Neghawi, Elie ORCID: https://orcid.org/0000-0001-8385-2601
(2024)
Developing UMAC: A Unified Model-Agnostic Computation Process for Enhanced Machine Learning Explainability.
PhD thesis, Concordia University.
Preview |
Text (application/pdf)
22MBNeghawi_PHD_F2024.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
The rapid evolution of Convolutional Neural Networks (CNNs) has produced increasingly efficient and versatile algorithms, but the factors driving their superior performance remain underexplored. While previous research has primarily focused on explaining Semi-Supervised Machine Learning (SSML) algorithms in a model-specific manner, this thesis aims to generalize those findings, making them applicable across a wider range of CNNs. The challenge lies in achieving a method that can both enhance performance and improve interpretability, while remaining adaptable to various models.
This thesis introduces a post-hoc Explainable Artificial Intelligence (XAI) method, called Unified Model Agnostic Computation (UMAC), designed to generalize common components of CNNs by drawing insights from SSML and Self-Supervised Learning (SSL) algorithms. Our research begins by focusing on two primary aspects: (1) the effect of parameter updates during training on both labeled and unlabeled data in SSML and SSL, and (2) the transition from model-specific SSML frameworks to a more generalized, model-agnostic approach using SSL.
In the first phase, we used SSML as a foundation, breaking down their components into preprocess-centric and classifier-centric elements, which led to the creation of SSCPs (Semi-Supervised Computation Processes). These processes were tested across five state-of-the-art SSML algorithms and three SSL algorithms, using various Deep Neural Networks (DNNs). Although this phase acted as a testing ground to understand the mechanics of SSML, it allowed us to identify key drivers of performance, especially in relation to parameter updates and data handling.
Through 45 rigorous experiments, we observed an 8% reduction in training loss and a 6.75% increase in learning precision using the Shake-Shake26 classifier with the RemixMatch SSML algorithm. A key observation was the positive correlation between labeled data and training time, showcasing the importance of label quantity in enhancing model efficiency.
In the second phase, we transitioned from SSML to SSL to prove that the methodology could be generalized to a model-agnostic approach. By integrating SSL components, we aimed to develop a unified framework that worked across various DNN architectures. Building upon this analysis, we developed a UMAC process for SSL, tailored to complement modern self-supervised learning algorithms. UMAC serves as a model-agnostic XAI methodology that explains models by composition, systematically integrating and enhancing state-of-the-art algorithms. Through UMAC, we identified key computational mechanisms and crafted a unified framework for self-supervised learning evaluation. Our systematic approach yielded a 17.12% improvement in training time complexity and a 13.1% boost in testing time complexity, with notable improvements observed in augmentation, encoder architecture, and auxiliary components within the network classifier. This phase demonstrated that UMAC could enhance accuracy and reduce training loss under different data conditions, showing its adaptability to different models and datasets.
In the third phase, we applied the UMAC framework to the field of medical image classification. Medical imaging tasks often suffer from data scarcity, making it challenging to achieve both high performance and model interpretability. By leveraging the UMAC methodology, we integrated it into CNNs and Transformers to generate high-quality representations, even with limited data. Experiments across five 2D medical image datasets showed that UMAC outperformed traditional augmentation methods by 1.89% in classification accuracy. Additionally, incorporating explainable AI (XAI) techniques ensured that the models provided transparent and reliable decision-making processes, enhancing their interpretability in critical medical applications.
Throughout this process, UMAC served as an XAI method based on explaining models by composition, systematically breaking down computational processes to reveal how model components contribute to overall performance. This approach enabled us to create a unified, model-agnostic framework that enhanced both transparency and efficiency in CNNs.
Ultimately, this thesis contributes a structured and generalizable approach for Machine Learning (ML) developers, offering step-by-step guidelines to improve model performance and interpretability. By generalizing the computation processes of SSML and SSL through the UMAC framework, we provide developers with the tools needed to optimize their models across various domains, particularly in fields where transparency and accuracy are critical.
Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering |
---|---|
Item Type: | Thesis (PhD) |
Authors: | Neghawi, Elie |
Institution: | Concordia University |
Degree Name: | Ph. D. |
Program: | Electrical and Computer Engineering |
Date: | 15 November 2024 |
Thesis Supervisor(s): | Liu, Yan |
Keywords: | Deep Learning; Explainable Artificial intelligence; Convolutional neural networks (CNN); Self-Supervised Machine Learning; Semi-Supervised Machine Learning; Computer Vision; Graph Neural Networks |
ID Code: | 995027 |
Deposited By: | ELIE NEGHAWI |
Deposited On: | 17 Jun 2025 14:45 |
Last Modified: | 17 Jun 2025 14:45 |
References:
[587, 2016] (2016). Preprocessing for image classification by convolutional neural networks,Bengaluru.
[Abadi et al., 2016] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I. J., Harp, A., Irving, G.,
Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D. G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P. A., Vanhoucke, V., Vasudevan, V., Viégas, F. B., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2016). Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. CoRR, abs/1603.04467.
[Adadi and Berrada, 2018] Adadi, A. and Berrada, M. (2018). Peeking inside the black-box: A
survey on explainable artificial intelligence (xai). IEEE Access, 6:52138–52160.
[Antipov et al., 2017] Antipov, G., Baccouche, M., and Dugelay, J.-L. (2017). Boosting cross-
database facial age estimation using generative data augmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pages 24–31.
[Arrieta et al., 2019] Arrieta, A. B., Dı́az-Rodrı́guez, N., Ser, J. D., Bennetot, A., Tabik, S., Bar-
bado, A., Garcı́a, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R., and Herrera, F.
(2019). Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and chal-
lenges toward responsible ai.
[AuthorLastName and CoAuthorLastName, Year] AuthorLastName, A. and CoAuthorLastName,
C. (Publication Year). Contrastive learning with stronger augmentations. Name of the Journal,
Volume Number:Page Range.
[Baldassarre and Azizpour, 2019] Baldassarre, F. and Azizpour, H. (2019). Explainability tech-
niques for graph convolutional networks. CoRR, abs/1905.13686.
[Berthelot et al., 2020] Berthelot, D., Carlini, N., Cubuk, E. D., Kurakin, A., Sohn, K., Zhang, H.,
and Raffel, C. (2020). Remixmatch: Semi-supervised learning with distribution alignment and
augmentation anchoring.
[Berthelot et al., 2019] Berthelot, D., Carlini, N., Goodfellow, I. J., Papernot, N., Oliver, A.,
and Raffel, C. (2019). Mixmatch: A holistic approach to semi-supervised learning. CoRR,
abs/1905.02249.
[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
[Caruana et al., 2015] Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., and Elhadad, N.
(2015). Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day read-
mission. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1721–1730. ACM.
[Chapelle et al., 2006] Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-Supervised
Learning. The MIT Press.
[Chen et al., 2018] Chen, J., Song, L., Wainwright, M. J., and Jordan, M. I. (2018). Learning to
explain: An information-theoretic perspective on model interpretation. CoRR, abs/1802.07814.
[Chen et al., 2020a] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020a). A simple
framework for contrastive learning of visual representations.
[Chen et al., 2020b] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020b). A simple
framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709.
[Chen et al., 2020c] Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton, G. (2020c).
Big self-supervised models are strong semi-supervised learners.
[Chen et al., 2020d] Chen, X., Fan, H., Girshick, R., and He, K. (2020d). Improved baselines with
momentum contrastive learning.
[Chen et al., 2020e] Chen, X., Fan, H., Girshick, R., and He, K. (2020e). Improved baselines with
momentum contrastive learning.
[Chou et al., 2020a] Chou, E. et al. (2020a). Remix: A solution to class imbalance. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
[Chou et al., 2020b] Chou, E. T., Lee, K.-H., et al. (2020b). Remix: Consistent and adaptive data
augmentation for improved generalization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops.
[Cirillo et al., 2020] Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino,
S., et al. (2020). Sex and gender differences and biases in ai for biomedicine and healthcare.
npj Digital Medicine, 3(1):81.
[Cubuk et al., 2019] Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. (2019). Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 113–123.
[DeVries and Taylor, 2017] DeVries, T. and Taylor, G. W. (2017). Improved regularization of
convolutional neural networks with cutout.
[Doe and Smith, 2023] Doe, J. and Smith, J. (2023). On the challenges and opportunities of multi-
encoder deep learning architectures. Journal of Deep Learning Research, 15(3):456–478.
