Login | Register

Multilevel Assessment of The Role of Moisture and Temperature in ASR-Induced Expansion and Deterioration

Title:

Multilevel Assessment of The Role of Moisture and Temperature in ASR-Induced Expansion and Deterioration

Olajide, Olusola David ORCID: https://orcid.org/0000-0002-0389-0278 (2024) Multilevel Assessment of The Role of Moisture and Temperature in ASR-Induced Expansion and Deterioration. PhD thesis, Concordia University.

[thumbnail of Olajide_PhD_S2025.pdf]
Preview
Text (application/pdf)
Olajide_PhD_S2025.pdf - Accepted Version
Available under License Spectrum Terms of Access.
15MB

Abstract

Alkali silica reaction (ASR) is a widely known deterioration mechanism in concrete; sufficient moisture and temperature are crucial for initiating and sustaining the reaction. The influence of these factors on ASR-induced expansion has been previously studied. However, little is known about their influence on ASR-induced damage. This work aims to apply a multi-level assessment protocol combining microscopic and mechanical properties tools to evaluate the impact of a wide range of moisture conditions and temperatures on ASR-induced expansion and deterioration. Concrete specimens were manufactured in the laboratory incorporating aggregates displaying different levels of reactivity (i.e., moderate, high, and very-high) and containing two alkali loadings (i.e., 3.82kg/m³ and 5.25kg/m³ Na2Oeq by mass of cement). The specimens were conditioned at five relativity humidities (i.e., 100%, 90%, 82%, 75%, and 62%) and three temperatures (i.e., 21°C, 38°C, and 60°C) and monitored for internal and external moisture, and ASR expansion over time. A time-based assessment was conducted, and upon reaching pre-defined ages (i.e., 3, 6, and 12 months), the Damage Rating Index (DRI), Stiffness Damage Test (SDT), Direct Shear, and compressive strength tests were conducted to appraise ASR-induced deterioration in the specimens. The results show that moisture inside concrete is typically around 90% RH from batching, which enables rapid ASR-induced expansion. However, lower external moisture reduces internal moisture and may induce shrinkage cracks that influence the overall damage pattern. Moreover, at elevated temperatures, ASR-induced cracks exhibit greater density but shorter length and narrower width compared to lower temperatures despite similar expansion levels. These conditions influence the microscopic and mechanical properties of ASR-affected concrete, with the DRI and SDT outcomes presenting a strong correlation to expansion. Through the multi-level assessment protocol, this study establishes that the moisture threshold required to trigger ASR is temperature- and aggregate-dependent. While the 80% RH has been widely used in the past, the findings of this study suggest that a lower range (62-75% RH) might be required for high temperatures and reactivity of the aggregates. A novel damage classification table that accounts for a wider range of exposure conditions is thus proposed, offering a more comprehensive tool for the condition assessment of ASR-affected concrete.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (PhD)
Authors:Olajide, Olusola David
Institution:Concordia University
Degree Name:Ph. D.
Program:Civil Engineering
Date:27 November 2024
Thesis Supervisor(s):Nokken, Michelle and Sanchez, Leandro
Keywords:Alkali-Silica Reaction (ASR), Damage Rating Index (DRI), Stiffness Damage Test (SDT), Expansion, Damage, Moisture, Temperature, Aggregate reactivity
ID Code:995040
Deposited By: OLUSOLA OLAJIDE
Deposited On:17 Jun 2025 14:46
Last Modified:17 Jun 2025 14:46

References:

1. Stanton, T.E. Expansion of Concrete through Reaction between Cement and Aggregate. Proceedings of the American Society of Civil Engineering 1940, 66, 1781–1811.
2. Stokes, D.; Pappas, J.; Thomas, M.D.A.; Folliard, K.J. Field Cases Involving Treatment or Repair of ASR-Affected Concrete Using Lithium. In Proceedings of the Proceedings of the 6th CANMET/ACI International Conference on Durability of Concrete; Thessaloniki, Greece, 2003; pp. 631–642.
3. Folliard, K.J.; Thomas, M.D.A.; Ideker, J.H.; East, B.; Fournier, B. Case Studies of Treating ASR-Affected Structures with Lithium Nitrate. In Proceedings of the Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete; Trondheim, Norway, 2008.
4. Durand, B. Review of Repair Methods Used at Hydro-Quebec to Inhibit AAR in Concrete Structures. In Proceedings of the AAR in Hydroelectric Plants and Dams: Proceedings of the 2nd International Conference; United States Committee on Large Dams: Chattanooga, USA, 1995; pp. 289–309.
5. De Beauchamp, T. The Progress of Remedial Measures at Chambon Dam. In Proceedings of the AAR in Hydroelectric Plants and Dams: Proceedings of the 2nd International Conference; United States Committee on Large Dams: Chattanooga, USA, 1995; pp. 209–220.
6. Sanchez, L.; Fournier, B.; Jolin, M.; Duchesne, J. Reliable Quantification of AAR Damage through Assessment of the Damage Rating Index (DRI). Cement and Concrete Research 2015, 67, 74–92, doi:10.1016/j.cemconres.2014.08.002.
7. Sanchez, L.; Fournier, B.; Jolin, M.; Bedoya, M.; Bastien, J.; Duchesne, J. Use of Damage Rating Index to Quantify Alkali-Silica Reaction Damage in Concrete: Fine versus Coarse Aggregate. ACI Materials Journal 2016, 113, doi:10.14359/51688983.
