataramani, S. Tiwari, V. Ramalingam, Integrating compressed air energy storage with wind energy system – A review, E-Prime - Adv. Electr. Eng. Electron. Energy. 5 (2023) 100194. https://doi.org/10.1016/j.prime.2023.100194.
[32] S. Sarmast, K. Rouindej, R.A. Fraser, M.B. Dusseault, Sizing-design method for compressed air energy storage ( CAES ) systems : A case study based on power grid in Ontario, Energy Convers. Manag. 277 (2023) 116656. https://doi.org/10.1016/j.enconman.2023.116656.
[33] I.E. Atawi, A.Q. Al-Shetwi, A.M. Magableh, O.H. Albalawi, Recent Advances in Hybrid Energy Storage System Integrated Renewable Power Generation: Configuration, Control, Applications, and Future Directions, Batteries. 9 (2023). https://doi.org/10.3390/batteries9010029.
[34] T. Xia, Y. Li, N. Zhang, C. Kang, Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration, Renew. Sustain. Energy Rev. 160 (2022) 112203. https://doi.org/10.1016/j.rser.2022.112203.
[35] E.I. Come Zebra, H.J. van der Windt, G. Nhumaio, A.P.C. Faaij, A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries, Renew. Sustain. Energy Rev. 144 (2021). https://doi.org/10.1016/j.rser.2021.111036.
[36] C. Ammari, D. Belatrache, B. Touhami, S. Makhloufi, Sizing, optimization, control and energy management of hybrid renewable energy system—A review, Energy Built Environ. (2021). https://doi.org/10.1016/j.enbenv.2021.04.002.
[37] Our Energy Needs: World Energy Consumption & Demand | CAPP, (n.d.). https://www.capp.ca/energy/world-energy-needs/ (accessed November 27, 2020).
[38] A.Z. Arsad, M.A. Hannan, A.Q. Al-Shetwi, M. Mansur, K.M. Muttaqi, Z.Y. Dong, F. Blaabjerg, Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions, Int. J. Hydrogen Energy. (2022). https://doi.org/10.1016/j.ijhydene.2022.03.208.
[39] S.M. Dawoud, X. Lin, M.I. Okba, Hybrid renewable microgrid optimization techniques : A review, Renew. Sustain. Energy Rev. 82 (2018) 2039–2052. https://doi.org/10.1016/j.rser.2017.08.007.
[40] S. Ehsan, A. Mahmoudzadeh, M. Abdul, A review on green energy potentials in Iran, Renew. Sustain. Energy Rev. 27 (2013) 533–545. https://doi.org/10.1016/j.rser.2013.07.015.
[41] Data & Statistics - IEA, (n.d.). https://www.iea.org/data-and-statistics/data-browser/?country=WORLD&fuel=Energy supply&indicator=TPESbySource (accessed July 31, 2021).
[42] N. Shirzadi, F. Nasiri, C. El-Bayeh, U. Eicker, Optimal dispatching of renewable energy-based urban microgrids using a deep learning approach for electrical load and wind power forecasting, Int. J. Energy Res. 46 (2022) 3173–3188. https://doi.org/10.1002/er.7374.
[43] M.H. Nozari, M. Yaghoubi, K. Jafarpur, G.A. Mansoori, Development of dynamic energy storage hub concept: A comprehensive literature review of multi storage systems, J. Energy Storage. 48 (2022) 103972. https://doi.org/10.1016/j.est.2022.103972.
[44] M. Faisal, M.A. Hannan, P.J. Ker, A. Hussain, M. Bin Mansor, F. Blaabjerg, Review of energy storage system technologies in microgrid applications: Issues and challenges, IEEE Access. 6 (2018) 35143–35164. https://doi.org/10.1109/ACCESS.2018.2841407.
[45] J. Bai, W. Wei, L. Chen, S. Mei, Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation, Energy. 206 (2020) 118051. https://doi.org/10.1016/j.energy.2020.118051.
[46] IRENA, Electricity storage and renewables: Costs and markets to 2030. International Renewable Energy Agency, 2017.
[47] B. Zakeri, S. Syri, Electrical energy storage systems: A comparative life cycle cost analysis, Renew. Sustain. Energy Rev. 42 (2015) 569–596. https://doi.org/10.1016/j.rser.2014.10.011.
[48] M. Jafari, M. Korpås, A. Botterud, Power system decarbonization : Impacts of energy storage duration and interannual renewables variability, Renew. Energy. 156 (2020) 1171–1185. https://doi.org/10.1016/j.renene.2020.04.144.
[49] S. Koohi-Fayegh, M.A. Rosen, A review of energy storage types, applications and recent developments, J. Energy Storage. 27 (2020) 101047. https://doi.org/10.1016/j.est.2019.101047.
[50] A.G. Olabi, C. Onumaegbu, T. Wilberforce, M. Ramadan, M.A. Abdelkareem, A.H. Al – Alami, Critical review of energy storage systems, Energy. 214 (2021) 118987. https://doi.org/10.1016/j.energy.2020.118987.
[51] H. Sedighnejad, T. Iqbal, J. Quaicoe, Compressed air energy storage system control and performance assessment using energy harvested index, Electronics. 3 (2014) 1–21. https://doi.org/10.3390/electronics3010001.
[52] A.A. Khodadoost Arani, G. B. Gharehpetian, M. Abedi, Review on Energy Storage Systems Control Methods in Microgrids, Int. J. Electr. Power Energy Syst. 107 (2019) 745–757. https://doi.org/10.1016/j.ijepes.2018.12.040.
[53] X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy. 137 (2015) 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081.
[54] F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, R. Villafáfila-Robles, A review of energy storage technologies for wind power applications, Renew. Sustain. Energy Rev. 16 (2012) 2154–2171. https://doi.org/10.1016/j.rser.2012.01.029.
[55] S. Houssainy, M. Janbozorgi, P. Kavehpour, Thermodynamic performance and cost optimization of a novel hybrid thermal-compressed air energy storage system design, J. Energy Storage. 18 (2018) 206–217. https://doi.org/10.1016/j.est.2018.05.004.
[56] A.R. Razmi, S.M. Alirahmi, M.H. Nabat, E. Assareh, M. Shahbakhti, A green hydrogen energy storage concept based on parabolic trough collector and proton exchange membrane electrolyzer/fuel cell: Thermodynamic and exergoeconomic analyses with multi-objective optimization, Int. J. Hydrogen Energy. (2022) 1–22. https://doi.org/10.1016/j.ijhydene.2022.03.021.
[57] M. Dooner, J. Wang, 14 - Compressed-Air Energy Storage, Elsevier Ltd, 2020. https://doi.org/10.1016/B978-0-08-102886-5.00014-1.
[58] K.T. Møller, T.R. Jensen, E. Akiba, H. wen Li, Hydrogen - A sustainable energy carrier, Prog. Nat. Sci. Mater. Int. 27 (2017) 34–40. https://doi.org/10.1016/j.pnsc.2016.12.014.
[59] A.G. Olabi, T. Wilberforce, M. Ramadan, M.A. Abdelkareem, A.H. Alami, Compressed air energy storage systems: Components and operating parameters – A review, J. Energy Storage. (2020) 102000. https://doi.org/10.1016/j.est.2020.102000.
[60] E. Fertig, J. Apt, Economics of compressed air energy storage to integrate wind power: A case study in ERCOT, Energy Policy. 39 (2011) 2330–2342. https://doi.org/10.1016/j.enpol.2011.01.049.
[61] F.A. Tiano, G. Rizzo, Use of an Under-Water Compressed Air Energy Storage (UWCAES) to Fully Power the Sicily Region (Italy) With Renewable Energy: A Case Study, Front. Mech. Eng. 7 (2021) 1–16. https://doi.org/10.3389/fmech.2021.641995.