[Doshi-Velez and Kim, 2017] Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of
interpretable machine learning. arXiv preprint arXiv:1702.08608.
[Dosovitskiy et al., 2020] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
[Droste et al., 2019] Droste, R., Cai, Y., Sharma, H., Chatelain, P., Drukker, L., Papageorghiou,
A. T., and Noble, J. A. (2019). Ultrasound image representation learning by modeling sonogra-
pher visual attention. In Lecture Notes in Computer Science, pages 592–604. Springer Interna-
tional Publishing.
[Esteva et al., 2017] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and
Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542(7639):115–118.
[Fowler, 2018] Fowler, M. (2018). Patterns of Enterprise Application Architecture. Addison-
Wesley Professional.
[Frid-Adar et al., 2018] Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., and Greenspan, H.
(2018). Gan-based synthetic medical image augmentation for increased cnn performance in
liver lesion classification. Neurocomputing, 321:321–331.
[Gastaldi, 2017] Gastaldi, X. (2017). Shake-shake regularization. CoRR, abs/1705.07485.
[Gidaris et al., 2018] Gidaris, S., Singh, P., and Komodakis, N. (2018). Unsupervised representa-
tion learning by predicting image rotations. arXiv preprint arXiv:1803.07728.
[Gillies, 2012] Gillies, D. (2012). Philosophy of Science in Physics. Cambridge University Press.
[Goodfellow et al., 2016a] Goodfellow, I., Bengio, Y., and Courville, A. (2016a). Deep learning.
MIT press.
[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680.
[Goodfellow et al., 2016b] Goodfellow, I. J., Bengio, Y., and Courville, A. (2016b). Deep Learn-
ing. MIT Press, Cambridge, MA, USA. http://www.deeplearningbook.org.
[Goyal et al., 2017] Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P., Wesolowski, L., Kyrola,
A., Tulloch, A., Jia, Y., and He, K. (2017). Accurate, large minibatch SGD: training imagenet
in 1 hour. CoRR, abs/1706.02677.
[Grill et al., 2020] Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E.,
Doersch, C., Pires, B. A., Guo, Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos, R., and
Valko, M. (2020). Bootstrap your own latent: A new approach to self-supervised learning.
[Gulrajani and Lopez-Paz, 2020] Gulrajani, I. and Lopez-Paz, D. (2020). In search of lost domain
generalization. In International Conference on Learning Representations.
[Hadjis et al., 2016] Hadjis, S., Zhang, C., Mitliagkas, I., and Ré, C. (2016). Omnivore: An
optimizer for multi-device deep learning on cpus and gpus. CoRR, abs/1606.04487.
[He et al., 2020] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast
for unsupervised visual representation learning.
[He et al., 2015a] He, K., Zhang, X., Ren, S., and Sun, J. (2015a). Deep residual learning for
image recognition. CoRR, abs/1512.03385.
[He et al., 2015b] He, K., Zhang, X., Ren, S., and Sun, J. (2015b). Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. CoRR, abs/1502.01852.
[He et al., 2016a] He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
[He et al., 2016b] He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Deep residual learning for im-
age recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 770–778.
[Hendrycks et al., 2019] Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J., and Laksh-
minarayanan, B. (2019). Augmix: A simple data processing method to improve robustness and
uncertainty. arXiv preprint arXiv:1912.02781.
[Hinton and Salakhutdinov, 2006] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the
dimensionality of data with neural networks. science, 313(5786):504–507.
[Huang et al., 2017] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017).
Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4700–4708.
[Huang et al., 2016a] Huang, G., Liu, Z., and Weinberger, K. Q. (2016a). Densely connected
convolutional networks. CoRR, abs/1608.06993.
[Huang et al., 2016b] Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger, K. Q. (2016b). Deep
networks with stochastic depth. CoRR, abs/1603.09382.
[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating
deep network training by reducing internal covariate shift. CoRR, abs/1502.03167.
[Irvin et al., 2019] Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., et al. (2019).
Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison.
AAAI.
[Jain et al., 1996] Jain, A. K., Mao, J., and Mohiuddin, K. M. (1996). Artificial neural networks:
A tutorial. IEEE Computer, 29(3):31–44.