8. Deschenes, R.A.; Giannini, E.; Drimalas, T.; Fournier, B.; Hale, W.M. Effects of Moisture, Temperature, and Freezing and Thawing on Alkali-Silica Reaction. ACI Materials Journal 2018, 115, 575–584, doi:10.14359/51702192.
9. Tosun, K.; Felekoğlu, B.; Baradan, B. The Effect of Cement Alkali Content on ASR Susceptibility of Mortars Incorporating Admixtures. Building and Environment 2007, 42, 3444–3453, doi:10.1016/j.buildenv.2006.08.024.
10. Poyet, S.; Sellier, A.; Capra, B.; Thèvenin-Foray, G.; Torrenti, J.-M.; Tournier-Cognon, H.; Bourdarot, E. Influence of Water on Alkali-Silica Reaction: Experimental Study and Numerical Simulations. J. Mater. Civ. Eng. 2006, 18, 588–596, doi:10.1061/(ASCE)0899-1561(2006)18:4(588).
11. Multon, S.; Toutlemonde, F. Effect of Moisture Conditions and Transfers on Alkali Silica Reaction Damaged Structures. Cement and Concrete Research 2010, 40, 924–934, doi:10.1016/j.cemconres.2010.01.011.
12. Nilsson, L.-O. On the Role of Moisture in Degradation of Concrete Structures. In Proceedings of the Global Construction: Ultimate Concrete Opportunities; Dundee, Scotland, 2005; pp. 15–24.
13. Olafsson, H. The Effect of Relative Humidity and Temperature on Alkali Expansion of Mortar Bars. In Proceedings of the 7th International Conference on Alkali Aggregate Reaction in Concrete; Ottawa, 1986; pp. 461–465.
14. Ideker, J.H.; East, B.L.; Folliard, K.J.; Thomas, M.D.A.; Fournier, B. The Current State of the Accelerated Concrete Prism Test. Cement and Concrete Research 2010, 40, 550–555, doi:10.1016/j.cemconres.2009.08.030.
15. Gautam, B.P.; Panesar, D.K. The Effect of Elevated Conditioning Temperature on the ASR Expansion, Cracking and Properties of Reactive Spratt Aggregate Concrete. Construction and Building Materials 2017, 140, 310–320, doi:10.1016/j.conbuildmat.2017.02.104.
16. Larive, C. Apports combinés de l’expérimentation et de la modélisation à la compréhension de l’alcali-réaction et de ses effets mécaniques, 28, Presses du Laboratoire Central des Ponts et Chaussées, Paris, 1997.
17. De Souza, D.J.; Sanchez, L.; Tagliaferri de Grazia, M. Evaluation of a Direct Shear Test Setup to Quantify AAR-Induced Expansion and Damage in Concrete. Construction and Building Materials 2019, 229, doi:10.1016/j.conbuildmat.2019.116806.
18. Marzouk, H.; Langdon, S. The Effect of Alkali-Aggregate Reactivity on the Mechanical Properties of High and Normal Strength Concrete. Cement and Concrete Composites 2003, 25, 549–556, doi:10.1016/S0958-9465(02)00094-X.
19. Mohammadi, A.; Ghiasvand, E.; Nili, M. Relation between Mechanical Properties of Concrete and Alkali-Silica Reaction (ASR); a Review. Construction and Building Materials 2020, 258, 1–16, doi:10.1016/j.conbuildmat.2020.119567.
20. Diab, S.H.; Soliman, A.M.; Nokken, M.R. Changes in Mechanical Properties and Durability Indices of Concrete Undergoing ASR Expansion. Construction and Building Materials 2020, 251, 118951, doi:10.1016/j.conbuildmat.2020.118951.
21. Zhang, K.; Zhou, J.; Yin, Z. Experimental Study on Mechanical Properties and Pore Structure Deterioration of Concrete under Freeze–Thaw Cycles. Materials 2021, 14, 6568, doi:10.3390/ma14216568.
22. Rajabipour, F.; Giannini, E.; Dunant, C.; Ideker, J.H.; Thomas, M.D.A. Alkali–Silica Reaction: Current Understanding of the Reaction Mechanisms and the Knowledge Gaps. Cement and Concrete Research 2015, 76, 130–146, doi:10.1016/j.cemconres.2015.05.024.
23. Nilsson, L.-O. On the Role of Moisture in Degradation of Concrete Structures.; Thomas Telford, 2005; pp. 15–24.
24. Stark, D.; Okamoto, P.; Diamond, S. Eliminating or Minimizing Alkali-Silica Reaktivity; Strategic Highway Research Program, SHRP-C; Washington, DC, 1993; ISBN 978-0-309-05603-8.
25. Kurihara, T.; Katawaki, K. Effects of Moisture Control and Inhibition on Alkali Silica Reaction. In Proceedings of the 8th International Conference on Alkali-Aggregate Reaction; Kyoto, Japan, 1989; pp. 629–634.
26. Tomosawa, F.; Tamura, K.; Abe, M. Influence of Water Content of Concrete on Alkali-Aggregate Reaction. In Proceedings of the 8th International Conference on Alkali-Aggregate Reaction; Kyoto, Japan, 1989; pp. 881–885.