[62] S. Graham, M. Momen, A. Abu-heiba, K. Gluesenkamp, O. Abdelaziz, R.K. Jackson, C. Daniel, S. Graham, THERMAL ANALYSIS OF NEAR-ISOTHERMAL COMPRESSED GAS ENERGY Keywords : energy storage , compressed air , micro pumped-hydro storage , near-isothermal expansion / compression , waste-heat utilization , Stirling cycle Nomenclature : Symbols m c temperature [ , (n.d.).
[63] P. Zhao, W. Xu, S. Zhang, J. Wang, Y. Dai, Technical feasibility assessment of a standalone photovoltaic/wind/adiabatic compressed air energy storage based hybrid energy supply system for rural mobile base station, Energy Convers. Manag. 206 (2020) 112486. https://doi.org/10.1016/j.enconman.2020.112486.
[64] M. Budt, D. Wolf, R. Span, J. Yan, A review on compressed air energy storage: Basic principles, past milestones and recent developments, Appl. Energy. 170 (2016) 250–268. https://doi.org/10.1016/j.apenergy.2016.02.108.
[65] L. Chen, T. Zheng, S. Mei, X. Xue, B. Liu, Q. Lu, Review and prospect of compressed air energy storage system, J. Mod. Power Syst. Clean Energy. 4 (2016) 529–541. https://doi.org/10.1007/s40565-016-0240-5.
[66] Q. Zhou, D. Du, C. Lu, Q. He, W. Liu, A review of thermal energy storage in compressed air energy storage system, Energy. 188 (2019) 115993. https://doi.org/10.1016/j.energy.2019.115993.
[67] F. Crotogino, K.B.B. Gmbh, K. Mohmeyer, R. Scharf, E.O.N.K. Bremen, Huntorf CAES : More than 20 Years of Successful Operation by, (2001).
[68] G. Venkataramani, P. Parankusam, V. Ramalingam, J. Wang, A review on compressed air energy storage – A pathway for smart grid and polygeneration, Renew. Sustain. Energy Rev. 62 (2016) 895–907. https://doi.org/10.1016/j.rser.2016.05.002.
[69] W. He, J. Wang, Optimal selection of air expansion machine in Compressed Air Energy Storage: A review, Renew. Sustain. Energy Rev. 87 (2018) 77–95. https://doi.org/10.1016/j.rser.2018.01.013.
[70] A. Vecchi, Y. Li, Y. Ding, P. Mancarella, A. Sciacovelli, Liquid air energy storage (LAES): A review on technology state-of-the-art, integration pathways and future perspectives, Adv. Appl. Energy. 3 (2021) 100047. https://doi.org/10.1016/j.adapen.2021.100047.
[71] C.D. Botha, M.J. Kamper, Capability study of dry gravity energy storage, J. Energy Storage. 23 (2019) 159–174. https://doi.org/10.1016/j.est.2019.03.015.
[72] A.C. Ruoso, N.R. Caetano, L.A.O. Rocha, Storage gravitational energy for small scale industrial and residential applications, Inventions. 4 (2019) 1–13. https://doi.org/10.3390/inventions4040064.
[73] J. Wang, K. Lu, L. Ma, J. Wang, J. Li, D. Wang, S.- Min, E. Com, E. Com, Overview of Compressed Air Energy Storage and Technology Development, (n.d.). https://doi.org/10.3390/en10070991.
[74] J.J. Wang, L. Ma, K. Lu, S. Miao, D. Wang, J.J. Wang, Current research and development trend of compressed air energy storage, Syst. Sci. Control Eng. 5 (2017) 434–448. https://doi.org/10.1080/21642583.2017.1377645.
[75] L. Li, W. Liang, H. Lian, J. Yang, Advances in Geo-Energy Research Compressed air energy storage : characteristics , basic principles , and geological considerations, (2018). https://doi.org/10.26804/ager.2018.02.03.
[76] M. King, A. Jain, R. Bhakar, J. Mathur, J. Wang, Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK, Renew. Sustain. Energy Rev. 139 (2021) 110705. https://doi.org/10.1016/j.rser.2021.110705.
[77] Y. Fang, Y. Lu, A.P. Roskilly, X. Yu, A review of compressed air energy systems in vehicle transport, Energy Strateg. Rev. 33 (2021) 100583. https://doi.org/10.1016/j.esr.2020.100583.
[78] Y. Shi, F. Li, M. Cai, Q. Yu, Literature review: Present state and future trends of air-powered vehicles, J. Renew. Sustain. Energy. 8 (2016). https://doi.org/10.1063/1.4944970.
[79] F.S. Vieira, J.A.P. Balestieri, J.A. Matelli, Applications of compressed air energy storage in cogeneration systems, Energy. 214 (2021). https://doi.org/10.1016/j.energy.2020.118904.
[80] R. Li, L. Chen, T. Yuan, C. Li, Optimal dispatch of zero-carbon-emission micro Energy Internet integrated with non-supplementary fired compressed air energy storage system, J. Mod. Power Syst. Clean Energy. 4 (2016) 566–580. https://doi.org/10.1007/s40565-016-0241-4.
[81] Y. Li, J. Wang, Y. Han, Q. Zhao, X. Fang, Z. Cao, Robust and opportunistic scheduling of district integrated natural gas and power system with high wind power penetration considering demand flexibility and compressed air energy storage, J. Clean. Prod. 256 (2020) 120456. https://doi.org/10.1016/j.jclepro.2020.120456.
[82] B. Huang, X. Qiu, W. Wang, H. Li, W. Zhou, Overview of research situation and progress on compressed air energy storage technology, IOP Conf. Ser. Earth Environ. Sci. 295 (2019). https://doi.org/10.1088/1755-1315/295/2/012020.
[83] X. Luo, J. Wang, M. Dooner, J. Clarke, C. Krupke, Overview of current development in compressed air energy storage technology, Energy Procedia. 62 (2014) 603–611. https://doi.org/10.1016/j.egypro.2014.12.423.
[84] G. Dib, P. Haberschill, R. Rullière, Q. Perroit, S. Davies, R. Revellin, Thermodynamic simulation of a micro advanced adiabatic compressed air energy storage for building application, Appl. Energy. 260 (2020) 114248. https://doi.org/10.1016/j.apenergy.2019.114248.
[85] Z. Wang, D.S.K. Ting, R. Carriveau, W. Xiong, Z. Wang, Design and thermodynamic analysis of a multi-level underwater compressed air energy storage system, J. Energy Storage. 5 (2016) 203–211. https://doi.org/10.1016/j.est.2016.01.002.
[86] O.O. Callaghan, P. Donnellan, Liquid air energy storage systems : A review, Renew. Sustain. Energy Rev. 146 (2021) 111113. https://doi.org/10.1016/j.rser.2021.111113.
[87] M.H. Nabat, S. Sharifi, A.R. Razmi, Thermodynamic and economic analyses of a novel liquid air energy storage (LAES) coupled with thermoelectric generator and Kalina cycle, J. Energy Storage. 45 (2022) 103711. https://doi.org/10.1016/j.est.2021.103711.
[88] S. Bashiri Mousavi, M.H. Nabat, A.R. Razmi, P. Ahmadi, A comprehensive study and multi-criteria optimization of a novel sub-critical liquid air energy storage (SC-LAES), Energy Convers. Manag. 258 (2022) 115549. https://doi.org/10.1016/j.enconman.2022.115549.
[89] A.J. Pimm, S.D. Garvey, M. de Jong, Design and testing of Energy Bags for underwater compressed air energy storage, Energy. 66 (2014) 496–508. https://doi.org/10.1016/j.energy.2013.12.010.
[90] S. Nojavan, A. Najafi-Ghalelou, M. Majidi, K. Zare, Optimal bidding and offering strategies of merchant compressed air energy storage in deregulated electricity market using robust optimization approach, Energy. 142 (2018) 250–257. https://doi.org/10.1016/j.energy.2017.10.028.