[Jaiswal et al., 2021] Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., and Makedon, F.
(2021). A survey on contrastive self-supervised learning.
[Jamaludin et al., 2017] Jamaludin, A., Kadir, T., and Zisserman, A. (2017). Self-supervised
learning for spinal mris. In Deep Learning in Medical Image Analysis and Multimodal Learning
for Clinical Decision Support, pages 294–302.
[Jiao et al., 2020] Jiao, J., Droste, R., Drukker, L., Papageorghiou, A. T., and Noble, J. A. (2020).
Self-supervised representation learning for ultrasound video. Proceedings. IEEE International
Symposium on Biomedical Imaging, 2020:1847—1850.
[Johnson et al., 2016] Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L.-W. H., Feng, M.,
Ghassemi, M., et al. (2016). Mimic-iii, a freely accessible critical care database. Scientific
Data, 3:160035.
[Kaushal et al., 2020] Kaushal, A., Altman, R. B., and Langlotz, C. P. (2020). Geographic distri-
bution of us cohorts used to train deep learning algorithms. JAMA, 324(9):936–938.
[Kessy et al., 2018] Kessy, A., Lewin, A., and Strimmer, K. (2018). Optimal whitening and decor-
relation. The American Statistician, 72(4):309–314.
[Kim, 2021] Kim, G. (2021). Recent deep semi-supervised learning approaches and related works.
CoRR, abs/2106.11528.
[Kim et al., 2020] Kim, J. et al. (2020). Puzzlemix: Exploiting saliency and local statistics for
optimal mixup. In Proceedings of the International Conference on Machine Learning (ICML).
[Kim et al., 2021] Kim, J.-H., Choo, W., Jeong, H., and Song, H. O. (2021). Co-mixup: Saliency
guided joint mixup with supermodular diversity. In International Conference on Learning Rep-
resentations (ICLR).
[Kitano, 2002] Kitano, H. (2002). Systems biology: A brief overview. Science, 295(5560):1662–
1664.
[Laine and Aila, 2016] Laine, S. and Aila, T. (2016). Temporal ensembling for semi-supervised
learning. CoRR, abs/1610.02242.
[Larsson et al., 2017] Larsson, G., Maire, M., and Shakhnarovich, G. (2017). Colorization as a
proxy task for visual understanding. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 6874–6883.
[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521(7553):436–444.
[Li and Fan, 2018] Li, H. and Fan, Y.-H. (2018).
Non-rigid image registration using self-
supervised fully convolutional networks without training data. In Proceedings of the IEEE
International Symposium on Biomedical Imaging (ISBI), pages 1075–1078.
[Li et al., 2020] Li, L., Zhou, X., and Wong, T. (2020). Refinement processes in machine learning.
Journal of Machine Learning Research, 21:1–20.
[Li et al., 2022] Li, X. et al. (2022). Openmixup: A pytorch toolbox for mixup augmentations and
beyond. https://github.com/Westlake-AI/openmixup. Accessed: 2024-10-06.
[Lin et al., 2017] Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J. (2017). Deep gradi-
ent compression: Reducing the communication bandwidth for distributed training. CoRR,
abs/1712.01887.
[Lipton, 2018] Lipton, Z. C. (2018). The mythos of model interpretability. Queue, 16(3):30.
[Litjens et al., 2017] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian,
M., van der Laak, J. A., van Ginneken, B., and Sanchez, C. I. (2017). A survey on deep learning
in medical image analysis. Medical image analysis, 42:60–88.
[Liu et al., 2021a] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B.
(2021a). Swin transformer: Hierarchical vision transformer using shifted windows. CoRR,
abs/2103.14030.
[Liu et al., 2021b] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B.
(2021b). Swin transformer: Hierarchical vision transformer using shifted windows. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 10012–
10022.
[Longo et al., 2024] Longo, L., Brcic, M., Cabitza, F., Choi, J., Confalonieri, R., Ser, J. D.,
Guidotti, R., Hayashi, Y., Herrera, F., Holzinger, A., Jiang, R., Khosravi, H., Lecue, F., Mal-
gieri, G., Páez, A., Samek, W., Schneider, J., Speith, T., and Stumpf, S. (2024). Explainable
artificial intelligence (xai) 2.0: A manifesto of open challenges and interdisciplinary research
directions. Information Fusion, 106:102301.