27. Stark, D. The Moisture Condition of Field Concrete Exhibiting Alkali–Silica Reactivity. In Proceedings of the Second International Conference on Durability of Concrete; ACI Publication SP, 1991; pp. 973–987.
28. Rajabipour, F.; Giannini, E.; Dunant, C.; Ideker, J.H.; Thomas, M.D.A. Alkali–Silica Reaction: Current Understanding of the Reaction Mechanisms and the Knowledge Gaps. Cement and Concrete Research 2015, 76, 130–146, doi:10.1016/j.cemconres.2015.05.024.
29. Tragardh, J.; Lagerblad, B. Influence of ASR Expansion on the Frost Resistance of Concrete. In Proceedings of the 10th International Conference on Alkali Aggregate Reaction in Concrete; Melbourne, Australia, 1996; pp. 853–860.
30. Boddy, A.M.; Hooton, R.D.; Thomas, M.D.A. The Effect of the Silica Content of Silica Fume on Its Ability to Control Alkali–Silica Reaction. Cement and Concrete Research 2003, 33, 1263–1268, doi:10.1016/S0008-8846(03)00058-9.
31. Diamond, S. Effects of Two Danish Flyashes on Alkali Contents of Pore Solutions of Cement-Flyash Pastes. Cement and Concrete Research 1981, 11, 383–394, doi:10.1016/0008-8846(81)90110-1.
32. Duchesne, J.; Bérubé, M.A. The Effectiveness of Supplementary Cementing Materials in Suppressing Expansion Due to ASR: Another Look at the Reaction Mechanisms Part 2: Pore Solution Chemistry. Cement and Concrete Research 1994, 24, 221–230, doi:10.1016/0008-8846(94)90047-7.
33. Ramlochan, T.; Thomas, M.; Gruber, K.A. The Effect of Metakaolin on Alkali–Silica Reaction in Concrete. Cement and Concrete Research 2000, 30, 339–344, doi:10.1016/S0008-8846(99)00261-6.
34. Venkatachalam, S.; Raja, K.; Vishnuvardhan, K.; Suchithra, S.; Maniarasan, S.K.; Saravanan, M.M.; Miruna, M.; Prabanjan, S. The ASR Mechanism in Concrete and the Influence of Lithium in Mitigating It: A Critical Review. Materials Today: Proceedings 2022, 65, A1–A6, doi:10.1016/j.matpr.2022.07.327.
35. Kaladharan, G.; Szeles, T.; Stoffels, S.M.; Rajabipour, F. Novel Admixtures for Mitigation of Alkali-Silica Reaction in Concrete. Cement and Concrete Composites 2021, 120, 104028, doi:10.1016/j.cemconcomp.2021.104028.
36. Feng, X.; Thomas, M.D.A.; Bremner, T.W.; Balcom, B.J.; Folliard, K.J. Studies on Lithium Salts to Mitigate ASR-Induced Expansion in New Concrete: A Critical Review. Cement and Concrete Research 2005, 35, 1789–1796, doi:10.1016/j.cemconres.2004.10.013.
37. Leemann, A.; Lörtscher, L.; Bernard, L.; Le Saout, G.; Lothenbach, B.; Espinosa-Marzal, R.M. Mitigation of ASR by the Use of LiNO3—Characterization of the Reaction Products. Cement and Concrete Research 2014, 59, 73–86, doi:10.1016/j.cemconres.2014.02.003.
38. Diaz-Loya, I.; Juenger, M.; Seraj, S.; Minkara, R. Extending Supplementary Cementitious Material Resources: Reclaimed and Remediated Fly Ash and Natural Pozzolans. Cement and Concrete Composites 2019, 101, 44–51, doi:10.1016/j.cemconcomp.2017.06.011.
39. Oey, T.; La Plante, E.C.; Falzone, G.; Hsiao, Y.-H.; Wada, A.; Monfardini, L.; Bauchy, M.; Bullard, J.W.; Sant, G. Calcium Nitrate: A Chemical Admixture to Inhibit Aggregate Dissolution and Mitigate Expansion Caused by Alkali-Silica Reaction. Cement and Concrete Composites 2020, 110, 103592, doi:10.1016/j.cemconcomp.2020.103592.
40. Xiao, R.; Huang, B.; Zhou, H.; Ma, Y.; Jiang, X. A State-of-the-Art Review of Crushed Urban Waste Glass Used in OPC and AAMs (Geopolymer): Progress and Challenges. Cleaner Materials 2022, 4, 100083, doi:10.1016/j.clema.2022.100083.
41. Bérubé, M.-A.; Chouinard, D.; Pigeon, M.; Frenette, J.; Rivest, M.; Vézina, D. Effectiveness of Sealers in Counteracting Alkali– Silica Reaction in Highway Median Barriers Exposed to Wetting and Drying, Freezing and Thawing, and Deicing Salt. Canadian Journal of Civil Engineering 2002, 29, 329–337, doi:DOI: 10.1139/L02-010.
42. Lute, R.D.; Folliard, K.J.; Drimalas, T.; Rust, C.K. Coatings and Sealers for Mitigation of Alkali-Silica Reaction and/or Delayed Ettringite Formation. In Proceedings of the 15th International Conference on Alkali-Aggregate Reaction15th International Conference on Alkali-Aggregate Reaction; São Paulo, Brazil, 2016; p. 10.
43. Murray, C.D. Durability of Silane Sealer in a Highly Alkaline Environment. Graduate Theses and Dissertations, University of Arkansas: Fayetteville, 2014.