[91] S. Shafiee, H. Zareipour, A.M. Knight, N. Amjady, B. Mohammadi-Ivatloo, Risk-Constrained Bidding and Offering Strategy for a Merchant Compressed Air Energy Storage Plant, IEEE Trans. Power Syst. 32 (2017) 946–957. https://doi.org/10.1109/TPWRS.2016.2565467.
[92] J. Zhang, S. Zhou, S. Li, W. Song, Z. Feng, Performance analysis of diabatic compressed air energy storage (D-CAES) system, Energy Procedia. 158 (2019) 4369–4374. https://doi.org/10.1016/j.egypro.2019.01.782.
[93] G. Venkataramani, V. Ramalingam, Performance analysis of a small capacity compressed air energy storage system for renewable energy generation using TRNSYS, J. Renew. Sustain. Energy. 9 (2017). https://doi.org/10.1063/1.5000287.
[94] G. Venkataramani, V. Ramalingam, K. Viswanathan, Harnessing Free Energy From Nature For Efficient Operation of Compressed Air Energy Storage System and Unlocking the Potential of Renewable Power Generation, (2018) 1–11. https://doi.org/10.1038/s41598-018-28025-5.
[95] H. Chen, Y. Peng, Y. Wang, J. Zhang, Thermodynamic analysis of an open type isothermal compressed air energy storage system based on hydraulic pump / turbine and spray cooling, Energy Convers. Manag. 204 (2020) 112293. https://doi.org/10.1016/j.enconman.2019.112293.
[96] J.L. Liu, J.H. Wang, A comparative research of two adiabatic compressed air energy storage systems, Energy Convers. Manag. 108 (2016) 566–578. https://doi.org/10.1016/j.enconman.2015.11.049.
[97] L. Szablowski, P. Krawczyk, K. Badyda, S. Karellas, E. Kakaras, W. Bujalski, Energy and exergy analysis of adiabatic compressed air energy storage system, Energy. 138 (2017) 12–18. https://doi.org/10.1016/j.energy.2017.07.055.
[98] F. Jabari, S. Nojavan, B. Mohammadi Ivatloo, Designing and optimizing a novel advanced adiabatic compressed air energy storage and air source heat pump based μ-Combined Cooling, heating and power system, Energy. 116 (2016) 64–77. https://doi.org/10.1016/j.energy.2016.09.106.
[99] N. Hartmann, O. Vöhringer, C. Kruck, L. Eltrop, Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations, Appl. Energy. 93 (2012) 541–548. https://doi.org/10.1016/j.apenergy.2011.12.007.
[100] T. Ren, W. Xu, M. Cai, X. Wang, M. Li, Experiments on Air Compression with an Isothermal Piston for Energy Storage, (2019). https://doi.org/10.3390/en12193730.
[101] V.C. Patil, P. Acharya, P.I. Ro, Experimental investigation of water spray injection in liquid piston for near- isothermal compression, Appl. Energy. (2019) 114182. https://doi.org/10.1016/j.apenergy.2019.114182.
[102] P.Y. Li, DSCC2015-9957 COMBINED OPTIMAL DESIGN AND CONTROL OF A NEAR ISOTHERMAL LIQUID PISTON AIR COMPRESSOR / EXPANDER FOR A COMPRESSED AIR ENERGY, (2015).
[103] A. Odukomaiya, E. Kokou, Z. Hussein, A. Abu-Heiba, S. Graham, A.M. Momen, Near-isothermal-isobaric compressed gas energy storage, J. Energy Storage. 12 (2017) 276–287. https://doi.org/10.1016/j.est.2017.05.014.
[104] M. Cheayb, M. Marin Gallego, M. Tazerout, S. Poncet, Modelling and experimental validation of a small-scale trigenerative compressed air energy storage system, Appl. Energy. 239 (2019) 1371–1384. https://doi.org/10.1016/j.apenergy.2019.01.222.
[105] R. Jiang, F.G.F. Qin, B. Chen, X. Yang, H. Yin, Y. Xu, Thermodynamic performance analysis, assessment and comparison of an advanced trigenerative compressed air energy storage system under different operation strategies, Energy. 186 (2019) 115862. https://doi.org/10.1016/j.energy.2019.115862.
[106] M. Cheayb, M. Marin Gallego, S. Poncet, M. Tazerout, Micro-scale trigenerative compressed air energy storage system: Modeling and parametric optimization study, J. Energy Storage. 26 (2019) 100944. https://doi.org/10.1016/j.est.2019.100944.
[107] A. Arabkoohsar, M. Dremark-Larsen, R. Lorentzen, G.B. Andresen, Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity, Appl. Energy. 205 (2017) 602–614. https://doi.org/10.1016/j.apenergy.2017.08.006.
[108] S. Lv, W. He, A. Zhang, G. Li, B. Luo, X. Liu, Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting, Energy Convers. Manag. 135 (2017) 394–401. https://doi.org/10.1016/j.enconman.2016.12.089.
[109] A.L. Facci, D. Sánchez, E. Jannelli, S. Ubertini, Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment, Appl. Energy. 158 (2015) 243–254. https://doi.org/10.1016/j.apenergy.2015.08.026.
[110] J.L. Liu, J.H. Wang, Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor, Energy. 91 (2015) 420–429. https://doi.org/10.1016/j.energy.2015.08.055.
[111] Y. Li, X. Wang, D. Li, Y. Ding, A trigeneration system based on compressed air and thermal energy storage, Appl. Energy. 99 (2012) 316–323. https://doi.org/10.1016/j.apenergy.2012.04.048.
[112] X.D. Xue, S.X. Wang, X.L. Zhang, C. Cui, L.B. Chen, Y. Zhou, J.J. Wang, Thermodynamic analysis of a novel liquid air energy storage system, Phys. Procedia. 67 (2015) 733–738. https://doi.org/10.1016/j.phpro.2015.06.124.
[113] R. Morgan, S. Nelmes, E. Gibson, G. Brett, Liquid air energy storage – Analysis and first results from a pilot scale demonstration plant q, Appl. Energy. 137 (2015) 845–853. https://doi.org/10.1016/j.apenergy.2014.07.109.
[114] B. Ameel, C.T. Joen, K. De Kerpel, P. De Jaeger, H. Huisseune, M. Van Belleghem, M. De Paepe, Thermodynamic analysis of energy storage with a liquid air Rankine cycle, Appl. Therm. Eng. 52 (2013) 130–140. https://doi.org/10.1016/j.applthermaleng.2012.11.037.
[115] H. Guo, Y. Xu, H. Chen, C. Guo, W. Qin, Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system, Appl. Energy. 199 (2017) 96–106. https://doi.org/10.1016/j.apenergy.2017.04.068.
[116] H. Guo, Y. Xu, X. Zhang, Q. Liang, S. Wang, H. Chen, Dynamic characteristics and control of supercritical compressed air energy storage systems, Appl. Energy. 283 (2021) 116294. https://doi.org/10.1016/j.apenergy.2020.116294.
[117] Z. Liao, H. Zhong, C. Xu, X. Ju, F. Ye, X. Du, Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems, Appl. Energy. 269 (2020) 115132. https://doi.org/10.1016/j.apenergy.2020.115132.
[118] M. Jae, T. Seop, Feasibility study on the in fl uence of steam injection in the compressed air energy storage system, Energy. 141 (2017) 239–249. https://doi.org/10.1016/j.energy.2017.09.078.
[119] A. Pimm, S.D. Garvey, Underwater Compressed Air Energy Storage, Elsevier Inc., 2016. https://doi.org/10.1016/B978-0-12-803440-8/00007-5.