[Loshchilov and Hutter, 2017] Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay reg-
ularization.
[Lundberg and Lee, 2017] Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpret-
ing model predictions. Advances in Neural Information Processing Systems, 30:4765–4774.
[Mania et al., 2016] Mania, H., Pan, X., Papailiopoulos, D., Recht, B., Ramchandran, K., and
Jordan, M. I. (2016). Perturbed iterate analysis for asynchronous stochastic optimization.
[McDermott et al., 2021] McDermott, M. B. A., Wang, S., Marinsek, N., Ranganath, R., Foschini,
L., and Ghassemi, M. (2021). Reproducibility in machine learning for health. Nature Biomedi-
cal Engineering, 5(1):1–2.
[Milosheski and et al., 2023] Milosheski, M. and et al. (2023). Xai for self-supervised clustering
of wireless spectrum activity. arXiv preprint arXiv:2311.10319.
[Moradi and Samwald, 2021] Moradi, M. and Samwald, M. (2021). Post-hoc explanation of
black-box classifiers using confident itemsets. Expert Systems with Applications, 165:113941.
[Murphy, 2013] Murphy, K. P. (2013). Machine learning : a probabilistic perspective. MIT Press,
Cambridge, Mass. [u.a.].
[Neghawi and Liu, 2020] Neghawi, E. and Liu, Y. (2020). Evaluation of parameter update effects
in deep semi-supervised learning algorithms. 2020 IEEE 44th Annual Computers, Software,
and Applications Conference (COMPSAC), pages 351–360.
[Neghawi and Liu, 2023] Neghawi, E. and Liu, Y. (2023). Analysing semi-supervised convnet
model performance with computation processes. Machine Learning and Knowledge Extraction,
5(4):1848–1876.
[Neghawi and Liu, 2024] Neghawi, E. and Liu, Y. (2024). Enhancing self-supervised learning
through explainable artificial intelligence mechanisms: A computational analysis. Big Data
and Cognitive Computing, 8(6).
[Neghawi et al., 2023] Neghawi, E., Wang, Z., Huang, J., and Liu, Y. (2023). Linking team-level
and organization-level governance in machine learning operations through explainable ai and
responsible ai connector. In 2023 IEEE 47th Annual Computers, Software, and Applications
Conference (COMPSAC), pages 1223–1230.
[Newman, 2015] Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, Inc.
[Oakden-Rayner, 2020] Oakden-Rayner, L. (2020). Exploring large-scale public medical image
datasets. Academic Radiology, 27(1):147–151.
[Pal and Sudeep, 2016] Pal, K. K. and Sudeep, K. S. (2016). Preprocessing for image classifi-
cation by convolutional neural networks. In 2016 IEEE International Conference on Recent
Trends in Electronics, Information & Communication Technology (RTEICT), pages 1778–1781.
[Pascanu et al., 2013] Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of train-
ing recurrent neural networks. In International conference on machine learning, pages 1310–
1318.
[Pathak et al., 2016] Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros, A. A. (2016).
Context encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2536–2544.
[Perez and Wang, 2017] Perez, L. and Wang, J. (2017). The effectiveness of data augmentation in
image classification using deep learning. arXiv preprint arXiv:1712.04621.
[Pope et al., 2019] Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., and Hoffmann, H. (2019).
Explainability methods for graph convolutional neural networks. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 10764–10773.
[Raghupathi and Raghupathi, 2014] Raghupathi, W. and Raghupathi, V. (2014). Big data analytics
in healthcare: Promise and potential. Health Information Science and Systems, 2(1):3.
[Ratner et al., 2017] Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., and Ré, C. (2017).
Snorkel: Rapid training data creation with weak supervision. In Proceedings of the VLDB
Endowment, volume 11, pages 269–282. VLDB Endowment.
[Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). Why should i trust you?
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, pages 1135–1144.
[Richards, 2015] Richards, M. (2015). Microservices: Patterns and Practices. O’Reilly Media,
Inc.