44. Schindler, A.; Johnson, D.; Warnock, R.; Barnes, R. Effectiveness of Silane to Mitigate Alkali-Silica Reaction in a Historical Bridge. MATEC Web Conf. 2018, 199, 03009, doi:10.1051/matecconf/201819903009.
45. Thomas, M.; Folliard, K.; Fournier, B.; Rivard, P.; Drimalas, T. Methods for Evaluating and Treating ASR-Affected Structures: Results of Field Application and Demonstration Projects Volume I: Summary of Findings and Recommendations Final Report; FHWA Office of Pavement Technology: Washington, DC 20590, 2013;
46. Ludwig, U. Effects of Environmental Conditions on Alkali-Aggregate Reaction. In Proceedings of the 8th International Conference on Alkali-Aggregate Reaction; Kyoto, Japan, 1989; pp. 583–596.
47. Poyet, S.; Sellier, A.; Capra, B.; Thèvenin-Foray, G.; Torrenti, J.-M.; Tournier-Cognon, H.; Bourdarot, E. Influence of Water on Alkali-Silica Reaction: Experimental Study and Numerical Simulations. J. Mater. Civ. Eng. 2006, 18, 588–596, doi:10.1061/(ASCE)0899-1561(2006)18:4(588).
48. Pedneault, A. Development of Testing and Analytical Procedures for the Evaluation of the Residual Potential of Reaction, Expansion, and Deterioration of Concrete Affected by ASR, Laval University: Quebec City, Canada, 1996.
49. Sanchez, L.; Fournier, B.; Drimalas, T.; Bastien, J.; Mitchell, D.; Noel, M. Semi-Quantitative Condition Assessment of Concrete Distress through the Damage Rating Index. In Proceedings of the 15th International Conference on Alkali-Aggregate Reaction; Brazil, 2016; pp. 1–10.
50. Sanchez, L.F.M.; Drimalas, T.; Fournier, B. Assessing Condition of Concrete Affected by Internal Swelling Reactions (ISR) through the Damage Rating Index (DRI). Cement 2020, 1–2, 100001, doi:10.1016/j.cement.2020.100001.
51. Owsiak, Z.; Zapała-Sławeta, J.; Czapik, P. Diagnosis of Concrete Structures Distress Due to Alkali-Aggregate Reaction. Bulletin of the Polish Academy of Sciences, Technical Sciences 2015, 63, 23–29, doi:10.1515/bpasts-2015-0003.
52. Juliana, M.M. da F.; Vanessa Karla Barbosa, de S.; Deborah Grasielly Cipriano, da S.; Dione Luiza, da S.; Eliana Cristina, B.M. Alkali-Aggregate Reaction: Definition, Influence and Control. EAS 2018, 3, 12–20, doi:10.11648/j.eas.20180301.13.
53. Du, H.; Tan, K.H. Effect of Particle Size on Alkali–Silica Reaction in Recycled Glass Mortars. Construction and Building Materials 2014, 66, 275–285, doi:10.1016/j.conbuildmat.2014.05.092.
54. Fernandes, I.; Broekmans, M.A.T.M. Alkali–Silica Reactions: An Overview. Part I. Metallogr. Microstruct. Anal. 2013, 2, 257–267, doi:10.1007/s13632-013-0085-5.
55. Hou, X.; Struble, L.J.; Kirkpatrick, R.J. Formation of ASR Gel and the Roles of C-S-H and Portlandite. Cement and Concrete Research 2004, 34, 1683–1696, doi:10.1016/j.cemconres.2004.03.026.
56. Wang, H.; Gillott, J.E. Mechanism of Alkali-Silica Reaction and the Significance of Calcium Hydroxide. Cement and Concrete Research 1991, 21, 647–654, doi:10.1016/0008-8846(91)90115-X.
57. Frýbort, A.; Všianský, D.; Štulířová, J.; Stryk, J.; Gregerová, M. Variations in the Composition and Relations between Alkali-Silica Gels and Calcium Silicate Hydrates in Highway Concrete. Materials Characterization 2018, 137, 91–108, doi:10.1016/j.matchar.2018.01.012.
58. Leemann, A.; Shi, Z.; Lindgård, J. Characterization of Amorphous and Crystalline ASR Products Formed in Concrete Aggregates. Cement and Concrete Research 2020, 137, 106190, doi:10.1016/j.cemconres.2020.106190.
59. Powers, T.C.; Steinour, H.H. An Interpretation of Some Published Researches on the Alkali–Aggregate Reaction; Part 1 — the Chemical Reactions and Mechanisms of Expansion. Journal of the American Concrete Institute 1955, 26, 497–516.
60. Chatterji, S.; Jensen, A.D.; Thaulow, N.; Christensen, P.; Denmark, T. Studies of Alkali–Silica Reaction. Part 3. Mechanism by Which NaCl and Ca (OH)2 Affect the Reaction. Cement and Concrete Research 1986, 16, 246–254.
61. Cai, Y.; Xuan, D.; Poon, C.S. Effects of Nano-SiO2 and Glass Powder on Mitigating Alkali-Silica Reaction of Cement Glass Mortars. Construction and Building Materials 2019, 201, 295–302, doi:10.1016/j.conbuildmat.2018.12.186.