[120] S.D. Lim, A.P. Mazzoleni, J. Park, P.I. Ro, B. Quinlan, N. Carolina, Conceptual design of ocean compressed air energy storage system, (2012).
[121] B. Cheung, N. Cao, R. Carriveau, D.S. Ting, B. Cheung, N. Cao, R. Carriveau, D.S. Ting, B. Cheung, N. Cao, R. Carriveau, D.S. Ting, Distensible air accumulators as a means of adiabatic underwater compressed air energy storage Distensible air accumulators as a means of adiabatic underwater compressed air energy storage, 7233 (2012). https://doi.org/10.1080/00207233.2012.699360.
[122] Y.M. Kim, D.G. Shin, D. Favrat, Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis, Energy. 36 (2011) 6220–6233. https://doi.org/10.1016/j.energy.2011.07.040.
[123] Z. Wang, W. Xiong, H. Wang, A review on underwater compressed air energy storage, Energy Storage Sci. Technol. 4 (2015) 282–296.
[124] A. Pimm, S. Garvey, Analysis of flexible fabric structures for large-scale subsea compressed air energy storage, J. Phys. Conf. Ser. 181 (2009). https://doi.org/10.1088/1742-6596/181/1/012049.
[125] D. Fiaschi, G. Manfrida, R. Secchi, D. Tempesti, A versatile system for offshore energy conversion including diversified storage, Energy. 48 (2012) 566–576. https://doi.org/10.1016/j.energy.2012.10.006.
[126] A.H. Slocum, G.E. Fennell, G. Dündar, B.G. Hodder, J.D.C. Meredith, M.A. Sager, Ocean renewable energy storage (ORES) system: Analysis of an undersea energy storage concept, Proc. IEEE. 101 (2013) 906–924. https://doi.org/10.1109/JPROC.2013.2242411.
[127] A. Hutagalung, STUDY ON UNDERGROUND GAS STORAGE IN EUROPE AND CENTRAL ASIA, Angew. Chemie Int. Ed. 6(11), 951–952. (1967) 5–24.
[128] M. Lutyński, An overview of potential benefits and limitations of Compressed Air Energy Storage in abandoned coal mines, IOP Conf. Ser. Mater. Sci. Eng. 268 (2017). https://doi.org/10.1088/1757-899X/268/1/012006.
[129] X. Xu, W. Hu, D. Cao, Q. Huang, W. Liu, Z. Liu, Z. Chen, H. Lund, Designing a standalone wind-diesel-CAES hybrid energy system by using a scenario-based bi-level programming method, Energy Convers. Manag. 211 (2020) 112759. https://doi.org/10.1016/j.enconman.2020.112759.
[130] J. Zhang, K.J. Li, M. Wang, W.J. Lee, H. Gao, C. Zhang, K. Li, A Bi-Level Program for the Planning of an Islanded Microgrid Including CAES, IEEE Trans. Ind. Appl. 52 (2016) 2768–2777. https://doi.org/10.1109/TIA.2016.2539246.
[131] S. Sadeghi, I.B. Askari, Prefeasibility techno-economic assessment of a hybrid power plant with photovoltaic, fuel cell and Compressed Air Energy Storage (CAES), Energy. 168 (2019) 409–424. https://doi.org/10.1016/j.energy.2018.11.108.
[132] S. Simpore, F. Garde, M. David, O. Marc, J. Castaing-Lasvignottes, Sensitivity analysis and optimization of a compressed air energy storage (CAES) system powered by a photovoltaic plant to supply a building, Procedia Manuf. 35 (2019) 137–142. https://doi.org/10.1016/j.promfg.2019.05.016.
[133] D. Wolf, M. Budt, LTA-CAES - A low-temperature approach to adiabatic compressed air energy storage, Appl. Energy. 125 (2014) 158–164. https://doi.org/10.1016/j.apenergy.2014.03.013.
[134] S. Houssainy, M. Janbozorgi, P. Ip, P. Kavehpour, Thermodynamic analysis of a high temperature hybrid compressed air energy storage (HTH-CAES) system, Renew. Energy. 115 (2018) 1043–1054. https://doi.org/10.1016/j.renene.2017.09.038.
[135] B. Llamas, M.F. Ortega, G. Barthelemy, I. De Godos, F.G. Acién, Development of an e ffi cient and sustainable energy storage system by hybridization of compressed air and biogas technologies ( BIO-CAES ), Energy Convers. Manag. 210 (2020) 112695. https://doi.org/10.1016/j.enconman.2020.112695.
[136] M. Soltani, M.H. Nabat, A.R. Razmi, M.B. Dusseault, J. Nathwani, A comparative study between ORC and Kalina based waste heat recovery cycles applied to a green compressed air energy storage (CAES) system, Energy Convers. Manag. 222 (2020) 113203. https://doi.org/10.1016/j.enconman.2020.113203.
[137] A. Razmi, M. Soltani, M. Torabi, 19)mirreza, M. Soltani, M. Torabi, Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: Energy and exergy analysis, Energy Convers. Manag. 195 (2019) 1199–1211. https://doi.org/10.1016/j.enconman.2019.05.065.
[138] A. Razmi, M. Soltani, C. Aghanajafi, M. Torabi, Thermodynamic and economic investigation of a novel integration of the absorption-recompression refrigeration system with compressed air energy storage (CAES), Energy Convers. Manag. 187 (2019) 262–273. https://doi.org/10.1016/j.enconman.2019.03.010.
[139] A. Razmi, M. Soltani, M. Tayefeh, M. Torabi, M.B. Dusseault, Thermodynamic analysis of compressed air energy storage ( CAES ) hybridized with a multi-e ff ect desalination ( MED ) system, Energy Convers. Manag. 199 (2019) 112047. https://doi.org/10.1016/j.enconman.2019.112047.
[140] M. Zeynalian, A.H. Hajialirezaei, A.R. Razmi, M. Torabi, Carbon Dioxide Capture from Compressed Air Energy Storage System, Appl. Therm. Eng. 178 (2020) 115593. https://doi.org/10.1016/j.applthermaleng.2020.115593.
[141] M. Javidmehr, F. Joda, A. Mohammadi, Thermodynamic and economic analyses and optimization of a multi- generation system composed by a compressed air storage , solar dish collector , micro gas turbine , organic Rankine cycle , and desalination system, Energy Convers. Manag. 168 (2018) 467–481. https://doi.org/10.1016/j.enconman.2018.05.019.
[142] S. Mojtaba, S. Bashiri, A. Reza, P. Ahmadi, A comprehensive techno-economic analysis and multi-criteria optimization of a compressed air energy storage ( CAES ) hybridized with solar and desalination units, Energy Convers. Manag. 236 (2021) 114053. https://doi.org/10.1016/j.enconman.2021.114053.
[143] X. Xue, J. Li, J. Liu, Y. Wu, H. Chen, G. Xu, T. Liu, Performance evaluation of a conceptual compressed air energy storage system coupled with a biomass integrated gasification combined cycle, Energy. 247 (2022) 123442. https://doi.org/10.1016/j.energy.2022.123442.
[144] A. Reza, H. Heydari, A. Pourahmadiyan, M. Torabi, A.R. Razmi, H. Heydari Afshar, A. Pourahmadiyan, M. Torabi, Investigation of a combined heat and power (CHP) system based on biomass and compressed air energy storage (CAES), Sustain. Energy Technol. Assessments. 46 (2021) 101253. https://doi.org/10.1016/j.seta.2021.101253.
[145] R. Roushenas, A.R. Razmi, M. Soltani, M. Torabi, M.B. Dusseault, J. Nathwani, Thermo-environmental analysis of a novel cogeneration system based on solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) coupled with turbocharger, Appl. Therm. Eng. 181 (2020) 115978. https://doi.org/10.1016/j.applthermaleng.2020.115978.
