Sarpong, Robert (2024) New Estimates of Snow Water Availability in the Northern Regions of North America. Masters thesis, Concordia University.
![]() |
Text (application/pdf)
37MBSarpong_MASc_S2025.pdf - Accepted Version Restricted to Repository staff only until 1 June 2026. Available under License Spectrum Terms of Access. |
Abstract
Seasonal snow has a crucial role on freshwater supply in mountainous regions and high latitudes. The advent of remote sensing data and Earth System reanalysis products has opened enormous opportunities for estimating snow water availability at larger scales. Despite these technological advancements, still estimating the water stored in snow and determining its variability in space and time pose major challenges. One major issue is limitations in the benchmarking studies and the fact that while several new datasets are introduced, little is known about their accuracy, reliability and robustness. The second issue is related to the way that water stored in the snowpack is assessed using the concept of Snow Water Equivalent (SWE). Most importantly, maximum annual SWE does not reflect the losses of snow water during winter melts– a phenomenon that has become widespread due to the rising temperature and more frequent winter rain as a result of climate change. In addition, SWE does not take into account snow cover extent, and therefore cannot distinguish whether changes in stored water in the snow correspond to changes in snow depth or snow cover. To address the first challenge, a formal benchmarking is performed to test three key snow fields of a newly released reanalysis product, ERA5-Land, over the area of Canada and Alaska, ~9% of global land in which snow processes have a critical role on water supply. The considered snow variables are snow depth, snow cover and SWE, from which snow density can be also retrieved. The ERA5-Land’s snow depth and SWE fields are intercompared with Canadian Meteorological Centre’s (CMC’s) snow depth and SWE, whereas snow cover field is tested against MODIS satellite observations as the reference. Special care is made to assess how spatial and temporal patterns of change and persistence are reconstructed using ERA5-Land’s snow field over 21 ecological regions that cover the domain. In addition, the spatial patterns discrepancies between ERA5-Land’s snow fields and corresponding reference products are explored to inspect whether they entail there is any significant dependence with latitude, longitude and elevation, which points to a systematic bias in ERA5-Land data. Based on this benchmarking attempt, it is advised against the use of ERA5-Land’s snow depth and SWE estimates in Canada and Alaska, while estimates of snow cover and snow density can be still used although with cautions, particularly for local assessments, which may require bias-correction. To address the second challenge, a new and more physically-appealing metric, Snow Water Availability (SWA), is defined that take into account snow cover extent in conjunction with snow depth and snow density. Based on the findings of the benchmarking attempt, four monthly estimates of SWA are established over Canada and Alaska by integrating CMC snow depth fields with ERA5-Lands’s and CMC’s snow density as well as MODIS’s and ERA5-Land’s snow cover during the water years of 2000 to 2020 at 25×25 km2 spatial resolution. Using these SWA estimates, the implications on water availability over 25 drainage regions in Canada and Alaska are explored and discussed. It is concluded that while Canada and Alaska as a whole has gained substantial amount of SWA during the study period, the strategically important drainage regions in western Canada have lost substantial amount of SWA since the beginning of the century. This can jeopardize regional water resource management in some of the world’s most important food baskets in Canadian Prairies, revealing the urgency for regional adaptation to maintain the water, food and energy security in Canada.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering |
---|---|
Item Type: | Thesis (Masters) |
Authors: | Sarpong, Robert |
Institution: | Concordia University |
Degree Name: | M.A. Sc. |
Program: | Civil Engineering |
Date: | 1 November 2024 |
Thesis Supervisor(s): | Nazemi, Ali |
Keywords: | Earth System reanalysis, snow variables, ERA5-Land, Benchmarking, Canada and Alaska. |
ID Code: | 994823 |
Deposited By: | Robert Sarpong |
Deposited On: | 17 Jun 2025 17:25 |
Last Modified: | 17 Jun 2025 17:25 |
References:
Abro, M. I., Zhu, D., Ali Khaskheli, M., Elahi, E., & Aleem ul Hassan Ramay, M. (2020). Statistical and qualitative evaluation of multi-sources for hydrological suitability in flood-prone areas of Pakistan. Journal of Hydrology, 588. https://doi.org/10.1016/j.jhydrol.2020.125117Ackerman, S., Strabala, K., Menzel, P., Frey, R., Moeller, C., ... & Zhang, H. (2010). Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (mod35), https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9c8d09b988e4f081d973ed46f2ada706613eb1a5.
Aggarwal, S. (2004). Principles of remote sensing. In Satellite remote sensing and GIS applications in agricultural meteorology (Vol. 23, pp. 23–28). http://www.bishensinghbooks.com
Aghelpour, Pouya, Yiqing Guan, Hadigheh Bahrami-Pichaghchi, Babak Mohammadi, Ozgur Kisi, and Danrong Zhang. "Using the MODIS sensor for snow cover modeling and the assessment of drought effects on snow cover in a mountainous area." Remote Sensing 12, no. 20 (2020): 3437.
Akyurek, Z., Kuter, S., Karaman, Ç. H., & Akpınar, B. (2023). Understanding the snow cover climatology over Turkey from ERA5-Land reanalysis data and MODIS snow cover frequency product. Geosciences, 13(10), 311.
Allen, R. J., & Zender, C. S. (2011). Forcing of the Arctic Oscillation by Eurasian snow cover. Journal of Climate, 24(24), 6528–6539. https://doi.org/10.1175/2011JCLI4157.1
Amatulli, G., Domisch, S., Tuanmu, M. N., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. (2018). A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific data, 5(1), 1-15.
Amir Jabbari, A., & Nazemi, A. (2019). Alterations in Canadian hydropower production potential due to continuation of historical trends in climate variables. Resources, 8(4), 163.
Anderson, E.A. (1976). A point energy balance model of a snow cover. Office of Hydrology, National Weather Service, NOAA Tech. Rep. NWS 19, 150 pp, available at: https://repository.library.noaa.gov /view/noaa/6392.
Appel, I. (2018). Uncertainty in satellite remote sensing of snow fraction for water resources management. Frontiers of Earth Science, 12(4), 711-727.
Baatz, R., Hendricks Franssen, H. J., Euskirchen, E., Sihi, D., Dietze, M., Ciavatta, S., Fennel, K., Beck, H., De Lannoy, G., Pauwels, V. R. N., Raiho, A., Montzka, C., Williams, M., Mishra, U., Poppe, C., Zacharias, S., Lausch, A., Samaniego, L., Van Looy, K., … Vereecken, H. (2021). Reanalysis in Earth System Science: Toward Terrestrial Ecosystem Reanalysis. Reviews of Geophysics, 59(3). https://doi.org/10.1029/2020RG000715
Bair, E. H., Rittger, K., Davis, R. E., Painter, T. H., & Dozier, J. (2016). Validating reconstruction of snow water equivalent in California’s Sierra Nevada using measurements from the NASA Airborne Snow Observatory. Water Resources Research, 52(11), 8437–8460. https://doi.org/10.1002/2016WR018704.
Balsamo, G., Pappenberger, F., Dutra, E., Viterbo, P., & Van den Hurk, B. J. J. M. (2011). A revised land hydrology in the ECMWF model: A step towards daily water flux prediction in a fully‐closed water cycle. Hydrological Processes, 25(7), 1046-1054.
Balsamo, G., Viterbo, P., Beljaars, A., van den Hurk, B., Hirschi, M., Betts, A. K. and Scipal, K. (2009). A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. Journal of hydrometeorology, 10, 623–643
Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. In Nature (Vol. 438, Issue 7066, pp. 303–309). Nature Publishing Group. https://doi.org/10.1038/nature04141
Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303-309.
Basang, D., Barthel, K., & Olseth, J. A. (2017). Satellite and Ground Observations of Snow Cover in Tibet during 2001–2015. Remote Sensing, 9(11). https://doi.org/10.3390/rs9111201
Baxter, R., Clelland, A., & Marshall, G. (2024). Evaluating the performance of key ERA‐Interim, ERA5 and ERA5‐Land climate variables across Siberia. International Journal of Climatology, 44(7), 2318-2342. https://doi.org/10.1002/joc.8456
Beniston, M. (2012). Is snow in the Alps receding or disappearing? Wiley Interdisciplinary Reviews: Climate Change, 3(4), 349–358. https://doi.org/10.1002/wcc.179
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Moran-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., … Vincent, C. (2017). The European mountain cryosphere: A review of past, current and future issues. The Cryosphere Discussions, 1–60. https://doi.org/10.5194/tc-2016-290
Bennett, K. E., Miller, G., Busey, R., Chen, M., Lathrop, E. R., Dann, J. B., Nutt, M., Crumley, R., Dafflon, B., Kumar, J., Robert Bolton, W., & Wilson, C. J. (2021). Spatial Patterns of Snow Distribution for Improved Earth System Modelling in the Arctic. The Cryosphere. https://doi.org/10.5194/tc-2021-341
Bennett, K. E., Miller, G., Busey, R., Chen, M., Lathrop, E. R., Dann, J. B., Nutt, M., Crumley, R., Dillard, S. L., Dafflon, B., Kumar, J., Bolton, W. R., Wilson, C. J., Iversen, C. M., & Wullschleger, S. D. (2022). Spatial patterns of snow distribution in the sub-Arctic. The Cryosphere, 16(8), 3269–3293. https://doi.org/10.5194/tc-16-3269-2022
Beria, H., Larsen, J. R., Ceperley, N. C., Michelon, A., Vennemann, T., & Schaefli, B. (2018). Understanding snow hydrological processes through the lens of stable water isotopes. Wiley Interdisciplinary Reviews: Water, 5(6), 1–23. https://doi.org/10.1002/wat2.1311
Bitz, C. M., & Battisti, D. S. (1999). Interannual to decadal variability in climate and the glacier mass balance in Washington, western Canada, and Alaska. Journal of Climate, 12(11), 3181-3196.