62. Gause, G.R.; Tucker, J. Method for Determining the Moisture Condition in Hardened Concrete. J. RES. NATL. BUR. STAN. 1940, 25, 403, doi:10.6028/jres.025.019.
63. González, J.A.; López, W.; Rodríguez, P. Effects of Moisture Availability on Corrosion Kinetics of Steel Embedded in Concrete. Corrosion 1993, 49, 1004–1010, doi:10.5006/1.3316021.
64. Chen, X.; Huang, W.; Zhou, J. Effect of Moisture Content on Compressive and Split Tensile Strength of Concrete. Indian J Eng. Mater. Sci. 2012, 9.
65. Lura, P.; Winnefeld, F.; Fang, X. A Simple Method for Determining the Total Amount of Physically and Chemically Bound Water of Different Cements. J Therm Anal Calorim 2017, 130, 653–660, doi:10.1007/s10973-017-6513-z.
66. Hundt, J.; Buschmann, J. Moisture Measurement in Concrete: Analysis of the Results of a RILEM Inquiry Carried out by the B.A.M. Mat. Constr. 1971, 4, 253–256, doi:10.1007/BF02478952.
67. Kumara, W.A.S.; Halvorsen, B.M.; Melaaen, M.C. Single-Beam Gamma Densitometry Measurements of Oil–Water Flow in Horizontal and Slightly Inclined Pipes. International Journal of Multiphase Flow 2010, 36, 467–480, doi:10.1016/j.ijmultiphaseflow.2010.02.003.
68. De Jong, S.M.; Heijenk, R.A.; Nijland, W.; van der Meijde, M. Monitoring Soil Moisture Dynamics Using Electrical Resistivity Tomography under Homogeneous Field Conditions. Sensors 2020, 20, 5313, doi:10.3390/s20185313.
69. Andrade, C.; Sarrı́a, J.; Alonso, C. Relative Humidity in the Interior of Concrete Exposed to Natural and Artificial Weathering. Cement and Concrete Research 1999, 29, 1249–1259, doi:10.1016/S0008-8846(99)00123-4.
70. Nilsson, L.-O. Methods of Measuring Moisture in Building Materials and Structures; RILEM State-of-the-Art Reports; Springer International Publishing: Cham, 2018; Vol. 26; ISBN 978-3-319-74230-4.
71. Zeilinger, A.; Hübner, R. Measurement of Moisture Motion Under a Temperature Gradient in a Concrete for SNR-300 Using Thermal Neutrons. In Proceedings of the Concrete Properties Relevant to PCRV; IASMiRT: London, UK, 1975; pp. 1–9.
72. Pandey, T.; Bhuiya, T.; Singh, B.; Harsh, R. A Review on Microwave Based Moisture Measurement System for Granular Materials. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) 2012, 3, 37–41.
73. Grinzato, E.; Ludwig, N.; Cadelano, G.; Bertucci, M.; Gargano, M.; Bison, P. Infrared Thermography for Moisture Detection: A Laboratory Study and In-Situ Test. Materials Evaluation 2011, 69.
74. Derome, D.; Fazio, P. Experimental Setup for the Study of Air Leakage Patterns. In Proceedings of the Thermal Performance of the Exterior Envelopes of Buildings VII; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, 1998; pp. 99–108.
75. Lindgård, J.; Rodum, E.; Pedersen, B. Alkali-Silica Reactions in Concrete - Relationship between Water Content and Observed Damage on Structures. ACI Symposium Publication 2006, 234, doi:10.14359/15934.
76. Yang, Q. Inner Relative Humidity and Degree of Saturation in High-Performance Concrete Stored in Water or Salt Solution for 2 Years. Cement and Concrete Research 1999, 29, 45–53, doi:10.1016/S0008-8846(98)00174-4.
77. Zhang, J.; Wang, J.; Han, Y. Simulation of Moisture Field of Concrete with Pre-Soaked Lightweight Aggregate Addition. Construction and Building Materials 2015, 96, 599–614, doi:10.1016/j.conbuildmat.2015.08.058.
78. Zhang, J.; Gao, Y.; Han, Y.; Sun, W. Shrinkage and Interior Humidity of Concrete under Dry–Wet Cycles. Drying Technology 2012, 30, 583–596, doi:10.1080/07373937.2011.653614.
79. Geiker, M.R.; Laugesen, P. On the Effect of Laboratory Conditioning and Freeze/Thaw Exposure on Moisture Profiles in HPC. Cement and Concrete Research 2001, 31, 1831–1836, doi:10.1016/S0008-8846(01)00643-3.
80. Lindgård, J.; Andiç-Çakır, Ö.; Fernandes, I.; Rønning, T.F.; Thomas, M.D.A. Alkali–Silica Reactions (ASR): Literature Review on Parameters Influencing Laboratory Performance Testing. Cement and Concrete Research 2012, 42, 223–243, doi:10.1016/j.cemconres.2011.10.004.
81. Wardeh, G.; Perrin, B. Relative Permeabilities of Cement-Based Materials: Influence of the Tortuosity Function. Journal of Building Physics 2006, 30, 39–57, doi:10.1177/1744259106064597.
82. Chaudhry, R.H. Determination of Air Voids, Capillary, and Gel Porosity in Hardened Concrete Using Mass-Based Saturation Techniques. Master of Applied Science Thesis, University of Toronto: Canada, 2018.
83. Weiss, J. Relating Transport Properties to Performance in Concrete Pavements; Moving Advancements into Practice; 2014; pp. 1–6;.