[146] B. Ghorbani, M. Mehrpooya, A. Ardehali, Energy and exergy analysis of wind farm integrated with compressed air energy storage using multi-stage phase change material, J. Clean. Prod. 259 (2020) 120906. https://doi.org/10.1016/j.jclepro.2020.120906.
[147] F. Musharavati, S. Khanmohammadi, M. Rahmani, S. Khanmohammadi, Thermodynamic modeling and comparative analysis of a compressed air energy storage system boosted with thermoelectric unit, J. Energy Storage. 33 (2021) 101888. https://doi.org/10.1016/j.est.2020.101888.
[148] S.B. Mousavi, P. Ahmadi, A. Pourahmadiyan, P. Hanafizadeh, A comprehensive techno-economic assessment of a novel compressed air energy storage (CAES) integrated with geothermal and solar energy, Sustain. Energy Technol. Assessments. 47 (2021) 101418. https://doi.org/10.1016/j.seta.2021.101418.
[149] H. Fu, Q. He, J. Song, X. Shi, Y. Hao, D. Du, W. Liu, Thermodynamic of a novel advanced adiabatic compressed air energy storage system with variable pressure ratio coupled organic rankine cycle, Energy. 227 (2021) 120411. https://doi.org/10.1016/j.energy.2021.120411.
[150] A. Karapekmez, I. Dincer, N. Javani, Development of a new integrated energy system with compressed air and heat storage options, J. Energy Storage. 32 (2020) 101955. https://doi.org/10.1016/j.est.2020.101955.
[151] C. Diyoke, C. Wu, Thermodynamic analysis of hybrid adiabatic compressed air energy storage system and biomass gasification storage (A-CAES + BMGS) power system, Fuel. 271 (2020) 117572. https://doi.org/10.1016/j.fuel.2020.117572.
[152] X. Zhang, R. Zeng, Q. Deng, X. Gu, H. Liu, Y. He, K. Mu, X. Liu, H. Tian, H. Li, Energy, exergy and economic analysis of biomass and geothermal energy based CCHP system integrated with compressed air energy storage (CAES), Energy Convers. Manag. 199 (2019) 111953. https://doi.org/10.1016/j.enconman.2019.111953.
[153] A. Sadreddini, M. Fani, M. Ashjari Aghdam, A. Mohammadi, Exergy analysis and optimization of a CCHP system composed of compressed air energy storage system and ORC cycle, Energy Convers. Manag. 157 (2018) 111–122. https://doi.org/10.1016/j.enconman.2017.11.055.
[154] A.R. Razmi, M. Janbaz, Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES), Energy Convers. Manag. 204 (2020) 112320. https://doi.org/10.1016/j.enconman.2019.112320.
[155] F. Lashgari, S.M. Babaei, M.Z. Pedram, A. Arabkoohsar, Comprehensive analysis of a novel integration of a biomass-driven combined heat and power plant with a compressed air energy storage (CAES), Energy Convers. Manag. 255 (2022) 115333. https://doi.org/10.1016/j.enconman.2022.115333.
[156] C. Diyoke, M. Aneke, M. Wang, C. Wu, Techno-economic analysis of wind power integrated with both compressed air energy storage (CAES) and biomass gasification energy storage (BGES) for power generation, RSC Adv. 8 (2018) 22004–22022. https://doi.org/10.1039/c8ra03128b.
[157] A. Mohammadi, M. Mehrpooya, Exergy analysis and optimization of an integrated micro gas turbine , compressed air energy storage and solar dish collector process, J. Clean. Prod. 139 (2016) 372–383. https://doi.org/10.1016/j.jclepro.2016.08.057.
[158] X. Wang, C. Yang, M. Huang, X. Ma, Multi-objective optimization of a gas turbine-based CCHP combined with solar and compressed air energy storage system, Energy Convers. Manag. 164 (2018) 93–101. https://doi.org/10.1016/j.enconman.2018.02.081.
[159] L. Zhong, E. Yao, Y. Hu, C. Zhao, H. Zou, G. Xi, Thermo-economic analysis of a novel system integrating compressed air and thermochemical energy storage with solid oxide fuel cell-gas turbine, Energy Convers. Manag. 252 (2022) 115114. https://doi.org/10.1016/j.enconman.2021.115114.
[160] T. Zhang, H. Zhao, H. Du, H. Wang, Thermodynamic performance study of a novel cogeneration system combining solid oxide fuel cell, gas turbine, organic Rankine cycle with compressed air energy storage, Energy Convers. Manag. 249 (2021) 114837. https://doi.org/10.1016/j.enconman.2021.114837.
[161] R. Roushenas, E. Zarei, M. Torabi, A novel trigeneration system based on solid oxide fuel cell-gas turbine integrated with compressed air and thermal energy storage concepts: Energy, exergy, and life cycle approaches, Sustain. Cities Soc. 66 (2021) 102667. https://doi.org/10.1016/j.scs.2020.102667.
[162] P. Jienkulsawad, Y. Patcharavorachot, Y.S. Chen, A. Arpornwichanop, Energy and exergy analyses of a hybrid system containing solid oxide and molten carbonate fuel cells, a gas turbine, and a compressed air energy storage unit, Int. J. Hydrogen Energy. 46 (2021) 34883–34895. https://doi.org/10.1016/j.ijhydene.2021.08.038.
[163] P. Jienkulsawad, D. Saebea, Y. Patcharavorachot, A. Arpornwichanop, Performance assessment of a hybrid solid oxide and molten carbonate fuel cell system with compressed air energy storage under different power demands, Int. J. Hydrogen Energy. 45 (2020) 835–848. https://doi.org/10.1016/j.ijhydene.2019.09.245.
[164] S. Khanmohammadi, M. Rahmani, F. Musharavati, S. Khanmohammadi, Q.V. Bach, Thermal modeling and triple objective optimization of a new compressed air energy storage system integrated with Rankine cycle, PEM fuel cell, and thermoelectric unit, Sustain. Energy Technol. Assessments. 43 (2021) 100810. https://doi.org/10.1016/j.seta.2020.100810.
[165] E. Hammann, R. Madlener, C. Hilgers, Economic Feasibility of a Compressed Air Energy Storage System under Market Uncertainty: A Real Options Approach, Energy Procedia. 105 (2017) 3798–3805. https://doi.org/10.1016/j.egypro.2017.03.888.
[166] C. Mohamad, M.G. Mylène, T. Mohand, P. Sébastien, A techno-economic analysis of small-scale Trigenerative Compressed Air Energy Storage system, Energy. (2021) 121842. https://doi.org/10.1016/j.energy.2021.121842.
[167] R. Li, H. Zhang, H. Chen, Y. Zhang, Z. Li, J. Zhao, X. Wang, H. Wang, Hybrid techno-economic and environmental assessment of adiabatic compressed air energy storage system in China-Situation, Appl. Therm. Eng. 186 (2021) 116443. https://doi.org/10.1016/j.applthermaleng.2020.116443.
[168] Y. Zhang, Y. Xu, X. Zhou, H. Guo, X. Zhang, H. Chen, Compressed air energy storage system with variable configuration for wind power generation, Energy Procedia. 142 (2017) 3356–3362. https://doi.org/10.1016/j.egypro.2017.12.470.
[169] A. Setiawan, A. Priyadi, M. Pujiantara, M.H. Purnomo, Sizing compressed-air energy storage tanks for solar home systems, 2015 IEEE Int. Conf. Comput. Intell. Virtual Environ. Meas. Syst. Appl. CIVEMSA 2015. (2015) 1–4. https://doi.org/10.1109/CIVEMSA.2015.7158620.
[170] E. Jannelli, M. Minutillo, A. Lubrano Lavadera, G. Falcucci, A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology, Energy. 78 (2014) 313–322. https://doi.org/10.1016/j.energy.2014.10.016.