Blazey, B. A., Holland, M. M., & Hunke, E. C. (2013). Arctic Ocean sea ice snow depth evaluation and bias sensitivity Arctic Ocean sea ice snow depth evaluation and bias sensitivity in CCSM Arctic Ocean sea ice snow depth evaluation and bias sensitivity. The Cryosphere Discuss., 7, 1495–1532. https://doi.org/10.5194/tcd-7-1495-2013
Boelman, N. T., Liston, G. E., Gurarie, E., Meddens, A. J., Mahoney, P. J., Kirchner, P. B., ... & Vierling, L. A. (2019). Integrating snow science and wildlife ecology in Arctic-boreal North America. Environmental Research Letters, 14(1), 010401.
Boike, J., Roth, K., & Ippisch, O. (2003). Seasonal snow cover on frozen ground: Energy balance calculations of a permafrost site near Ny-Ålesund, Spitsbergen. Journal of Geophysical Research: Atmospheres, 108(2). https://doi.org/10.1029/2001jd000939
Bokhorst, S., Bjerke, J. W., Tømmervik, H., Preece, C., & Phoenix, G. K. (2012). Ecosystem response to climatic change: The importance of the cold season. Ambio, 41(SUPPL.3), 246–255. https://doi.org/10.1007/s13280-012-0310-5
Bormann, K. J., Westra, S., Evans, J. P., & McCabe, M. F. (2013). Spatial and temporal variability in seasonal snow density. Journal of Hydrology, 484, 63-73.
Brabets, T. P., Bronwen, W., & Meade, R. H. (2000). Environmental and Hydrologic Overview of the Yukon River Basin, Alaska and Canada Water-Resources Investigations Report 99-4204.
Bragato, P. L. (2021). Systematic Triggering of Large Earthquakes by Karst Water Recharge: Statistical Evidence in Northeastern Italy. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.664932
Brasnett, B. (1999). A global analysis of snow depth for numerical weather prediction. Journal of Applied Meteorology and Climatology, 38(6), 726-740.
Brown, R. D. (2010). Analysis of snow cover variability and change in Québec, 1948–2005. Hydrological processes, 24(14), 1929-1954.
Brown, R. D. and B. Brasnett. (2010). Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/W9FOYWH0EQZ3.
Brown, R. D., & Frei, A. (2007). Comment on “Evaluation of surface albedo and snow cover in AR4 coupled models” by A. Roesch. Journal of Geophysical Research: Atmospheres, 112(D22).
Brown, R. D., & Mote, P. W. (2009). The response of Northern Hemisphere snow cover to a changing climate. Journal of Climate, 22(8), 2124–2145. https://doi.org/10.1175/2008JCLI2665.1
Brown, R. D., Brasnett, B., & Robinson, D. (2003). Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmosphere-Ocean, 41(1), 1-14.
Brown, R. D., Smith, C., Derksen, C., & Mudryk, L. (2021). Canadian in situ snow cover trends for 1955–2017 including an assessment of the impact of automation. Atmosphere-Ocean, 59(2), 77-92.
Brown, R., Derksen, C., & Wang, L. (2010). A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967-2008. Journal of Geophysical Research Atmospheres, 115(16). https://doi.org/10.1029/2010JD013975
Broxton, P. D., & van Leeuwen, W. J. D. (2020). Structure from motion of multi-angle RPAS imagery complements larger-scale airborne lidar data for cost-effective snow monitoring in mountain forests. Remote Sensing, 12(14). https://doi.org/10.3390/rs12142311
Broxton, P. D., Dawson, N., & Zeng, X. (2016). Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth. Earth and Space Science, 3(6), 246–256. https://doi.org/10.1002/2016EA000174
Brubaker, K. L., Pinker, R. T., & Deviatova, E. (2005). Evaluation and comparison of MODIS and IMS snow-cover estimates for the continental United States using station data. Journal of Hydrometeorology, 6(6), 1002-1017.
Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus A: Dynamic Meteorology and Oceanography, 21(5), 611. https://doi.org/10.3402/tellusa.v21i5.10109
Bulygina, O. N., Razuvaev, V. N., & Korshunova, N. N. (2009). Changes in snow cover over Northern Eurasia in the last few decades. Environmental Research Letters, 4(4). https://doi.org/10.1088/1748-9326/4/4/045026
Byun, K., & Choi, M. (2014). Uncertainty of snow water equivalent retrieved from AMSR‐E brightness temperature in northeast Asia. Hydrological Processes, 28(7), 3173-3184.
Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Y., Labba, N., Radionov, V., ... & Wood, E. F. (2011). Multiple effects of changes in Arctic snow cover. Ambio, 40, 32-45.
Cao, B., Gruber, S., Zheng, D., & Li, X. (2020). The ERA5-Land soil temperature bias in permafrost regions. Cryosphere, 14(8), 2581–2595. https://doi.org/10.5194/tc-14-2581-2020
Carroll, R. W., Niswonger, R. G., Ulrich, C., Varadharajan, C., Siirila-Woodburn, E. R., & Williams, K. H. (2024). Declining groundwater storage expected to amplify mountain streamflow reductions in a warmer world. Nature Water, 2(5), 419-433.
Chen, C., Lakhankar, T., Romanov, P., Helfrich, S., Powell, A., & Khanbilvardi, R. (2012). Validation of NOAA-interactive multisensor snow and Ice Mapping System (IMS) by comparison with ground-based measurements over continental United States. Remote Sensing, 4(5), 1134–1145. https://doi.org/10.3390/rs4051134
Chen, S., Wang, X., Guo, H., Xie, P., Wang, J., & Hao, X. (2020). A conditional probability interpolation method based on a space-time cube for modis snow cover products gap filling. Remote Sensing, 12(21), 1–18. https://doi.org/10.3390/rs12213577
Chen, X., Li, X., Gu, L., Zheng, X., Wang, G., & Li, L. (2021). Increasing snow–soil interface temperature in farmland of northeast China from 1979 to 2018. Agriculture (Switzerland), 11(9). https://doi.org/10.3390/agriculture11090878
Choi, G., Robinson, D. A., & Kang, S. (2010). Changing northern hemisphere snow seasons. Journal of Climate, 23(19), 5305–5310. https://doi.org/10.1175/2010JCLI3644.1
Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A., & Cherry, J. E. (2012). Arctic warming, increasing snow cover and widespread boreal winter cooling. Environmental Research Letters, 7(1). https://doi.org/10.1088/1748-9326/7/1/014007
Conroy, G. (2023). What the science says about California's record-setting snow. Nature. doi: https://doi.org/10.1038/d41586-023-00937-x
Cooper, M. J., Martin, R. V., Lyapustin, A. I., & McLinden, C. A. (2018). Assessing snow extent data sets over North America to inform and improve trace gas retrievals from solar backscatter. Atmospheric measurement techniques, 11(5), 2983-2994.
Cornwell, E., Molotch, N. P., & McPhee, J. (2016). Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover. Hydrology and Earth System Sciences, 20(1), 411–430. https://doi.org/10.5194/hess-20-411-2016
Cui, T., Li, Y., Yang, L., Nan, Y., Li, K., Tudaji, M., ... & Tian, F. (2023). Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels. Nature Communications, 14(1), 1176.
Danielson, J. J., & Gesch, D. B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010) (No. 2011-1073). US Geological Survey, https://doi.org/10.3133/ofr20111073.
De Gregorio, L., Günther, D., Callegari, M., Strasser, U., Zebisch, M., Bruzzone, L., & Notarnicola, C. (2019). Improving SWE estimation by fusion of snow models with topographic and remotely sensed data. Remote Sensing, 11(17). https://doi.org/10.3390/rs11172033
DeBeer, C. M., Wheater, H. S., Carey, S. K., & Chun, K. P. (2016). Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis. Hydrology and Earth System Sciences, 20(4), 1573-1598.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., … Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828
Deems, J. S., Painter, T. H., & Finnegan, D. C. (2013). Lidar measurement of snow depth: a review. Journal of Glaciology, 59(215), 467-479.
Deng, H., Chen, Y., & Li, Y. (2019). Glacier and snow variations and their impacts on regional water resources in mountains. Journal of Geographical Sciences, 29(1), 84–100. https://doi.org/10.1007/s11442-019-1585-2
Deng, M., Li, P., Liu, W., Chang, P., Yang, L., Wang, Z., Wang, J., & Liu, L. (2023). Deepened snow cover increases grassland soil carbon stocks by incorporating carbon inputs into deep soil layers. Global Change Biology, 29(16), 4686–4696. https://doi.org/10.1111/gcb.16798
Derksen, C., & Ledrew, E. (2000). Variability and change in terrestrial snow cover: data acquisition and links to the atmosphere. Progress in Physical Geography: Earth and Environment, 24(4), 469–498. https://doi.org/10.1177/030913330002400401
Derksen, C., Brown, R., Walker, A., & Brasnett, B. (2002). Comparison of Model, Snow Course, and Passive Microwave Derived Snow Water Equivalent Data for Western North America. http://www.crysys.ca/crysys_freecd.cfm
Di Marco, N., Avesani, D., Righetti, M., Zaramella, M., Majone, B., & Borga, M. (2021). Reducing hydrological modelling uncertainty by using MODIS snow cover data and a topography-based distribution function snowmelt model. Journal of Hydrology, 599, 126020.