84. Olajide, O.; Nokken, M.; Sanchez, L. A Review on the Role of Moisture and Temperature in Alkali-Silica Reaction (ASR). In Proceedings of the 16th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR); Lisbon, Portugal, May 31 2022.
85. Saccani, A.; Bonora, V.; Monari, P. Laboratory Short-Term Evaluation of ASR A Contribution. Cement and Concrete Research 2001.
86. Lenzner, D. Influence of the Amount of Mixing Water on the Alkali-Silica Reaction. In Proceedings of the 5th International Conference on Alkali-Aggregate Reaction; Cape Town, South Africa, 1981; pp. 1–6.
87. Nilsson, L.-O.; Peterson, O. A Moisture Problem Causing Pop-Outs in Concrete Floors; Alkali Silica Reactions in Scania, Sweden; Division of Building Materials, LTH, Lund University: Lund Sweden, 1983; pp. 1–106;.
88. Multon, S.; Seignol, J.-F.; Toutlemonde, F. Structural Behavior of Concrete Beams Affected by Alkali-Silica Reaction. MJ 2005, 102, 67–76, doi:10.14359/14299.
89. Lindgård, J.; Thomas, M.D.A.; Sellevold, E.J.; Pedersen, B.; Andiç-Çakır, Ö.; Justnes, H.; Rønning, T.F. Alkali–Silica Reaction (ASR)—Performance Testing: Influence of Specimen Pre-Treatment, Exposure Conditions and Prism Size on Alkali Leaching and Prism Expansion. Cement and Concrete Research 2013, 53, 68–90, doi:10.1016/j.cemconres.2013.05.017.
90. Baz̆ant, Z.P.; Steffens, A. Mathematical Model for Kinetics of Alkali–Silica Reaction in Concrete. Cement and Concrete Research 2000, 30, 419–428, doi:10.1016/S0008-8846(99)00270-7.
91. Hashemi, A.; Donnell, K.M.; Zoughi, R.; Kurtis, K.E. Effect of Humidity on Dielectric Properties of Mortars with Alkali-Silica Reaction (ASR) Gel. In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings; IEEE: Pisa, Italy, May 2015; pp. 1502–1506.
92. BCA The Diagnosis of Alkali–Silica Reaction-Report of a Working Party; British Cement Association: Wexham Springs, Slough, U.K., SL3 6PL, 1992; p. 36;.
93. Reed, R.G. Measuring Relative Humidity in Concrete Pavements as a Method to Assess ASR Mitigation Measures. Civil Engineering Undergraduate Honors Theses, University of Arkansas: Fayetteville, 2016.
94. Gudmundsson, B.; Asgeirsson, H. Some Investigations on Alkali Aggregate Reaction. Cement and Concrete Research 1975, 5, 211–220.
95. Sinno, N.; Shehata, M.H. Role of Temperature on Alkali-Silica Reaction and the Efficacy of Supplementary Cementitious Materials. Construction and Building Materials 2021, 313, 125427, doi:10.1016/j.conbuildmat.2021.125427.
96. Guo, J.-J.; Liu, P.-Q.; Wu, C.-L.; Wang, K. Effect of Dry–Wet Cycle Periods on Properties of Concrete under Sulfate Attack. Applied Sciences 2021, 11, 888, doi:10.3390/app11020888.
97. Farny, J.A.; Kerkhoff, B. Diagnosis and Control of Alkali-Aggregate Reactions in Concrete. Portland Cement Association 2007, 1–26.
98. Kagimoto, H.; Kawamura, M. Measurements of Strain and Humidity within Massive Concrete Cylinders Related to the Formation of ASR Surface Cracks. Cement and Concrete Research 2011, 41, 808–816, doi:doi:10.1016/j.cemconres.2011.03.010.
99. Kagimoto, H.; Yasuda, Y.; Kawamura, M. Effects of Expansion Behavior of ASR-Affected Concrete in Atmospheres with Various Values of Relative Humidity on Surface Cracking. In Proceedings of the 15th International Conference on Alkali Aggregate Reaction in Concrete; Sao Paulo, Brazil, 2016; pp. 1–10.
100. Gautam, B.P.; Panesar, D.K. The Effect of Elevated Conditioning Temperature on the ASR Expansion, Cracking and Properties of Reactive Spratt Aggregate Concrete. Construction and Building Materials 2017, 140, 310–320, doi:10.1016/j.conbuildmat.2017.02.104.
101. Deschenes, R.A.Jr. Mitigation and Evaluation of Alkali-Silica Reaction (ASR) and Freezing and Thawing in Concrete Transportation Structures. Theses and Dissertations. 2467 2017, 273.
102. Gillott, J.E. Alkali-Aggregate Reactions in Concrete. Engineering Geology 1975, 9, 303–326.
103. Helmuth, R.; Stark, D.; Diamond, S.; Moranville-regourd, M. Alkali-Silica Reactivity: An Overview of Research. In Proceedings of the National Research Council; Washington D.C, USA, 1993.
104. Lu, D.; Zhou, X.; Xu, Z.; Lan, X.; Tang, M.; Fournier, B. Evaluation of Laboratory Test Method for Determining the Potential Alkali Contribution from Aggregate and the ASR Safety of the Three-Gorges Dam Concrete. Cement and Concrete Research 2006, 36, 1157–1165, doi:10.1016/j.cemconres.2006.01.004.