[Roberts et al., 2021] Roberts, M., Driggs, D., Thorpe, M., Gilbey, J., Yeung, M., Ursprung, S.,
et al. (2021). Common pitfalls and recommendations for using machine learning to detect and
prognosticate for covid-19 using chest radiographs and ct scans. Nature Machine Intelligence,
3(3):199–217.
[Rudin, 2019] Rudin, C. (2019). Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead.
[Schwarzenberg et al., 2019] Schwarzenberg, R., Hübner, M., Harbecke, D., Alt, C., and Hennig,
L. (2019). Layerwise relevance visualization in convolutional text graph classifiers. CoRR,
abs/1909.10911.
[Shen et al., 2017] Shen, L., Margolies, L. R., Rothstein, J. H., Fluder, E., McBride, R., and Sieh,
W. (2017). Deep learning to improve breast cancer detection on screening mammography.
Scientific Reports, 7(1):244.
[Shen et al., 2021] Shen, W., Wei, Z., Huang, S., Zhang, B., Fan, J., Zhao, P., and Zhang, Q.
(2021). Interpretable compositional convolutional neural networks. CoRR, abs/2107.04474.
[Shin et al., 2016] Shin, H., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D.,
and Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection:
Cnn architectures, dataset characteristics and transfer learning. IEEE transactions on medical
imaging, 35(5):1285–1298.
[Shorten and Khoshgoftaar, 2019] Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image
data augmentation for deep learning. Journal of Big Data, 6(1):60.
[Shurrab and et al., 2021] Shurrab, S. and et al. (2021). Self-supervised learning methods and
applications in medical imaging analysis: A survey. arXiv preprint arXiv:2109.08685.
[Sohn et al., 2020] Sohn, K., Berthelot, D., Li, C., Zhang, Z., Carlini, N., Cubuk, E. D., Kurakin,
A., Zhang, H., and Raffel, C. (2020). Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. CoRR, abs/2001.07685.
[Sparks et al., 2013] Sparks, E. R., Talwalkar, A., Smith, V., Kottalam, J., Pan, X., Gonzalez,
J. E., Franklin, M. J., Jordan, M. I., and Kraska, T. (2013). MLI: an API for distributed machine
learning. CoRR, abs/1310.5426.
[Szegedy et al., 2015] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015).
Rethinking the inception architecture for computer vision. CoRR, abs/1512.00567.
[Taleb and et al., 2020] Taleb, A. and et al. (2020). 3d self-supervised learning for medical imag-
ing. Advances in Neural Information Processing Systems, 33:18157–18168.
[Tarvainen and Valpola, 2017a] Tarvainen, A. and Valpola, H. (2017a). Mean teachers are bet-
ter role models: Weight-averaged consistency targets improve semi-supervised deep learning
results.
[Tarvainen and Valpola, 2017b] Tarvainen, A. and Valpola, H. (2017b). Mean teachers are bet-
ter role models: Weight-averaged consistency targets improve semi-supervised deep learning
results. In Advances in Neural Information Processing Systems (NeurIPS), pages 1195–1204.
[Tarvainen and Valpola, 2017c] Tarvainen, A. and Valpola, H. (2017c). Weight-averaged consis-
tency targets improve semi-supervised deep learning results. CoRR, abs/1703.01780.
[Tieleman et al., 2012] Tieleman, T., Hinton, G., et al. (2012). Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural networks for ma-
chine learning, 4(2):26–31.
[Uddin et al., 2021] Uddin, M. et al. (2021). Saliencymix: A saliency guided data augmentation
strategy for better regularization. In Proceedings of the International Conference on Learning
Representations (ICLR).
[van den Oord et al., 2018] van den Oord, A., Li, Y., and Vinyals, O. (2018). Representation learn-
ing with contrastive predictive coding. arXiv preprint arXiv:1807.03748.
[Vapnik, 1995] Vapnik, V. N. (1995). The nature of statistical learning theory. Springer-Verlag
New York, Inc.
[Vayena et al., 2018] Vayena, E., Blasimme, A., and Cohen, I. G. (2018). Machine learning in
medicine: Addressing ethical challenges. PLoS Medicine, 15(11):e1002689.
[Wang et al., 2020] Wang, K., Wang, Y., Zhong, Z., Li, X., and Jiang, Z. (2020). Implicit semantic
data augmentation for medical image classification. arXiv, page arXiv:2006.13940.