Dierauer, J. R., Allen, D. M., & Whitfield, P. H. (2019). Snow Drought Risk and Susceptibility in the Western United States and Southwestern Canada. Water Resources Research, 55(4), 3076–3091. https://doi.org/10.1029/2018WR023229
Dietz, A. J., Kuenzer, C., Gessner, U., & Dech, S. (2012). Remote sensing of snow–a review of available methods. International Journal of Remote Sensing, 33(13), 4094-4134.
Dixon, D., & Boon, S. (2012). Comparison of the SnowHydro snow sampler with existing snow tube designs. Hydrological Processes, 26(17), 2555–2562. https://doi.org/10.1002/hyp.9317
Dong, C. (2018). Remote sensing, hydrological modeling and in situ observations in snow cover research: A review. Journal of Hydrology, 561, 573-583.
Dong, J., Walker, J. P., & Houser, P. R. (2005). Factors affecting remotely sensed snow water equivalent uncertainty. Remote sensing of environment, 97(1), 68-82.
Dozier, J. (1989). Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote sensing of environment, 28, 9-22.
Drusch, M., Vasiljevic, D., & Viterbo, P. (2004). ECMWF’s Global Snow Analysis: Assessment and Revision Based on Satellite Observations. Journal of Applied Meteorology, 43(9), 1282–1294. http://www.ecmwf.int/research/ifs.
Dutra, E., Stepanenko, V. M., Balsamo, G., Viterbo, P., Miranda, P. M., Mironov, D., & Schär, C. (2010). An offline study of the impact of lakes on the performance of the ECMWF surface scheme. Boreal environment research, 15(2), 100.
Dye, D. G. (2002). Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972-2000. Hydrological Processes, 16(15), 3065–3077. https://doi.org/10.1002/hyp.1089
Eckert, N., Corona, C., Giacona, F., Gaume, J., Mayer, S., van Herwijnen, A., ... & Stoffel, M. (2024). Climate change impacts on snow avalanche activity and related risks. Nature Reviews Earth & Environment, 1-21.
ECMWF (2018). IFS Documentation CY45R1 - Part IV: Physical processes, in IFS Documentation CY45R1, doi: 10.21957/4whwo8jw0, available at https://www.ecmwf.int/en/elibrary/80895-ifs-documentation-cy45r1-part-iv-physical-processes.
Ecological Stratification Working Group (Canada). (1996). A national ecological framework for Canada. The Group.
Ermolaev, O. P., Mal’tsev, K. A., Mukharamova, S. S., Kharchenko, S. V., & Vedeneeva, E. A. (2017). Cartographic model of river basins of European Russia. Geography and Natural Resources, 38, 131-138.
Essery, R., Marks, D., & Marsh, P. (2009). Subsurface, surface and atmospheric processes in cold regions hydrology. In Hydrological Processes (Vol. 23, Issue 17, pp. 2496–2497). https://doi.org/10.1002/hyp.7365
Euskirchen, E. S., Mcguire, A. D., & Chapin, F. S. (2007). Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Global Change Biology, 13(11), 2425–2438. https://doi.org/10.1111/j.1365-2486.2007.01450.x
Evan, A., & Eisenman, I. (2021). A mechanism for regional variations in snowpack melt under rising temperature. Nature Climate Change, 11(4), 326-330.
Falarz, M., Nowosad, M., Bednorz, E., & Rasmus, S. (2018). Review of Polish contribution to snow cover research (1880-2017). In Quaestiones Geographicae (Vol. 37, Issue 1, pp. 7–22). Adam Mickiewicz University Press. https://doi.org/10.2478/quageo-2018-0002
Fang, Y., & Leung, L. R. (2023). Northern Hemisphere Snow Drought in Earth System Model Simulations and ERA5‐Land Data in 1980–2014. Journal of Geophysical Research: Atmospheres, 128(23), e2023JD039308.
Fatolahzadeh Gheysari, A., Maghoul, P., Ojo, E. R., & Shalaby, A. (2024). Reliability of ERA5 and ERA5-Land reanalysis data in the Canadian Prairies. Theoretical and Applied Climatology, 155(4), 3087-3098.
Fekete, B. M., Vörösmarty, C. J., & Lammers, R. B. (2001). Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error. Water Resources Research, 37(7), 1955-1967.
Findlay, A. (2022). Losing snow and value. Nature Climate Change, 12(4), 313-313.
Foster, J. L., Sun, C., Walker, J. P., Kelly, R., Chang, A., Dong, J., & Powell, H. (2005). Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sensing of environment, 94(2), 187-203.
François, H., Samacoïts, R., Bird, D. N., Köberl, J., Prettenthaler, F., & Morin, S. (2023). Climate change exacerbates snow-water-energy challenges for European ski tourism. Nature Climate Change, 13(9), 935-942.
Frei, A. (2009). A new generation of satellite snow observations for large scale earth system studies. Geography Compass, 3(3), 879–902. https://doi.org/10.1111/j.1749-8198.2009.00221.x
Frei, A., Brown, R., Miller, J. A., & Robinson, D. A. (2005). Snow mass over North America: Observations and results from the second phase of the atmospheric model intercomparison project. Journal of Hydrometeorology, 6(5), 681-695.
Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly, R., & Robinson, D. A. (2012). A review of global satellite-derived snow products. Advances in Space Research, 50(8), 1007–1029. https://doi.org/10.1016/j.asr.2011.12.021
Gafurov, A., & Bárdossy, A. (2009). Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Sciences, 13(7), 1361-1373.
Gallet, M., Atto, A., Karbou, F., & Trouve, E. (2024). Wet Snow Detection from Satellite SAR Images by Machine Learning with Physical Snowpack Model Labeling. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 2901–2917. https://doi.org/10.1109/JSTARS.2023.3342990
Gao, S., Li, Z., Zhang, P., Zeng, J., Chen, Q., Zhao, C., ... & Qiao, H. (2022). An assessment of the applicability of three reanalysis snow density datasets over China using ground observations. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
Garcia, S. L., Szekely, A. J., Bergvall, C., Schattenhofer, M., & Peura, S. (2019). Decreased Snow Cover Stimulates Under-Ice Primary Producers but Impairs Methanotrophic Capacity. MSphere, 4(1). https://doi.org/10.1128/msphere.00626-18
Ghosh, T. (2024). Low snow levels in the Himalaya are putting lives at risk, Nature, doi: https://doi.org/10.1038/d44151-024-00118-3
Glass, T. W., Breed, G. A., Liston, G. E., Reinking, A. K., Robards, M. D., & Kielland, K. (2021). Spatiotemporally variable snow properties drive habitat use of an Arctic mesopredator. Oecologia, 195(4), 887–899. https://doi.org/10.1007/s00442-021-04890-2
Gleason, K. E., & Nolin, A. W. (2016). Charred forests accelerate snow albedo decay: Parameterizing the post‐fire radiative forcing on snow for three years following fire. Hydrological Processes, 30(21), 3855-3870.
Gong, G., Entekhabi, D., & Cohen, J. (2003). Relative impacts of Siberian and North American snow anomalies on the winter Arctic Oscillation. Geophysical Research Letters, 30(16). https://doi.org/10.1029/2003GL017749
Gossart, A., Palm, S. P., Souverijns, N., Lenaerts, J. T. M., Gorodetskaya, I. V, Lhermitte, S., & Van Lipzig, N. P. M. (2019). Blowing snow in East Antarctica: comparison of ground-based and space-borne retrievals. The Cryosphere Discuss. https://doi.org/10.5194/tc-2019-25
Gossart, A., Palm, S. P., Souverijns, N., Lenaerts, J. T. M., Gorodetskaya, I. V., Lhermitte, S., & van Lipzig, N. P. M. (2020). Importance of Blowing Snow During Cloudy Conditions in East Antarctica: Comparison of Ground-Based and Space-Borne Retrievals Over Ice-Shelf and Mountain Regions. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00240
Gottlieb, A. R., & Mankin, J. S. (2024). Evidence of human influence on Northern Hemisphere snow loss. Nature, 625(7994), 293-300.
Graham, R. M., Cohen, L., Ritzhaupt, N., Segger, B., Graversen, R. G., Rinke, A., Walden, V. P., Granskog, M. A., & Hudson, S. R. (2019). Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. Journal of Climate, 32(14), 4121–4143. https://doi.org/10.1175/JCLI-D-18-0643.1
Grody, N. C., & Basist, A. N. (1996). Global identification of snowcover using SSM/I measurements. IEEE Transactions on geoscience and remote sensing, 34(1), 237-249.
Gurung, D. R., Giriraj, A., Aung, K. S., Shresta, B., & Kulkarni, A. V. (2011). Snow-Cover Mapping and Monitoring in the Hindu Kush-Himalayas. ICIMOD.
Gustafsson, D., Waldner, P. A., & Stähli, M. (2004). Factors governing the formation and persistence of layers in a subalpine snowpack. Hydrological Processes, 18(7), 1165–1183. https://doi.org/10.1002/hyp.1398
Hale, K. E., Jennings, K. S., Musselman, K. N., Livneh, B., & Molotch, N. P. (2023). Recent decreases in snow water storage in western North America. Communications Earth & Environment, 4(1), 170.
Hall, D. K., & Riggs, G. A. (2007). Accuracy assessment of the MODIS snow products. Hydrological Processes, 21(12), 1534–1547. https://doi.org/10.1002/hyp.6715
Hall, D. K., & Riggs, G. A. (2015). MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG, Version 6 USER GUIDE. In Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MOD10CM.006
Hall, D. K., Foster, J. L., Verbyla, D. L., Klein, A. G., & Benson, C. S. (1998). Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska. Remote sensing of Environment, 66(2), 129-137.