[171] M. Minutillo, A. Lubrano Lavadera, E. Jannelli, Assessment of design and operating parameters for a small compressed air energy storage system integrated with a stand-alone renewable power plant, J. Energy Storage. 4 (2015) 135–1 44. https://doi.org/10.1016/j.est.2015.10.002.
[172] S.Y. Wang, J.L. Yu, Optimal sizing of the CAES system in a power system with high wind power penetration, Int. J. Electr. Power Energy Syst. 37 (2012) 117–125. https://doi.org/10.1016/j.ijepes.2011.12.015.
[173] C.C. Anierobi, K. Bhattacharya, C.A. Canizares, Behind-the-meter compressed air energy storage feasibility and applications, Electr. Power Syst. Res. 189 (2020) 106630. https://doi.org/10.1016/j.epsr.2020.106630.
[174] A. Daneshvar Garmroodi, F. Nasiri, F. Haghighat, Optimal dispatch of an energy hub with compressed air energy storage: A safe reinforcement learning approach, J. Energy Storage. (2022) 106147. https://doi.org/10.1016/j.est.2022.106147.
[175] G. Aruta, F. Ascione, N. Bianco, G.M. Mauro, Optimization of a diabatic compressed air energy storage coupled with photovoltaics for buildings: CO2-eq emissions vs payback time, Energy Reports. 8 (2022) 12686–12698. https://doi.org/10.1016/j.egyr.2022.09.112.
[176] P. Lv, F. Zlwk, R. Vlplodu, F. Khdw, D.Q.G. Srzhu, J. V Vwhp, F. Ri, $ %L Ohyho 3Urjudp Iru Wkh 3Odqqlqj Ri Dq ,Vodqghg 0Lfurjulg ,Qfoxglqj &$(6, (2016) 1–8.
[177] Y. Yan, C. Zhang, K. Li, Z. Wang, An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage, n.d. https://doi.org/10.1016/j.apenergy.2017.07.005.
[178] M. Adib, F. Nasiri, F. Haghighat, Integrating wind energy and compressed air energy storage for remote communities : A bi-level programming approach, J. Energy Storage. 72 (2023) 108496. https://doi.org/10.1016/j.est.2023.108496.
[179] Y. Yan, C. Zhang, K. Li, Z. Wang, An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage, Appl. Energy. 210 (2018) 1151–1166. https://doi.org/10.1016/j.apenergy.2017.07.005.
[180] H. Ibrahim, R. Younès, A. Ilinca, M. Dimitrova, J. Perron, Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas, Appl. Energy. 87 (2010) 1749–1762. https://doi.org/10.1016/j.apenergy.2009.10.017.
[181] H. Ibrahim, K. Belmokhtar, M. Ghandour, Investigation of usage of compressed air energy storage for power generation system improving - Application in a microgrid integrating wind energy, Energy Procedia. 73 (2015) 305–316. https://doi.org/10.1016/j.egypro.2015.07.694.
[182] H. Sun, X. Luo, J. Wang, Feasibility study of a hybrid wind turbine system - Integration with compressed air energy storage, Appl. Energy. 137 (2015) 617–628. https://doi.org/10.1016/j.apenergy.2014.06.083.
[183] R. Madlener, J. Latz, Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power, Appl. Energy. 101 (2013) 299–309. https://doi.org/10.1016/j.apenergy.2011.09.033.
[184] I. Arsie, V. Marano, G. Rizzo, M. Moran, Integration of wind turbines with Compressed Air Energy Storage, AIP Conf. Proc. 1159 (2009) 11–18. https://doi.org/10.1063/1.3223915.
[185] Y. Huang, A. Rolfe, I. Vorushylo, P. Keatley, R. Byrne, P. MacArtain, D. Flynn, and N. Hewitt, Integration of compressed air energy storage with wind generation into the electricity grid, (2018).
[186] A.R. Razmi, M. Soltani, A. Ardehali, K. Gharali, M.B. Dusseault, J. Nathwani, Design, thermodynamic, and wind assessments of a compressed air energy storage (CAES) integrated with two adjacent wind farms: A case study at Abhar and Kahak sites, Iran, Energy. 221 (2021) 119902. https://doi.org/10.1016/j.energy.2021.119902.
[187] J. Chen, W. Liu, D. Jiang, J. Zhang, S. Ren, L. Li, X. Li, X. Shi, Preliminary investigation on the feasibility of a clean CAES system coupled with wind and solar energy in China, Energy. 127 (2017) 462–478. https://doi.org/10.1016/j.energy.2017.03.088.
[188] W. He, M. Dooner, M. King, D. Li, S. Guo, J. Wang, Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation, Appl. Energy. 282 (2021) 116097. https://doi.org/10.1016/j.apenergy.2020.116097.
[189] S. Simpore, F. Garde, M. David, O.M. Marc, J. Castaing-Lasvignottes, Design and Dynamic Simulation of a Compressed Air Energy Storage System (CAES) Coupled with a Building, an Electric Grid and Photovoltaic Power Plant, CLIMA 2016, 12th REHVA World Congr. (2016). https://hal.archives-ouvertes.fr/hal-01467204.
[190] R. Cazzaniga, M. Cicu, M. Rosa-Clot, P. Rosa-Clot, G.M. Tina, C. Ventura, Compressed air energy storage integrated with floating photovoltaic plant, J. Energy Storage. 13 (2017) 48–57. https://doi.org/10.1016/j.est.2017.06.006.
[191] P.M. Congedo, C. Baglivo, L. Carrieri, Application of an unconventional thermal and mechanical energy storage coupled with the air conditioning and domestic hot water systems of a residential building, Energy Build. 224 (2020) 110234. https://doi.org/10.1016/j.enbuild.2020.110234.
[192] A. Tallini, A. Vallati, L. Cedola, Applications of micro-CAES systems: Energy and economic analysis, Energy Procedia. 82 (2015) 797–804. https://doi.org/10.1016/j.egypro.2015.11.815.
[193] L. Bagherzadeh, H. Shahinzadeh, H. Shayeghi, G.B. Gharehpetian, A short-term energy management of microgrids considering renewable energy resources, micro-compressed air energy storage and DRPs, Int. J. Renew. Energy Res. 9 (2019) 1712–1723.
[194] M. Jalili, M. Sedighizadeh, A.S. Fini, Stochastic optimal operation of a microgrid based on energy hub including a solar-powered compressed air energy storage system and an ice storage conditioner, J. Energy Storage. 33 (2021) 102089. https://doi.org/10.1016/j.est.2020.102089.
[195] V. Marano, G. Rizzo, F.A. Tiano, Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage, Appl. Energy. 97 (2012) 849–859. https://doi.org/10.1016/j.apenergy.2011.12.086.
[196] J. Gao, J.J. Chen, B.X. Qi, Y.L. Zhao, K. Peng, X.H. Zhang, A cost-effective two-stage optimization model for microgrid planning and scheduling with compressed air energy storage and preventive maintenance, Int. J. Electr. Power Energy Syst. 125 (2021). https://doi.org/10.1016/j.ijepes.2020.106547.
[197] S. Haghifam, A. Najafi-Ghalelou, K. Zare, M. Shafie-khah, A. Arefi, Stochastic bi-level coordination of active distribution network and renewable-based microgrid considering eco-friendly Compressed Air Energy Storage system and Intelligent Parking Lot, J. Clean. Prod. 278 (2021). https://doi.org/10.1016/j.jclepro.2020.122808.
[198] H. Daneshi, A.K. Srivastava, Security-constrained unit commitment with wind generation and compressed air energy storage, IET Gener. Transm. Distrib. 6 (2012) 167–175. https://doi.org/10.1049/iet-gtd.2010.0763.