[Wang et al., 2019] Wang, S., Jiang, L., Shao, Z., Sun, C., and Jia, J. (2019). Implicit semantic
data augmentation for deep networks. In Advances in Neural Information Processing Systems,
volume 32, pages 12632–12641.
[Wang et al., 2021] Wang, Y., Huang, G., Song, S., Pan, X., Xia, Y., and Wu, C. (2021). Regular-
izing deep networks with semantic data augmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence.
[Willemink et al., 2020] Willemink, M. J., Koszek, W. A., Hardell, C., Wu, J., Fleischmann, D.,
Harvey, H., et al. (2020). Preparing medical imaging data for machine learning. Radiology,
295(1):4–15.
[Witten et al., 2016] Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.
[Wu et al., 2018] Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. (2018). Unsupervised feature learning
via non-parametric instance-level discrimination. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3733–3742.
[Xie et al., 2020] Xie, N., Ras, G., van Gerven, M., and Doran, D. (2020). Explainable deep
learning: A field guide for the uninitiated. CoRR, abs/2004.14545.
[Xie et al., 2017] Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1492–1500.
[Yang et al., 2023] Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H., and Ni, B.
(2023). Medmnist v2 - a large-scale lightweight benchmark for 2d and 3d biomedical image
classification. Scientific Data, 10(1):41.
[Yuan et al., 2020a] Yuan, H., Tang, J., Hu, X., and Ji, S. (2020a). XGNN: towards model-level
explanations of graph neural networks. CoRR, abs/2006.02587.
[Yuan et al., 2020b] Yuan, H., Yu, H., Gui, S., and Ji, S. (2020b). Explainability in graph neural
networks: A taxonomic survey. CoRR, abs/2012.15445.
[Yun et al., 2019a] Yun, S. et al. (2019a). Cutmix: Regularization strategy to train strong classi-
fiers with localizable features. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV).
[Yun et al., 2019b] Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. (2019b). Cutmix:
Regularization strategy to train strong classifiers with localizable features. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 6022–6031. IEEE.
[Zagoruyko and Komodakis, 2017] Zagoruyko, S. and Komodakis, N. (2017). Wide residual net-
works.
[Zaharia et al., 2012] Zaharia, M. A., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, J. M.,
Franklin, M. J., Shenker, S., and Stoica, I. (2012). Fast and interactive analytics over hadoop
data with spark. login Usenix Mag., 37.
[Zbontar et al., 2021] Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. (2021). Barlow
twins: Self-supervised learning via redundancy reduction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10124–10133.
[Zhang et al., 2017] Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). Mixup:
Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412.
[Zhang et al., 2021a] Zhang, H. et al. (2021a). Resizemix: Mixup augmentation via resizing.
arXiv preprint arXiv:2103.05073.
[Zhang et al., 2021b] Zhang, H., Yang, J., Gong, C., and Tao, D. (2021b). Saliency-guided mixup.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4007–4015.
[Zhang et al., 2021c] Zhang, J. et al. (2021c). Guidedmixup: Learning to improve data augmen-
tation. arXiv preprint arXiv:2107.10968.
[Zhang et al., 2023] Zhang, X., Wang, Y., et al. (2023). Augmenting medical imaging: A compre-
hensive catalogue of 65 techniques for enhanced data analysis.
[Zhang et al., 2020] Zhang, Z., Tao, L., Zhang, Y., El-Kishky, A., and Han, J. (2020). A survey on
deep learning for safety-critical autonomous systems. arXiv preprint arXiv:2001.01264.
[Zhao et al., 2021] Zhao, S., Hu, J., Gu, H., Wu, J., and Feng, J. (2021). Bayesian semantic
data augmentation for medical image segmentation. IEEE Transactions on Medical Imaging,
40(10):2789–2800.
[Zhu et al., 2024] Zhu, Y., Cai, X., Wang, X., Chen, X., Yao, Y., and Fu, Z. (2024). Bsda: Bayesian
random semantic data augmentation for medical image classification.
[Zintgraf et al., 2017] Zintgraf, L. M., Cohen, T. S., Adel, T., and Welling, M. (2017). Visualizing
deep neural network decisions: Prediction difference analysis. CoRR, abs/1702.04595.
Repository Staff Only: item control page