Hall, D. K., Riggs, G. A., & Salomonson, V. V. (1995). Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote sensing of Environment, 54(2), 127-140.
Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., & Bayr, K. J. (2002). MODIS snow-cover products. Remote sensing of Environment, 83(1-2), 181-194.
Hamm, A., Arndt, A., Kolbe, C., Wang, X., Thies, B., Boyko, O., ... & Schneider, C. (2020). Intercomparison of gridded precipitation datasets over a sub-region of the Central Himalaya and the Southwestern Tibetan Plateau. Water, 12(11), 3271.
Han, J., Liu, Z., Woods, R., McVicar, T. R., Yang, D., Wang, T., ... & Yang, Y. (2024). Streamflow seasonality in a snow-dwindling world. Nature, 629(8014), 1075-1081.
Hao, J. S., Wang, Y., & Li, L. H. (2024). Snowpack variations and their hazardous effects under climate warming in the central Tianshan Mountains. Advances in Climate Change Research, 15(3), 442–451. https://doi.org/10.1016/j.accre.2024.06.001
Harmel, R. D., Kleinman, P., Hopkins, A. P., Millhouser, P., Ippolito, J. A., & Sahoo, D. (2022). Updates to the MANAGE database to facilitate regional analyses of nutrient runoff. Agricultural and Environmental Letters, 7(2). https://doi.org/10.1002/ael2.20095
Hassler, B., & Lauer, A. (2021). Comparison of reanalysis and observational precipitation datasets including era5 and wfde5. Atmosphere, 12(11). https://doi.org/10.3390/atmos12111462
Hatami, S., & Nazemi, A. (2021). A statistical framework for assessing temperature controls on landscape Freeze-Thaw: Application and implications in Québec, Canada (1979–2016). Journal of hydrology, 603, 126891.
Hatami, S., & Nazemi, A. (2022). Compound changes in temperature and snow depth lead to asymmetric and nonlinear responses in landscape freeze–thaw. Scientific Reports, 12(1), 2196.
Hatami, S., Zandmoghaddam, S., & Nazemi, A. (2019). Statistical modeling of monthly snow depth loss in southern Canada. Journal of Hydrologic Engineering, 24(3), 04018071.
Hatchett, B. J., & McEvoy, D. J. (2018). Exploring the origins of snow drought in the northern sierra nevada, california. Earth Interactions, 22(2), 1–13. https://doi.org/10.1175/EI-D-17-0027.1
He, Z., Liang, H., Yang, C., Huang, F., & Zeng, X. (2018). Temporal–spatial evolution of the hydrologic drought characteristics of the karst drainage basins in South China. International Journal of Applied Earth Observation and Geoinformation, 64, 22–30. https://doi.org/10.1016/j.jag.2017.08.010
Hedstrom, N. R., & Pomeroy, J. W. (1998). Measurements and modelling of snow interception in the boreal forest. Hydrological Processes, 12(10‐11), 1611-1625.
Henn, B., Newman, A. J., Livneh, B., Daly, C., & Lundquist, J. D. (2018). An assessment of differences in gridded precipitation datasets in complex terrain. Journal of Hydrology, 556, 1205–1219. https://doi.org/10.1016/j.jhydrol.2017.03.008
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Hoyos Rincón, I. C. (2022). American Cordillera snow futures. Nature Climate Change, 12(12), 1088-1089.
Huang, Y., Jiang, Y., Jiang, B., Bailey, R. T., Masud, B., Smerdon, B., & Faramarzi, M. (2024). Modelling impacts of climate change on snow drought, groundwater drought, and their feedback mechanism in a snow-dominated watershed in western Canada. Journal of Hydrology, 636. https://doi.org/10.1016/j.jhydrol.2024.131342
Huning, L. S., & AghaKouchak, A. (2020a). Approaching 80 years of snow water equivalent information by merging different data streams. Scientific data, 7(1), 333.
Huning, L. S., & Aghakouchak, A. (2020b). Global snow drought hot spots and characteristics. Proceedings of the National Academy of Sciences, 117(33), 19753–19759. https://doi.org/10.6084/m9.figshare.c.5055179
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., ... & Baillie, J. E. M. (2020). Importance and vulnerability of the world’s water towers. Nature, 577(7790), 364-369.
IPCC (2019), Summary for policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O.) 3–35
Jaganathan, G. K., & Dalrymple, S. E. (2019). Internal seed structure of alpine plants and extreme cold exposure. Data, 4(3). https://doi.org/10.3390/data4030107
Jain, P., Barber, Q. E., Taylor, S. W., Whitman, E., Castellanos Acuna, D., Boulanger, Y., ... & Parisien, M. A. (2024). Drivers and Impacts of the Record-Breaking 2023 Wildfire Season in Canada. Nature Communications, 15(1), 6764.
Jakobson, E., Vihma, T., Palo, T., Jakobson, L., Keernik, H., & Jaagus, J. (2012). Validation of atmospheric reanalyses over the central Arctic Ocean. Geophysical Research Letters, 39(10). https://doi.org/10.1029/2012GL051591
Javadinejad, S., Dara, R., & Jafary, F. (2020). Climate change scenarios and effects on snow-melt runoff. Civil Engineering Journal (Iran), 6(9), 1715–1725. https://doi.org/10.28991/cej-2020-03091577
Jefferson, A. J. (2011). Seasonal versus transient snow and the elevation dependence of climate sensitivity in maritime mountainous regions. Geophysical Research Letters, 38(16). https://doi.org/10.1029/2011GL048346
Jenicek, M., & Ledvinka, O. (2020). Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia. Hydrology and Earth System Sciences, 24(7), 3475–3491. https://doi.org/10.5194/hess-24-3475-2020
Jonas, T., Marty, C., & Magnusson, J. (2009). Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. Journal of Hydrology, 378(1–2), 161–167. https://doi.org/10.1016/j.jhydrol.2009.09.021
Kaemo, M., Hassanzadeh, E., & Nazemi, A. (2022). A locally relevant framework for assessing the risk of sea level rise under changing temperature conditions: Application in New Caledonia, Pacific Ocean. Science of The Total Environment, 834, 155326.
Karbou, F., Veyssière, G., Coleou, C., Dufour, A., Gouttevin, I., Durand, P., Gascoin, S., & Grizonnet, M. (2021). Monitoring wet snow over an alpine region using sentinel-1 observations. Remote Sensing, 13(3), 1–22. https://doi.org/10.3390/rs13030381
Kazama, S., Izumi, H., Sarukkalige, P. R., Nasu, T., & Sawamoto, M. (2008). Estimating snow distribution over a large area and its application for water resources. Hydrological Processes: An International Journal, 22(13), 2315-2324.
Kelly, R. E., Chang, A. T., Tsang, L., & Foster, J. L. (2003). A prototype AMSR-E global snow area and snow depth algorithm. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 230-242.
Ketcheson, S. J., Whittington, P. N., & Price, J. S. (2012). The effect of peatland harvesting on snow accumulation, ablation and snow surface energy balance. Hydrological Processes, 26(17), 2592–2600. https://doi.org/10.1002/hyp.9325
Kim, Y., Kimball, J. S., Du, J., Schaaf, C. L. B., & Kirchner, P. B. (2018). Quantifying the effects of freeze-thaw transitions and snowpack melt on land surface albedo and energy exchange over Alaska and Western Canada. Environmental Research Letters, 13(7). https://doi.org/10.1088/1748-9326/aacf72
Kim, Y., Kimball, J. S., Glassy, J., & Du, J. (2017). An extended global Earth system data record on daily landscape freeze–thaw status determined from satellite passive microwave remote sensing. Earth System Science Data, 9(1), 133-147.
Koch, F., Prasch, M., Schmid, L., Schweizer, J., & Mauser, W. (2014). Measuring snow liquid water content with low-cost gps receivers. Sensors (Switzerland), 14(11), 20975–20999. https://doi.org/10.3390/s141120975
Kouki, K., Luojus, K., & Riihelä, A. (2023). Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018. The Cryosphere Discussions, 2023, 1-33.
Kraft, M., McNamara, J. P., Marshall, H. P., & Glenn, N. F. (2022). Forest impacts on snow accumulation and melt in a semi-arid mountain environment. Frontiers in Water, 4, 1004123.
Kusch, E., & Davy, R. (2022). KrigR—a tool for downloading and statistically downscaling climate reanalysis data. Environmental Research Letters, 17(2), 024005.
Kuusisto, E. (1984). Snow accumulation and snowmelt in Finland. Pubiications of the Water Research Institute, National Board of Waters, Finland, No. 55, 149 pp, available at https://helda.helsinki.fi/server/api/core/bitstreams/71f18c2a-2477-444e-a58b-3e7110316f2d/content
Lackner, G., Domine, F., Nadeau, D. F., Parent, A.-C., Anctil, F., Lafaysse, M., & Dumont, M. (2022). On the energy budget of a low-Arctic snowpack. The Cryosphere, 16(1), 127–142. https://doi.org/10.5194/tc-2021-255.
Lauritzen, P. H., Bacmeister, J. T., Callaghan, P. F., & Taylor, M. A. (2015). NCAR_Topo (v1. 0): NCAR global model topography generation software for unstructured grids. Geoscientific Model Development, 8(12), 3975-3986.
Lee, J., Lee, M.-I., Tak, S., Seo, E., & Lee, Y.-K. (2023). Assimilation of snow water equivalent from AMSR2 and IMS 1 satellite data utilizing the local ensemble transform Kalman filter. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2023-221
Lehning, M. (2013). Snow–atmosphere interactions and hydrological consequences. Advances in Water Resources, 55, 1-3.