[199] M. Ghaljehei, A. Ahmadian, M.A. Golkar, T. Amraee, A. Elkamel, Stochastic SCUC considering compressed air energy storage and wind power generation: A techno-economic approach with static voltage stability analysis, Int. J. Electr. Power Energy Syst. 100 (2018) 489–507. https://doi.org/10.1016/j.ijepes.2018.02.046.
[200] P.P. Gupta, P. Jain, K.C. Sharma, R. Bhakar, Stochastic scheduling of compressed air energy storage in DC SCUC framework for high wind penetration, IET Gener. Transm. Distrib. 13 (2019) 2747–2760. https://doi.org/10.1049/iet-gtd.2019.0330.
[201] M. Sedighizadeh, M. Esmaili, S.M. Mousavi-Taghiabadi, Optimal joint energy and reserve scheduling considering frequency dynamics, compressed air energy storage, and wind turbines in an electrical power system, J. Energy Storage. 23 (2019) 220–233. https://doi.org/10.1016/j.est.2019.03.019.
[202] Y. Li, S. Miao, S. Zhang, B. Yin, X. Luo, M. Dooner, J. Wang, A reserve capacity model of AA-CAES for power system optimal joint energy and reserve scheduling, Int. J. Electr. Power Energy Syst. 104 (2019) 279–290. https://doi.org/10.1016/j.ijepes.2018.07.012.
[203] W. Cai, R. Mohammaditab, G. Fathi, K. Wakil, A.G. Ebadi, N. Ghadimi, Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach, Renew. Energy. 143 (2019) 1–8. https://doi.org/10.1016/j.renene.2019.05.008.
[204] D. Xie, Q. Guo, X. Liang, K. Jermsittiparsert, Risk-based bidding and offering strategies of the compressed air energy storage using downside risk constraints, J. Clean. Prod. 302 (2021) 127032. https://doi.org/10.1016/j.jclepro.2021.127032.
[205] E. Akbari, R.A. Hooshmand, M. Gholipour, M. Parastegari, Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets, Energy. 171 (2019) 535–546. https://doi.org/10.1016/j.energy.2019.01.014.
[206] S. Shafiee, H. Zareipour, A.M. Knight, Developing Bidding and Offering Curves of a Price-Maker Energy Storage Facility Based on Robust Optimization, IEEE Trans. Smart Grid. 10 (2019) 650–660. https://doi.org/10.1109/TSG.2017.2749437.
[207] S. Nojavan, A. Akbari-Dibavar, K. Zare, Optimal energy management of compressed air energy storage in day-ahead and real-time energy markets, IET Gener. Transm. Distrib. 13 (2019) 3673–3679. https://doi.org/10.1049/iet-gtd.2018.7022.
[208] S. Narayan Dash, R. Krushna Padhi, T. Dora, A. Surendar, K. Cristan, A robust optimization method for bidding strategy by considering the compressed air energy storage, Sustain. Cities Soc. 48 (2019) 101564. https://doi.org/10.1016/j.scs.2019.101564.
[209] E. Drury, P. Denholm, R. Sioshansi, The value of compressed air energy storage in energy and reserve markets, Energy. 36 (2011) 4959–4973. https://doi.org/10.1016/j.energy.2011.05.041.
[210] S. Shafiee, H. Zareipour, A.M. Knight, Considering Thermodynamic Characteristics of a CAES Facility in Self-Scheduling in Energy and Reserve Markets, IEEE Trans. Smart Grid. 9 (2018) 3476–3485. https://doi.org/10.1109/TSG.2016.2633280.
[211] R. Khatami, K. Oikonomou, M. Parvania, Optimal Participation of Compressed Air Energy Storage in Energy and Ancillary Service Markets, Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf. 2018-April (2018) 1–5. https://doi.org/10.1109/TDC.2018.8440450.
[212] A. Attarha, N. Amjady, S. Dehghan, B. Vatani, Adaptive Robust Self-Scheduling for a Wind Producer with Compressed Air Energy Storage, IEEE Trans. Sustain. Energy. 9 (2018) 1659–1671. https://doi.org/10.1109/TSTE.2018.2806444.
[213] Y. Li, S. Miao, X. Luo, J. Wang, Optimization model for the power system scheduling with wind generation and compressed air energy storage combination, 2016 22nd Int. Conf. Autom. Comput. ICAC 2016 Tackling New Challenges Autom. Comput. 973 (2016) 300–305. https://doi.org/10.1109/IConAC.2016.7604936.
[214] J. Moradi, H. Shahinzadeh, A. Khandan, M. Moazzami, A profitability investigation into the collaborative operation of wind and underwater compressed air energy storage units in the spot market, Energy. 141 (2017) 1779–1794. https://doi.org/10.1016/j.energy.2017.11.088.
[215] Y. Li, S. Miao, B. Yin, J. Liu, W. Yang, S. Zhang, Research on optimal self-scheduling horizon for the wind power and large-scale CAES combined system, IET Gener. Transm. Distrib. 13 (2019) 5197–5206. https://doi.org/10.1049/iet-gtd.2018.7081.
[216] M. Abbaspour, M. Satkin, B. Mohammadi-Ivatloo, F. Hoseinzadeh Lotfi, Y. Noorollahi, Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES), Renew. Energy. 51 (2013) 53–59. https://doi.org/10.1016/j.renene.2012.09.007.
[217] A.N. Ghalelou, A.P. Fakhri, S. Nojavan, M. Majidi, H. Hatami, A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism, Energy Convers. Manag. 120 (2016) 388–396. https://doi.org/10.1016/j.enconman.2016.04.082.
[218] P. Aliasghari, M. Zamani-Gargari, B. Mohammadi-Ivatloo, Look-ahead risk-constrained scheduling of wind power integrated system with compressed air energy storage (CAES) plant, Energy. 160 (2018) 668–677. https://doi.org/10.1016/j.energy.2018.06.215.
[219] Y. Zhang, Y. Xu, H. Guo, X. Zhang, C. Guo, H. Chen, A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations, Renew. Energy. 125 (2018) 121–132. https://doi.org/10.1016/j.renene.2018.02.058.
[220] S. Hajiaghasi, A. Salemnia, M. Hamzeh, Hybrid energy storage system for microgrids applications: A review, J. Energy Storage. 21 (2019) 543–570. https://doi.org/10.1016/j.est.2018.12.017.
[221] S. Wang, X. Zhang, L. Yang, Y. Zhou, J. Wang, Experimental study of compressed air energy storage system with thermal energy storage, Energy. 103 (2016) 182–191. https://doi.org/10.1016/j.energy.2016.02.125.
[222] X. Xu, W. Hu, D. Cao, Q. Huang, W. Liu, Z. Liu, Z. Chen, H. Lund, Designing a standalone wind−diesel−CAES hybrid energy system by using a scenario−based bi−level programming method, Energy Convers. Manag. 211 (2020) 112759. https://doi.org/10.1016/j.enconman.2020.112759.
[223] Y. Li, S. Miao, B. Yin, J. Han, S. Zhang, J. Wang, X. Luo, Combined Heat and Power dispatch considering Advanced Adiabatic Compressed Air Energy Storage for wind power accommodation, Energy Convers. Manag. 200 (2019) 112091. https://doi.org/10.1016/j.enconman.2019.112091.
[224] X. Luo, J. Wang, C. Krupke, Y. Wang, Y. Sheng, J. Li, Y. Xu, D. Wang, S. Miao, H. Chen, Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage, Appl. Energy. 162 (2016) 589–600. https://doi.org/10.1016/j.apenergy.2015.10.091.
[225] T. Ma, Y. Zhang, W. Gu, G. Xiao, H. Yang, S. Wang, Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system, Renew. Energy. 197 (2022) 1049–1060. https://doi.org/10.1016/j.renene.2022.07.114.