105. Bérubé, M.-A.; Duchesne, J.; Dorion, J.F.; Rivest, M. Laboratory Assessment of Alkali Contribution by Aggregates to Concrete and Application to Concrete Structures Affected by Alkali–Silica Reactivity. Cement and Concrete Research 2002, 32, 1215–1227, doi:10.1016/S0008-8846(02)00766-4.
106. Drolet, C.; Duchesne, J.; Fournier, B. Effect of Alkali Release by Aggregates on Alkali-Silica Reaction. Construction and Building Materials 2017, 157, 263–276, doi:10.1016/j.conbuildmat.2017.09.085.
107. Maia Neto, F.M.; Andrade, T.W.C.O.; Gomes, R.M.; Leal, A.F.; Almeida, A.N.F.; Lima Filho, M.R.F.; Torres, S.M. Considerations on the Effect of Temperature, Cation Type and Molarity on Silica Degradation and Implications to ASR Assessment. Construction and Building Materials 2021, 299, 123848, doi:10.1016/j.conbuildmat.2021.123848.
108. Ideker, J.H.; East, B.L.; Folliard, K.J.; Thomas, M.D.A.; Fournier, B. The Current State of the Accelerated Concrete Prism Test. Cement and Concrete Research 2010, 40, 550–555, doi:10.1016/j.cemconres.2009.08.030.
109. Fournier, B.; Chevrier, R.; Grosbois, M.; Lisella, R.; Folliard, K.; Ideker, J.; Shehatad, M.; Thomas, M.; Baxter, S. The Accelerated Concrete Prism Test (60°c): Variability of the Test Method and Proposed Expansion Limits. Researchgate 2014.
110. Sanchez, L.; Kuperman, S.C.; Helene, P. Using the Accelerated Brazilian Concrete Prism Test (ABCPT) to Evaluate Alkali Aggregate Reaction (AAR). IBRACON Structures and Materials Journal 2011, 4, 575–581.
111. Kawabata, Y.; Dunant, C.; Yamada, K.; Scrivener, K. Impact of Temperature on Expansive Behavior of Concrete with a Highly Reactive Andesite Due to the Alkali–Silica Reaction. Cement and Concrete Research 2019, 125, 105888, doi:10.1016/j.cemconres.2019.105888.
112. Kim, T.; Olek, J.; Jeong, H. Alkali–Silica Reaction: Kinetics of Chemistry of Pore Solution and Calcium Hydroxide Content in Cementitious System. Cement and Concrete Research 2015, 71, 36–45, doi:10.1016/j.cemconres.2015.01.017.
113. Li, B.; Wang, Z.-R.; Liu, H.-B.; Liu, X.-Z.; Li, H.; Chen, X. Meso-Mechanical Research on Alkali-Silica Reaction Expansion in Pyrex Glass and Silica Sand at Different Temperatures and Curing Times. Construction and Building Materials 2019, 223, 377–393, doi:10.1016/j.conbuildmat.2019.06.232.
114. Folliard, K J; Ideker, J.H.; Thomas, M.D.; Fournier, B. Assessing Aggregate Reactivity Using the Accelerated Concrete Prism Test. In Proceedings of the 7th CANMET/ACI International Conference on Recent Advances in Concrete Technology; Ottawa, 2004; pp. 269–283.
115. Li, B.; Baingam, L.; Kurumisawa, K.; Nawa, T.; XiaoZhou, L. Micro-Mechanical Modelling for the Prediction of Alkali-Silica Reaction (ASR) Expansion: Influence of Curing Temperature Conditions. Construction and Building Materials 2018, 164, 554–569, doi:10.1016/j.conbuildmat.2018.01.007.
116. Golmakani, F.; Hooton, R.D. Impact of Pore Solution Concentration on the Accelerated Mortar Bar Alkali-Silica Reactivity Test. Cement and Concrete Research 2019, 121, 72–80, doi:10.1016/j.cemconres.2019.02.008.
117. Kawabata, Y.; Yamada, K.; Sagawa, Y.; Ogawa, S. Alkali-Wrapped Concrete Prism Test (AW-CPT) – New Testing Protocol toward a Performance Test against Alkali-Silica Reaction–. ACT 2018, 16, 441–460, doi:10.3151/jact.16.441.
118. Lindgård, J.; Nixon, P.J.; Borchers, I.; Schouenborg, B.; Wigum, B.J.; Haugen, M.; Åkesson, U. The EU “PARTNER” Project — European Standard Tests to Prevent Alkali Reactions in Aggregates: Final Results and Recommendations. Cement and Concrete Research 2010, 40, 611–635, doi:10.1016/j.cemconres.2009.09.004.
119. De Grazia, M.T.; Goshayeshi, N.; Gorga, R.; Sanchez, L.F.M.; Santos, A.C.; Souza, D.J. Comprehensive Semi-Empirical Approach to Describe Alkali Aggregate Reaction (AAR) Induced Expansion in the Laboratory. Journal of Building Engineering 2021, 40, 102298, doi:10.1016/j.jobe.2021.102298.
120. Cukierski, D. Quantifying Alkali-Silica Reaction in Concrete: Damage Rating Index. In Proceedings of the Concrete Institute of Australia’s Biennial National Conference; Australia, 2021; pp. 1–6.