Lei, Y., Pan, J., Xiong, C., Jiang, L., & Shi, J. (2023). Snow depth and snow cover over the Tibetan Plateau observed from space in against ERA5: matters of scale. Climate Dynamics, 60(5), 1523-1541.
Lemos, A., & Riihelä, A. (2024). Snow depth derived from Sentinel-1 compared to in-situ observations in northern Finland. EGUsphere [Preprint]. https://doi.org/10.5194/egusphere-2024-869
Li, H., Wang, Z., He, G., & Man, W. (2017). Estimating snow depth and snow water equivalence using repeat-pass interferometric SAR in the northern piedmont region of the Tianshan Mountains. Journal of Sensors, 2017. https://doi.org/10.1155/2017/8739598
Li, H. Y., He, Y. Q., Hao, X. H., Che, T., Wang, J., & Huang, X. D. (2015). Downscaling snow cover fraction data in mountainous regions based on simulated inhomogeneous snow ablation. Remote Sensing, 7(7), 8995–9019. https://doi.org/10.3390/rs70708995
Li, M., Seybold, H., Wu, B., Chen, Y., Fu, X., & Kirchner, J. W. (2024). Global Analysis of Topographic and Climatic Controls on Drainage Basin Shapes. Geophysical Research Letters, 51(8). https://doi.org/10.1029/2023GL105804
Li, W., Hu, S., Hsu, P. C., Guo, W., & Wei, J. (2020). Systematic bias of Tibetan Plateau snow cover in subseasonal-to-seasonal models. The Cryosphere, 14(10), 3565–3579. https://doi.org/10.5194/tc-14-3565-2020
Liang, T. G., Huang, X. D., Wu, C. X., Liu, X. Y., Li, W. L., Guo, Z. G., & Ren, J. Z. (2008). An application of MODIS data to snow cover monitoring in a pastoral area: A case study in Northern Xinjiang, China. Remote Sensing of Environment, 112(4), 1514-1526.
Lievens, H., Demuzere, M., Marshall, H. P., Reichle, R. H., Brucker, L., Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W., Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schöber, J., & De Lannoy, G. J. M. (2019). Snow depth variability in the Northern Hemisphere mountains observed from space. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12566-y
Lindsay, R., Wensnahan, M., Schweiger, A., & Zhang, J. (2014). Evaluation of seven different atmospheric reanalysis products in the Arctic. Journal of Climate, 27(7), 2588-2606.
Liston, G. E. (1999). Interrelationships among snow distribution, snowmelt, and snow cover depletion: Implications for atmospheric, hydrologic, and ecologic modeling. Journal of Applied Meteorology and Climatology, 38(10), 1474-1487.
Liston, G. E., & Hiemstra, C. A. (2011). Representing grass- and shrub-snow-atmosphere interactions in climate system models. Journal of Climate, 24(8), 2061–2079. https://doi.org/10.1175/2010JCLI4028.1
Liu, H., Xiao, P., Zhang, X., Chen, S., Wang, Y., & Wang, W. (2023). Winter snow cover influences growing-season vegetation productivity non-uniformly in the Northern Hemisphere. Communications Earth & Environment, 4(1), 487.
Liu, H., Xiao, P., Zhang, X., Liang, Y., Tang, B., Chen, S., & Liu, Y. (2024). Winter snowpack loss increases warm-season compound hot-dry extremes. Communications Earth & Environment, 5(1), 567.
Liu, W., Wang, L., Sun, F., Li, Z., Wang, H., Liu, J., Yang, T., Zhou, J., & Qi, J. (2018). Snow Hydrology in the Upper Yellow River Basin Under Climate Change: A Land Surface Modeling Perspective. Journal of Geophysical Research: Atmospheres, 123(22), 12,676-12,691. https://doi.org/10.1029/2018JD028984
Livneh, B., & Badger, A. M. (2020). Drought less predictable under declining future snowpack. Nature Climate Change, 10(5), 452-458.
Lopez Caceres, M. L., Takakai, F., Iwahana, G., Fedorov, A. N., Iijima, Y., Hatano, R., & Fukuda, M. (2015). Snowmelt and the hydrological interaction of forest-grassland ecosystems in Central Yakutia, eastern Siberia. Hydrological Processes, 29(14), 3074–3083. https://doi.org/10.1002/hyp.10424
Lundquist, J. D., Dickerson-Lange, S. E., Lutz, J. A., & Cristea, N. C. (2013). Lower forest density enhances snow retention in regions with warmer winters: A global framework developed from plot-scale observations and modeling. Water Resources Research, 49(10), 6356–6370. https://doi.org/10.1002/wrcr.20504
Ma, H., Zhang, G., Mao, R., Su, B., Liu, W., & Shi, P. (2023). Snow depth variability across the Qinghai Plateau and its influencing factors during 1980–2018. International Journal of Climatology, 43(2), 1094–1111. https://doi.org/10.1002/joc.7883
Maggioni, M., Godone, D., Frigo, B., & Freppaz, M. (2019). Snow gliding and glide snow avalanches: recent outcomes from two experimental test sites in Aosta Valley (NW Italian Alps). Nat. Hazards Earth Syst. Sci. https://doi.org/10.5194/nhess-2019-114
Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Homayouni, S., Gill, E., DeLancey, E. R., & Bourgeau-Chavez, L. (2020). Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Canadian Journal of Remote Sensing, 46(1), 15–33. https://doi.org/10.1080/07038992.2019.1711366
Malmros, J. K., Mernild, S. H., Wilson, R., Tagesson, T., & Fensholt, R. (2018). Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016). Remote Sensing of Environment, 209, 240–252. https://doi.org/10.1016/j.rse.2018.02.072
Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y., & Diffenbaugh, N. S. (2015). The potential for snow to supply human water demand in the present and future. Environmental research letters, 10(11), 114016.
Marshall, H. P., & Koh, G. (2008). FMCW radars for snow research. Cold Regions Science and Technology, 52(2), 118-131.
Marshall, S., Oglesby, R. J., & Nolin, A. W. (2001). Effect of western U.S. snow cover on climate. Annals of Glaciology, 32, 82–86. https://doi.org/10.3189/172756401781819229
Masson, T., Dumont, M., Mura, M. D., Sirguey, P., Gascoin, S., Dedieu, J. P., & Chanussot, J. (2018). An assessment of existing methodologies to retrieve snow cover fraction from MODIS data. Remote Sensing, 10(4), 619.
Masud, M. B., Khaliq, M. N., & Wheater, H. S. (2015). Analysis of meteorological droughts for the Saskatchewan River Basin using univariate and bivariate approaches. Journal of Hydrology, 522, 452–466. https://doi.org/10.1016/j.jhydrol.2014.12.058
Maurer, E. P., Rhoads, J. D., Dubayah, R. O., & Lettenmaier, D. P. (2003). Evaluation of the snow‐covered area data product from MODIS. Hydrological Processes, 17(1), 59-71.
McMahon, G., Wiken, E. B., & Gauthier, D. A. (2004). Toward a scientifically rigorous basis for developing mapped ecological regions. Environmental Management, 34, S111-S124.
Mioduszewski, J. R., Rennermalm, A. K., Robinson, D. A., & Mote, T. L. (2014). Attribution of snowmelt onset in Northern Canada. Journal of Geophysical Research: Atmospheres, 119(16), 9638–9653. https://doi.org/10.1002/2013JD021024
Mishra, P., Bandyopadhyay, A., & Bhadra, A. (2017). Change in snow depletion pattern in a river basin of Arunachal Pradesh under projected climatic scenarios. In Global NEST Journal (Vol. 19, Issue 2). https://lpdaac.usgs.gov/tools/modis_reprojection_tool.
Mitterer, C., & Schweizer, J. (2013). Analysis of the snow-atmosphere energy balance during wet-snow instabilities and implications for avalanche prediction. The Cryosphere, 7(1), 205–216. https://doi.org/10.5194/tc-7-205-2013
Molotch, N. P., Fassnacht, S. R., Bales, R. C., & Helfrich, S. R. (2004). Estimating the distribution of snow water equivalent and snow extent beneath cloud cover in the Salt-Verde River basin, Arizona. Hydrological Processes, 18(9), 1595–1611. https://doi.org/10.1002/hyp.1408
Monteiro, D., & Morin, S. (2023). Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets. The Cryosphere, 17(8), 3617-3660.
Mooney, P. A., Rechid, D., Davin, E. L., Katragkou, E., De Noblet-Ducoudré, N., Breil, M., Cardoso, R. M., Daloz, A. S., Hoffmann, P., Lima, D. C. A., Meier, R., Soares, P. M. M., Sofiadis, G., Strada, S., Strandberg, G., Toelle, M. H., & Lund, M. T. (2021). Land-atmosphere interactions in sub-polar and alpine climates in the CORDEX FPS LUCAS models: II. The role of changing vegetation. The Cryosphere Discuss. https://doi.org/10.5194/tc-2021-291
Mooney, P. A., Rechid, D., Davin, E. L., Katragkou, E., De Noblet-Ducoudré, N., Breil, M., Cardoso, R. M., Daloz, A. S., Hoffmann, P., Lima, D. C. A., Meier, R., Soares, P. M. M., Sofiadis, G., Strada, S., Strandberg, G., Toelle, M. H., & Lund, M. T. (2022). Land-atmosphere interactions in sub-polar and alpine climates in the CORDEX Flagship Pilot Study Land Use and Climate Across Scales (LUCAS) models - Part 2: The role of changing vegetation. The Cryosphere Discuss., 16(4), 1383–1397. https://doi.org/10.5194/tc-16-1383-2022
Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research Atmospheres, 117(8). https://doi.org/10.1029/2011JD017187
Mudryk, L. R., Derksen, C., Kushner, P. J., & Brown, R. (2015). Characterization of Northern Hemisphere snow water equivalent datasets, 1981-2010. Journal of Climate, 28(20), 8037–8051. https://doi.org/10.1175/JCLI-D-15-0229.1
Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.e2161bac (Accessed on 29-10-2024)
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., ... & Thépaut, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth system science data, 13(9), 4349-4383.