[226] NASA Langley - POWER, (n.d.). https://power.larc.nasa.gov/common/php/SSE_ExSummary.php (accessed May 21, 2019).
[227] Data Download for Montréal, (n.d.). https://montreal.weatherstats.ca/download.html (accessed July 26, 2021).
[228] N. Shirzadi, F. Nasiri, U. Eicker, Optimal Configuration and Sizing of an Integrated Renewable Energy System for Isolated and Grid-Connected Microgrids: The Case of an Urban University Campus, Energies. 13 (2020) 3527. https://doi.org/10.3390/en13143527.
[229] X. Luo, M. Dooner, W. He, J. Wang, Y. Li, D. Li, O. Kiselychnyk, Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications, Appl. Energy. 228 (2018) 1198–1219. https://doi.org/10.1016/j.apenergy.2018.06.068.
[230] R2022b - Updates to the MATLAB and Simulink product families - MATLAB & Simulink, (n.d.). https://www.mathworks.com/products/new_products/latest_features.html (accessed October 25, 2022).
[231] Integrated Optimization of Location , Design , and Operation of Renewable Energy Systems for Urban Microgrids Navid Shirzadi A Thesis in the Department of Building Civil and Environmental Engineering ( BCEE ) Presented in Partial Fulfillment of the Requir, (2023).
[232] Z. Han, S. Guo, Investigation of operation strategy of combined cooling, heating and power(CCHP) system based on advanced adiabatic compressed air energy storage, Energy. 160 (2018) 290–308. https://doi.org/10.1016/j.energy.2018.07.033.
[233] T. Korakianitis, D.G. Wilson, Models for predicting the performance of brayton-cycle engines, ASME 1992 Int. Gas Turbine Aeroengine Congr. Expo. GT 1992. 2 (1992). https://doi.org/10.1115/92-GT-361.
[234] R. Velraj, V. Gayathri, A. Thenmozhi, Performance evaluation of compressed air energy storage using TRNSYS, J. Electron. Sci. Technol. 13 (2015) 361–366. https://doi.org/10.11989/JEST.1674-862X.505252.
[235] J. Lian, Y. Zhang, C. Ma, Y. Yang, E. Chaima, A review on recent sizing methodologies of hybrid renewable energy systems, Energy Convers. Manag. 199 (2019) 112027. https://doi.org/10.1016/j.enconman.2019.112027.
[236] M. Bagheri, N. Shirzadi, E. Bazdar, C.A. Kennedy, Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver, Renew. Sustain. Energy Rev. 95 (2018) 254–264. https://doi.org/10.1016/j.rser.2018.07.037.
[237] S. Barakat, H. Ibrahim, A.A. Elbaset, Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects, Sustain. Cities Soc. 60 (2020) 102178. https://doi.org/10.1016/j.scs.2020.102178.
[238] A. Maleki, F. Pourfayaz, Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with LPSP technology by using evolutionary algorithms, Sol. Energy. 115 (2015) 471–483. https://doi.org/10.1016/j.solener.2015.03.004.
[239] S. Singh, M. Singh, S.C. Kaushik, A review on optimization techniques for sizing of solar-wind hybrid energy systems, Int. J. Green Energy. 13 (2016) 1564–1578. https://doi.org/10.1080/15435075.2016.1207079.
[240] S. Singh, M. Singh, S.C. Kaushik, Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system, Energy Convers. Manag. 128 (2016) 178–190. https://doi.org/10.1016/j.enconman.2016.09.046.
[241] Hydro-Québec, Electricity Rates Effective April 1, 2016., (2016). https://www.hydroquebec.com/data/documents-donnees/pdf/electricity-rates-2022.pdf.
[242] M. Nasser, T.F. Megahed, S. Ookawara, H. Hassan, Techno-economic assessment of clean hydrogen production and storage using hybrid renewable energy system of PV/Wind under different climatic conditions, Sustain. Energy Technol. Assessments. 52 (2022) 102195. https://doi.org/10.1016/j.seta.2022.102195.
[243] R. Kumar, H.K. Channi, A PV-Biomass off-grid hybrid renewable energy system (HRES) for rural electrification: Design, optimization and techno-economic-environmental analysis, J. Clean. Prod. 349 (2022) 131347. https://doi.org/10.1016/j.jclepro.2022.131347.
[244] A. Maleki, Z.E. Filabi, M.A. Nazari, Techno-Economic Analysis and Optimization of an Off-Grid Hybrid Photovoltaic–Diesel–Battery System: Effect of Solar Tracker, Sustain. 14 (2022). https://doi.org/10.3390/su14127296.
[245] M. Chennaif, M. Maaouane, H. Zahboune, M. Elhafyani, S. Zouggar, Tri-objective techno-economic sizing optimization of Off-grid and On-grid renewable energy systems using Electric system Cascade Extended analysis and system Advisor Model, Appl. Energy. 305 (2022) 117844. https://doi.org/10.1016/j.apenergy.2021.117844.
[246] FAQ – Hydrostor, (n.d.). https://www.hydrostor.ca/faq/ (accessed November 7, 2022).
[247] R.P. Team, Advanced Compressed Air Energy Storage : Technical Inputs Summary, (n.d.). https://irp.nspower.ca/files/key-documents/assumptions-and-analysis-plan/20200214-JFS_Hydrostor-comments-on-draft-assumptions.pdf.
[248] B. Wang, X. Yu, J. Chang, R. Huang, Z. Li, H. Wang, Techno-economic analysis and optimization of a novel hybrid solar-wind-bioethanol hydrogen production system via membrane reactor, Energy Convers. Manag. 252 (2022) 115088. https://doi.org/10.1016/j.enconman.2021.115088.
[249] T. Sokhansefat, D. Mohammadi, A. Kasaeian, A.R. Mahmoudi, Simulation and parametric study of a 5-ton solar absorption cooling system in Tehran, Energy Convers. Manag. 148 (2017) 339–351. https://doi.org/10.1016/j.enconman.2017.05.070.
[250] Canada Interest Rate - 2023 Data - 1990-2022 Historical - 2024 Forecast - Calendar, (n.d.). https://tradingeconomics.com/canada/interest-rate (accessed January 6, 2023).
[251] Canada Inflation Rate | Inflation Rate and Consumer Price Index, (n.d.). https://www.rateinflation.com/inflation-rate/canada-inflation-rate/ (accessed January 6, 2023).
[252] M. Hossein Jahangir, E. Bazdar, A. Kargarzadeh, Techno-economic and environmental assessment of low carbon hybrid renewable electric systems for urban energy planning: Tehran-Iran, City Environ. Interact. 16 (2022) 100085. https://doi.org/10.1016/j.cacint.2022.100085.
[253] E. Bazdar, F. Nasiri, F. Haghighat, Resilience-centered optimal sizing and scheduling of a building-integrated PV-based energy system with hybrid adiabatic-compressed air energy storage and battery systems, 308 (2024) 132836.
[254] J.H. Cho, M.G. Chun, W.P. Hong, Structure optimization of stand-alone renewable power systems based on multi object function, Energies. 9 (2016) 1–19. https://doi.org/10.3390/en9080649.
[255] H. Yang, W. Zhou, L. Lu, Z. Fang, Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm, Sol. Energy. 82 (2008) 354–367. https://doi.org/10.1016/j.solener.2007.08.005.
[256] Z. Shi, R. Wang, T. Zhang, Multi-objective optimal design of hybrid renewable energy systems using preference-inspired coevolutionary approach, Sol. Energy. 118 (2015) 96–106. https://doi.org/10.1016/j.solener.2015.03.052.
[257] A. Maleki, F. Pourfayaz, Sizing of stand-alone photovoltaic/wind/diesel system with battery and fuel cell storage devices by harmony search algorithm, J. Energy Storage. 2 (2015) 30–42. https://doi.org/10.1016/j.est.2015.05.006.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top