Musselman, K. N., Addor, N., Vano, J. A., & Molotch, N. P. (2021). Winter melt trends portend widespread declines in snow water resources. Nature Climate Change, 11(5), 418–424. https://doi.org/10.1038/s41558-021-01014-9
Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., & Rasmussen, R. (2017). Slower snowmelt in a warmer world. Nature Climate Change, 7(3), 214–219. https://doi.org/10.1038/nclimate3225
Nazemi, A., Wheater, H. S., Chun, K. P., & Elshorbagy, A. (2013). A stochastic reconstruction framework for analysis of water resource system vulnerability to climate‐induced changes in river flow regime. Water Resources Research, 49(1), 291-305.
Nazemi, A., Wheater, H. S., Chun, K. P., Bonsal, B., & Mekonnen, M. (2017). Forms and drivers of annual streamflow variability in the headwaters of Canadian Prairies during the 20th century. Hydrological Processes, 31(1), 221-239.
Ni, K. S., & Nguyen, T. Q. (2009). An adaptable $ k $-nearest neighbors algorithm for MMSE image interpolation. IEEE transactions on image processing, 18(9), 1976-1987.
Niu, G. Y., & Yang, Z. L. (2007). An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. Journal of Geophysical Research Atmospheres, 112(21). https://doi.org/10.1029/2007JD008674
Notarnicola, C. (2020). Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sensing of Environment, 243, 111781.
Notarnicola, C. (2022). Overall negative trends for snow cover extent and duration in global mountain regions over 1982–2020. Scientific reports, 12(1), 13731.
Ødegård, H. L., Eidsvik, J., & Fleten, S. E. (2019). Value of information analysis of snow measurements for the scheduling of hydropower production. Energy Systems, 10, 1-19.
Ombadi, M., Risser, M. D., Rhoades, A. M., & Varadharajan, C. (2023). A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature, 619(7969), 305-310.
Omernik, J. M. (2004). Perspectives on the nature and definition of ecological regions. Environmental Management, 34(Suppl 1), S27-S38.
Omernik, J. M., & Griffith, G. E. (2014). Ecoregions of the Conterminous United States: Evolution of a Hierarchical Spatial Framework. Environmental Management, 54(6), 1249–1266. https://doi.org/10.1007/s00267-014-0364-1
Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, K., De Rosnay, P., Zhu, C., Wang, W., Senan, R., & Arduini, G. (2019). Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations. Cryosphere, 13(8), 2221–2239. https://doi.org/10.5194/tc-13-2221-2019
Oveisgharan, S., Zinke, R., Hoppinen, Z., & Marshall, H. P. (2024). Snow water equivalent retrieval over Idaho - Part 1: Using Sentinel-1 repeat-pass interferometry. Cryosphere, 18(2), 559–574. https://doi.org/10.5194/tc-18-559-2024
Ozdoˇgan, M. (2011). Climate change impacts on snow water availability Climate change impacts on snow water availability in the Euphrates-Tigris basin Climate change impacts on snow water availability Climate change impacts on snow water availability. Hydrol. Earth Syst. Sci. Discuss, 8, 3631–3666. https://doi.org/10.5194/hessd-8-3631-2011
Pakoksung, K., & Takagi, M. (2021). Effect of DEM sources on distributed hydrological model to results of runoff and inundation area. Modeling Earth Systems and Environment, 7, 1891-1905.
Paloscia, S., Pettinato, S., Santi, E., & Valt, M. (2017). Cosmo-skymed image investigation of snow features in alpine environment. Sensors (Switzerland), 17(1). https://doi.org/10.3390/s17010084
Pan, M., Zhao, F., Ma, J., Zhang, L., Qu, J., Xu, L., & Li, Y. (2022). Effect of Snow Cover on Spring Soil Moisture Content in Key Agricultural Areas of Northeast China. Sustainability (Switzerland), 14(3). https://doi.org/10.3390/su14031527
Pandey, Y., Mehraj, N., Qureshi, M., Dadhich, S. M., & Shukla, R. M. (2024). Morphometric Analysis of Dachigam Drainage Basin Using Geo-Spatial Technology (GST). International Journal of Environment and Climate Change, 14(2), 712–724. https://doi.org/10.9734/ijecc/2024/v14i23985
Parajka, J., & Blöschl, G. (2008). The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. Journal of hydrology, 358(3-4), 240-258.
Parker, W. S. (2016). Reanalyses and observations: What’s the difference? Bulletin of the American Meteorological Society, 97(9), 1565-1572.
Pirazzini, R., Leppänen, L., Picard, G., Lopez-Moreno, J. I., Marty, C., Macelloni, G., Kontu, A., von Lerber, A., Tanis, C. M., Schneebeli, M., de Rosnay, P., & Arslan, A. N. (2018). European in-situ snow measurements: Practices and purposes. Sensors (Switzerland), 18(7). https://doi.org/10.3390/s18072016
Pomeroy, J. W., & Brun, E. (2001). Physical Properties of Snow Introduction: Snow Physics and Ecology. In An interdisciplinary examination of snow-covered ecosystems (Vol. 45, pp. 45–426).
Pouchet, C., Fernandez-Prada, C., Dussault, C., Leclerc, M., Tremblay, J. P., & Côté, S. D. (2024). Linking weather conditions and winter tick abundance in moose. Journal of Wildlife Management, 88(3). https://doi.org/10.1002/jwmg.22551
Pulliainen, J. (2024). Snow loss pinned to human-induced emissions. Nature, 625, 246-247, doi: https://doi.org/10.1038/d41586-023-03993-5
Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J., Salminen, M., ... & Norberg, J. (2020). Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature, 581(7808), 294-298.
Qiao, W., Xie, L., Zhang, J., Qin, Y., & Liu, X. (2023). Study of snow cover/depth evolution characteristics in Tianshan region of China based on geographical partition. Scientific Reports, 13(1), 2473.
Qin, Y., Abatzoglou, J. T., Siebert, S., Huning, L. S., AghaKouchak, A., Mankin, J. S., ... & Mueller, N. D. (2020). Agricultural risks from changing snowmelt. Nature climate change, 10(5), 459-465.
Qin, Y., Hong, C., Zhao, H., Siebert, S., Abatzoglou, J. T., Huning, L. S., ... & Mueller, N. D. (2022). Snowmelt risk telecouplings for irrigated agriculture. Nature Climate Change, 12(11), 1007-1015.
Rapaić, M., Brown, R., Markovic, M., & Chaumont, D. (2015). An evaluation of temperature and precipitation surface-based and reanalysis datasets for the Canadian Arctic, 1950–2010. Atmosphere-Ocean, 53(3), 283-303.
Rhoades, A. M., Hatchett, B. J., Risser, M. D., Collins, W. D., Bambach, N. E., Huning, L. S., ... & Jones, A. D. (2022). Asymmetric emergence of low-to-no snow in the midlatitudes of the American Cordillera. Nature Climate Change, 12(12), 1151-1159.
Ricciardelli, E., Romano, F., & Cuomo, V. (2009). A technique for classifying uncertain MOD35/MYD35 pixels through Meteosat second generation-spinning enhanced visible and infrared imager observations. IEEE transactions on geoscience and remote sensing, 48(4), 2137-2149.
Riggs, G. A., Hall, D. K., & Román, M. O. (2019). MODIS snow products collection 6 user guide. National Snow and Ice Data Center: Boulder, CO, USA, 66, available at https://nsidc.org/data/mod10cm/versions/ 61#anchor-documentation.
Roberts, K., Cahill, C., Soulard, F., Wang, J., Henry, M., & Gagnon, G. (2017). Human Activity and the Environment: Freshwater in Canada, Statistics Canada, available at https://www150.statcan.gc.ca/n1/pub/16-201-x/16-201-x2017000-eng.pdf
Robinson, D. A., Dewey, K. F., & Heim, R. R. (1993). Global snow cover monitoring: An update. Bulletin of the American Meteorological Society, 74(9), 1689–1696.
Robock, A. (1983). Ice and snow feedbacks and the latitudinal and seasonal distribution of climate sensitivity. Journal of the Atmospheric Sciences, 40(4), 986–997.
Roesch, A. (2006). Evaluation of surface albedo and snow cover in AR4 coupled climate models. Journal of Geophysical Research Atmospheres, 111(15). https://doi.org/10.1029/2005JD006473
Rounce, D. R., Hock, R., McNabb, R. W., Millan, R., Sommer, C., Braun, M. H., Malz, P., Maussion, F., Mouginot, J., Seehaus, T. C., & Shean, D. E. (2021). Distributed Global Debris Thickness Estimates Reveal Debris Significantly Impacts Glacier Mass Balance. Geophysical Research Letters, 48(8). https://doi.org/10.1029/2020GL091311
Ryberg, K. R. (2024). Why snow is crucial for water supply—and what will happen when it becomes scarce, Nature, 629, 1013-1014, https://doi.org/10.1038/d41586-024-01239-6
Saavedra, F. A., Kampf, S. K., Fassnacht, S. R., & Sibold, J. S. (2018). Changes in Andes snow cover from MODIS data, 2000–2016. The Cryosphere, 12(3), 1027-1046.
Salomonson, V. V., & Appel, I. (2004). Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote sensing of environment, 89(3), 351-360.
Salomonson, V. V., & Appel, I. (2006). Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Transactions on geoscience and remote sensing, 44(7), 1747-1756.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., D’entremont, R. P., Hu, B., … Roy, D. (2002). First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 83(1–2), 135–148. www.elsevier.com/locate/rse
Scherrer, S. C., Göldi, M., Gubler, S., Steger, C. R., & Kotlarski, S. (2023). Towards a spatial snow climatology for Switzerland: Comparison and validation of existing datasets. Meteorologische Zeitschrift, 33(2), 101–116.
Schilling, S., Dietz, A., & Kuenzer, C. (2024). Snow Water Equivalent Monitoring—A Review of Large-Scale Remote Sensing Applications. Remote Sensing, 16(6), 1085.
Schumacher, V., Justino, F., Fernández, A., Meseguer-Ruiz, O., Sarricolea, P., Comin, A., Peroni Venancio, L., & Althoff, D. (2020). Comparison between observations and gridded data sets over complex terrain in the Chilean Andes: Precipitation and temperature. International Journal of Climatology, 40(12), 5266–5288. https://doi.org/10.1002/joc.6518.
Sellers, W. D. (1962). American Meteorological Society A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System. In Source: Journal of Applied Meteorology (Vol. 8, Issue 3).
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), 1379-1389.
Sexstone, G. A., Clow, D. W., Stannard, D. I., & Fassnacht, S. R. (2016). Comparison of methods for quantifying surface sublimation over seasonally snow-covered terrain. Hydrological Processes, 30(19), 3373–3389. https://doi.org/10.1002/hyp.10864
Shao, D., Li, H., Wang, J., Hao, X., Che, T., & Ji, W. (2022). Reconstruction of a daily gridded snow water equivalent product for the land region above 45 °N based on a ridge regression machine learning approach. Earth System Science Data, 14(2), 795–809. https://doi.org/10.5194/essd-14-795-2022
Shen, L., Zhang, Y., Ullah, S., Pepin, N., & Ma, Q. (2021). Changes in snow depth under elevation-dependent warming over the Tibetan Plateau. Atmospheric Science Letters, 22(9). https://doi.org/10.1002/asl.1041
Shijin, W., Yuande, Y., & Yanjun, C. (2022). Global snow-and ice-related disaster risk: A review. Natural Hazards Review, 23(4), 03122002.
Shui, T., Liu, J., Xiao, Y., & Shi, L. (2019). Effects of snow cover on urban surface energy exchange: Observations in Harbin, China during the winter season. International Journal of Climatology, 39(3), 1230–1242. https://doi.org/10.1002/joc.5873
Siegfried, M. R., Medley, B., Larson, K. M., Fricker, H. A., & Tulaczyk, S. (2017). Snow accumulation variability on a West Antarctic ice stream observed with GPS reflectometry, 2007–2017. Geophysical Research Letters, 44(15), 7808–7816. https://doi.org/10.1002/2017GL074039
Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S., Szinai, J., Tague, C., ... & Kaatz, L. (2021). A low-to-no snow future and its impacts on water resources in the western United States. Nature Reviews Earth & Environment, 2(11), 800-819.
Skaugen, T., Stranden, H. B., & Saloranta, T. (2012). Trends in snow water equivalent in Norway (1931–2009). Hydrology Research, 43(4), 489-499.
Smith, T. J., Mcnamara, J. P., Flores, A. N., Gribb, M. M., Aishlin, P. S., & Benner, S. G. (2011). Small soil storage capacity limits benefit of winter snowpack to upland vegetation. Hydrological Processes, 25(25), 3858–3865. https://doi.org/10.1002/hyp.8340
Sobolowski, S., Gong, G., & Ting, M. (2007). Northern Hemisphere winter climate variability: Response to North American snow cover anomalies and orography. Geophysical Research Letters, 34(16). https://doi.org/10.1029/2007GL030573
Sobolowski, S., Gong, G., & Ting, M. (2010). Modeled climate state and dynamic responses to anomalous north American snow cover. Journal of Climate, 23(3), 785–799. https://doi.org/10.1175/2009JCLI3219.1
Stähli, M., Stacheder, M., Gustafsson, D., Schlaeger, S., Schneebeli, M., & Brandelik, A. (2004). A new in situ sensor for large-scale snow-cover monitoring. Annals of Glaciology, 38, 273-278.
Steger, C., Kotlarski, S., Jonas, T., & Schär, C. (2013). Alpine snow cover in a changing climate: A regional climate model perspective. Climate Dynamics, 41(3–4), 735–754. https://doi.org/10.1007/s00382-012-1545-3
Steinfeld, C. M., Sharma, A., Mehrotra, R., & Kingsford, R. T. (2020). The human dimension of water availability: Influence of management rules on water supply for irrigated agriculture and the environment. Journal of Hydrology, 588, 125009.
Stiegler, C., Lund, M., Christensen, T. R., Mastepanov, M., & Lindroth, A. (2016). Effects of interannual variability in snow accumulation on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem. The Cryosphere Discussions. https://doi.org/10.5194/tc-2016-5
Stigter, E. M., Wanders, N., Saloranta, T. M., Shea, J. M., Bierkens, M. F. P., & Immerzeel, W. W. (2017). Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment. Cryosphere, 11(4), 1647–1664. https://doi.org/10.5194/tc-11-1647-2017
Sturm, M., Holmgren, J., & Liston, G. E. (1995). A Seasonal Snow Cover Classification System for Local to Global Applications. Journal of Climate, 8(5), 1261–1283. https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., & Lea, J. (2010). Estimating snow water equivalent using snow depth data and climate classes. Journal of Hydrometeorology, 11(6), 1380–1394. https://doi.org/10.1175/2010JHM1202.1
Sun, L., Zhang, X., Wang, H., Xiao, P., & Wang, Y. (2024). Estimating Daily Snow Density Through a Spatiotemporal Random Forest Model. Water Resources Research, 60(7). https://doi.org/10.1029/2023WR036942
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. L. (2018). A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews of Geophysics, 56(1), 79–107. https://doi.org/10.1002/2017RG000574
Suriano, Z. J., & Leathers, D. J. (2018). Great Lakes Basin Snow-Cover Ablation and Synoptic-Scale Circulation. Journal of Applied Meteorology and Climatology, 57(7), 1497–1510. https://doi.org/10.1175/JAMC-D-17
Tabler, R. D. (1990). Estimating snow transport from wind speed record: Estimates versus measurements at Prudhoe Bay, Alaska, In 58th Annual Meeting of Western Snow Conference (pp. 61-72).
Taheri, M., & Mohammadian, A. (2022). An Overview of Snow Water Equivalent: Methods, Challenges, and Future Outlook. In Sustainability (Switzerland) (Vol. 14, Issue 18). MDPI. https://doi.org/10.3390/su141811395
Taia, S., Erraioui, L., Arjdal, Y., Chao, J., El Mansouri, B., & Scozzari, A. (2023). The Application of SWAT Model and Remotely Sensed Products to Characterize the Dynamic of Streamflow and Snow in a Mountainous Watershed in the High Atlas. Sensors, 23(3). https://doi.org/10.3390/s23031246
Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J. P., Koskinen, J., & Bojkov, B. (2011). Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Environment, 115(12), 3517–3529. https://doi.org/10.1016/j.rse.2011.08.014
Takeuchi, Y., Kodama, Y., & Ishikawa, N. (2002). The Thermal Effect of Melting Snow/Ice Surface on Lower Atmospheric Temperature. Arctic, Antarctic, and Alpine Research, 34(1), 20–25. https://doi.org/10.1080/15230430.2002.12003464
Tan, M. L., Ficklin, D. L., Dixon, B., Yusop, Z., & Chaplot, V. (2015). Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Applied Geography, 63, 357-368.
Tape, K. D., Christie, K., Carroll, G., & O’Donnell, J. A. (2016). Novel wildlife in the Arctic: The influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares. In Global Change Biology (Vol. 22, Issue 1, pp. 208–219). Blackwell Publishing Ltd. https://doi.org/10.1111/gcb.13058
Terzago, S., Bongiovanni, G., & Von Hardenberg, J. (2023). Seasonal forecasting of snow resources at Alpine sites. Hydrology and Earth System Sciences, 27(2), 519–542. https://doi.org/10.5194/hess-27-519-2023
Terzago, S., Von Hardenberg, J., Palazzi, E., & Provenzale, A. (2017). Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models. Cryosphere, 11(4), 1625–1645. https://doi.org/10.5194/tc-11-1625-2017
Thackeray, C. W., & Fletcher, C. G. (2016). Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Progress in Physical Geography, 40(3), 392–408. https://doi.org/10.1177/0309133315620999
Trepte, Q., Minnis, P., & Arduini, R. F. (2003). Daytime and nighttime polar cloud and snow identification using MODIS data. In Optical Remote Sensing of the Atmosphere and Clouds III (Vol. 4891, pp. 449-459). SPIE.
Turcotte, B., Morse, B., & Anctil, F. (2012). Impacts of precipitation on the cryologic regime of stream channels. Hydrological Processes, 26(17), 2653–2662. https://doi.org/10.1002/hyp.9438
Turner, S. W., Ghimire, G. R., Hansen, C., Singh, D., & Kao, S. C. (2024). Hydropower capacity factors trending down in the United States. Nature Communications, 15(1), 5445.
Vajda, A., Venäläinen, A., Hänninen, P., & Sutinen, R. (2006). Effect of Vegetation on Snow Cover at the Northern Timberline: A Case Study in Finnish Lapland. Silva Fennica, 40(2), 195–207. http://www.metla.fi/silvafennica/full/sf40/sf402195.pdf
van der Most, L., van der Wiel, K., Gerbens-Leenes, W., Benders, R. R., & Bintanja, R. (2024). Temporally compounding energy droughts in European electricity systems with hydropower, https://doi.org/10.1038/s41560-024-01640-5
Vano, J. A. (2020). Implications of losing snowpack. Nature Climate Change, 10(5), 388-390.
Vignols, R. M., Marshall, G. J., Rees, W. G., Zaika, Y., Phillips, T., & Blinova, I. (2019). Assessing snow cover changes in the Kola Peninsula, Arctic Russia, using a synthesis of MODIS snow products and station observations. The Cryosphere Discuss. https://doi.org/10.5194/tc-2019-9
Vionnet, V., Martin, E., Masson, V., Guyomarc’H, G., Naaim-Bouvet, F., Prokop, A., Durand, Y., & Lac, C. (2014). Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. The Cryosphere Discuss., 8(2), 395–415. https://doi.org/10.5194/tc-8-395-2014
Vionnet, V., Mortimer, C., Brady, M., Arnal, L., & Brown, R. (2021). Canadian historical Snow Water Equivalent dataset (CanSWE, 1928-2020). Earth System Science Data, 13(9), 4603–4619. https://doi.org/10.5194/essd-13-4603-2021
Viviroli, D., Kummu, M., Meybeck, M., Kallio, M., & Wada, Y. (2020). Increasing dependence of lowland populations on mountain water resources. Nature Sustainability, 3(11), 917-928.
Walker, B., Wilcox, E. J., & Marsh, P. (2021). Accuracy assessment of late winter snow depth mapping for tundra environments using structure-from-motion photogrammetry. Arctic Science, 7(3), 588–604. https://doi.org/10.1139/as-2020-0006
Wang, G., Jiang, L., Xiong, C., & Zhang, Y. (2022). Characterization of NDSI variation: Implications for snow cover mapping. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-18.
Wang, R., Yao, Z., Liu, Z., Wu, S., Jiang, L., & Wang, L. (2015). Snow cover variability and snowmelt in a high-altitude ungauged catchment. Hydrological Processes, 29(17), 3665–3676. https://doi.org/10.1002/hyp.10472
Wang, W., Yang, K., Zhao, L., Zheng, Z., Lu, H., Mamtimin, A., Ding, B., Li, X., Zhao, L., Li, H., Che, T., & Moore, J. C. (2020). Characterizing surface albedo of shallow fresh snow and its importance for snow ablation on the interior of the Tibetan plateau. Journal of Hydrometeorology, 21(4), 815–827. https://doi.org/10.1175/JHM-D-19-0193.1
Wang, X., Che, T., Ruan, X., Yue, S., Wang, J., Zhao, C., & Geng, L. (2024). Simulations of Snow Physicochemical Properties in Northern China using WRF-Chem. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2024-37
Wang, Y., & Zheng, Z. (2020). Spatial representativeness analysis for snow depth measurements of meteorological stations in northeast China. Journal of Hydrometeorology, 21(4), 791–805. https://doi.org/10.1175/JHM-D-19-0134.1
Wang, Z., Wu, R., & Huang, G. (2018). Low-frequency snow changes over the Tibetan Plateau. International Journal of Climatology, 38(2), 949–963. https://doi.org/10.1002/joc.5221
Watanabe, S., Kotsuki, S., Kanae, S., Tanaka, K., & Higuchi, A. (2020). Snow water scarcity induced by record-breaking warm winter in 2020 in Japan. Scientific reports, 10(1), 18541.
Wegmann, M., Orsolini, Y., Dutra, E., Bulygina, O., Sterin, A., & Brönnimann, S. (2017). Eurasian snow depth in long-term climate reanalyses. The Cryosphere Discuss., 11(2), 923–935. https://doi.org/10.5194/tc-11-923-2017
Whitaker, A. C., Sugiyama, H., & Hayakawa, K. (2008). Effect of snow cover conditions on the hydrologic regime: Case study in a pluvial-nival watershed, Japan. Journal of the American Water Resources Association, 44(4), 814–828. https://doi.org/10.1111/j.1752-1688.2008.00206.x
Wiken, E. B., David Gauthier, Ian Marshall, Ken Lawton, & Harry Hirvonen. (1996). A perspective on Canada’s ecosystems : an overview of the terrestrial and marine ecozones. https://www.researchgate.net/publication/237131929
Willeit, M., & Ganopolski, A. (2018). The importance of snow albedo for ice sheet evolution over the last glacial cycle. Climate of the Past, 14(5), 697–707. https://doi.org/10.5194/cp-2017-122
Wisser, D., Marchenko, S., Talbot, J., Treat, C., & Frolking, S. (2011). Soil temperature response to 21st century global warming Earth System Dynamics Discussions Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America Soil temperature response to 21st century global warming. Earth Syst. Dynam. Discuss, 2, 161–210. https://doi.org/10.5194/esdd-2-161-2011
Wright, R. G., Murray, M. P., & Merrill, T. (1998). Ecoregions as a level of ecological analysis. Biological conservation, 86(2), 207-213.
Wulder, M. A., Nelson, T. A., Derksen, C., & Seemann, D. (2007). Snow cover variability across central Canada (1978-2002) derived from satellite passive microwave data. Climatic Change, 82(1–2), 113–130. https://doi.org/10.1007/s10584-006-9148-9
Xiao, M. (2021). A warning of earlier snowmelt. Nature Climate Change, 11(5), 380-381.
Xu, D., Bisht, G., Tan, Z., Sinha, E., Di Vittorio, A. V., Zhou, T., ... & Leung, L. R. (2024). Climate change will reduce North American inland wetland areas and disrupt their seasonal regimes. Nature Communications, 15(1), 2438.
Xu, J., Ma, Z., Yan, S., & Peng, J. (2022). Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China. Journal of Hydrology, 605. https://doi.org/10.1016/j.jhydrol.2021.127353
Xu, J., Shu, H., & Dong, L. (2014). DEnKF-variational hybrid snow cover fraction data assimilation for improving snow simulations with the common Land Model. Remote Sensing, 6(11), 10612–10635. https://doi.org/10.3390/rs61110612
Yadav, J. S., Misra, A., Dobhal, D. P., Yadav, R. B. S., & Upadhyay, R. (2021). Snow cover mapping, topographic controls and integration of meteorological data sets in Din-Gad Basin, Central Himalaya. Quaternary International, 575–576, 160–177. https://doi.org/10.1016/j.quaint.2020.05.030
Yan, D., Ma, N., & Zhang, Y. (2022). Development of a fine-resolution snow depth product based on the snow cover probability for the Tibetan Plateau: Validation and spatial–temporal analyses. Journal of Hydrology, 604. https://doi.org/10.1016/j.jhydrol.2021.127027
Yang, D., Yang, Y., & Xia, J. (2021). Hydrological cycle and water resources in a changing world: A review. In Geography and Sustainability (Vol. 2, Issue 2, pp. 115–122). Beijing Normal University Press. https://doi.org/10.1016/j.geosus.2021.05.003
Yang, J., Jiang, L., Ménard, C. B., Luojus, K., Lemmetyinen, J., & Pulliainen, J. (2015). Evaluation of snow products over the Tibetan Plateau. Hydrological Processes, 29(15), 3247–3260. https://doi.org/10.1002/hyp.10427
Yoon, Y., Kemp, E. M., Kumar, S. V., Wegiel, J. W., Vuyovich, C. M., & Peters-Lidard, C. (2022). Development of a global operational snow analysis: The US Air Force Snow and Ice Analysis. Remote Sensing of Environment, 278, 113080
You, J., Tarboton, D. G., & Luce, C. H. (2014). Modeling the snow surface temperature with a one-layer energy balance snowmelt model. Hydrology and Earth System Sciences, 18(12), 5061–5076. https://doi.org/10.5194/hess-18-5061-2014.
Zaerpour, M., Hatami, S., Sadri, J., & Nazemi, A. (2021a). A global algorithm for identifying changing streamflow regimes: application to Canadian natural streams (1966–2010). Hydrology and Earth System Sciences, 25(9), 5193-5217
Zaerpour, M., Papalexiou, S. M., & Nazemi, A. (2021b). Informing stochastic streamflow generation by large-scale climate indices at single and multiple sites. Advances in Water Resources, 156, 104037.
Zhang, F., Wang, N., Zhang, L., Chu, Y., Wang, S., & Huang, Y. (2023). Effects of snow cover on urban light climate environment in the high latitudes of northeast China. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-35825-x
Zhang, Q., Knowles, J. F., Barnes, R. T., Cowie, R. M., Rock, N., & Williams, M. W. (2018). Surface and subsurface water contributions to streamflow from a mesoscale watershed in complex mountain terrain. Hydrological Processes, 32(7), 954–967. https://doi.org/10.1002/hyp.11469
Zheng, X., Wang, Q., Zhou, L., Sun, Q., & Li, Q. (2018). Predictive contributions of snowmelt and rainfall to streamflow variations in the Western United States. Advances in Meteorology, 2018. https://doi.org/10.1155/2018/3765098
Zhou, G., Cui, M., Wan, J., & Zhang, S. (2021). A review on snowmelt models: Progress and prospect. Sustainability (Switzerland), 13(20). https://doi.org/10.3390/su132011485
Zhou, W., Liu, L., Huang, L., Yao, Y., Chen, J., & Li, S. (2019). A New GPS SNR-based Combination Approach for Land Surface Snow Depth Monitoring. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-40456-2.
Repository Staff Only: item control page