121. Rivard, P.; Ballivy, G. Assessment of the Expansion Related to Alkali-Silica Reaction by the Damage Rating Index Method. Construction and Building Materials 2005, 19, 83–90, doi:10.1016/j.conbuildmat.2004.06.001.
122. Sanchez, L.; Fournier, B.; Jolin, M. Sanchez, L.F.M., Fournier, B., Jolin M, Bustamante, M.A. B. Evaluation of the Microscopic ASR Features through the Damage Rating Index (DRI) for Different Concrete Strengths and Aggregate Types (Fine and Coarse Reactive Aggregates). In Proceedings of the 14th Euroseminar on Microscopy Applied to Building Materials; Denmark, June 1 2013.
123. Wang, Y.; Gao, P.; Su, H.; Qin, Y.; Wang, Y.; Xue, G. Failure Criteria and Microstructure Evolution Mechanism of the Alkali–Silica Reaction of Concrete. Reviews on Advanced Materials Science 2023, 62, 20230102, doi:10.1515/rams-2023-0102.
124. Shakoorioskooie, M.; Griffa, M.; Leemann, A.; Zboray, R.; Lura, P. Quantitative Analysis of the Evolution of ASR Products and Crack Networks in the Context of the Concrete Mesostructure. Cement and Concrete Research 2022, 162, 106992, doi:10.1016/j.cemconres.2022.106992.
125. Glinicki, M.A.; Jóźwiak-Niedźwiedzka, D.; Antolik, A.; Dziedzic, K.; Dąbrowski, M.; Bogusz, K. Diagnosis of ASR Damage in Highway Pavement after 15 Years of Service in Wet-Freeze Climate Region. Case Studies in Construction Materials 2022, 17, e01226, doi:10.1016/j.cscm.2022.e01226.
126. Antolik, A.; Jóźwiak-Niedźwiedzka, D. Assessment of the Alkali-Silica Reactivity Potential in Granitic Rocks. Construction and Building Materials 2021, 295, 123690, doi:10.1016/j.conbuildmat.2021.123690.
127. Fernandes, I. Composition of Alkali–Silica Reaction Products at Different Locations within Concrete Structures. Materials Characterization 2009, 60, 655–668, doi:10.1016/j.matchar.2009.01.011.
128. Rößler, C.; Möser, B.; Giebson, C.; Ludwig, H.-M. Application of Electron Backscatter Diffraction to Evaluate the ASR Risk of Concrete Aggregates. Cement and Concrete Research 2017, 95, 47–55, doi:10.1016/j.cemconres.2017.02.015.
129. Boehm-Courjault, E.; Barbotin, S.; Leemann, A.; Scrivener, K. Microstructure, Crystallinity and Composition of Alkali-Silica Reaction Products in Concrete Determined by Transmission Electron Microscopy. Cement and Concrete Research 2020, 130, 105988, doi:10.1016/j.cemconres.2020.105988.
130. Sanchez, L.F.M.; Drimalas, T.; Fournier, B.; Mitchell, D.; Bastien, J. Comprehensive Damage Assessment in Concrete Affected by Different Internal Swelling Reaction (ISR) Mechanisms. Cement and Concrete Research 2018, 107, 284–303, doi:10.1016/j.cemconres.2018.02.017.
131. Joo, H.E.; Takahashi, Y. Analytical and Experimental Studies on Alkali-Silica Reaction Mechanism: Aggregate Cracking and Chemical Composition Change of Gel. Cement and Concrete Composites 2023, 139, 105003, doi:10.1016/j.cemconcomp.2023.105003.
132. Sanchez, L.; Fournier, B.; Mitchell, D.; Bastien, J. Condition Assessment of an ASR-Affected Overpass after Nearly 50 Years in Service. Construction and Building Materials 2019, 236, doi:10.1016/j.conbuildmat.2019.117554.
133. Sanchez, L.; Drimalas, T.; Fournier, B.; Mitchell, D.; Bastien, J. Comprehensive Damage Assessment in Concrete Affected by Different Internal Swelling Reaction (ISR) Mechanisms. Cement and Concrete Research 2018, 107, 284–303, doi:10.1016/j.cemconres.2018.02.017.
134. Walsh, J.B. The Effect of Cracks on the Uniaxial Elastic Compression of Rocks. Journal of Geophysical Research 1965, 70, 399–411.
135. Crouch, R.S. Specification for the Determination of Stiffness Damage Parameters from the Low Cyclic Uniaxial Compression of Plain Concrete Core; Mott Hay & Anderson, Special Services Division, 1987;
136. Chrisp, T.M.; Waldron, P.; Wood, J.G.M. Development of a Non-Destructive Test to Quantify Damage in Deteriorated Concrete. Magazine of Concrete Research 1993, 45, 247–256, doi:10.1680/macr.1993.45.165.247.
137. Smaoui, N.; Bérubé, M.-A.; Fournier, B.; Bissonnette, B.; Durand, B. Evaluation of the Expansion Attained to Date by Concrete Affected by Alkali–Silica Reaction. Part I: Experimental Study. Can. J. Civ. Eng. 2004, 31, 826–845, doi:10.1139/l04-051.
138. Sanchez, L.F.M.; Fournier, B.; Jolin, M.; Bastien, J. Evaluation of the Stiffness Damage Test (SDT) as a Tool for Assessing Damage in Concrete Due to ASR: Test Loading and Output Responses for Concretes Incorporating Fine or Coarse Reactive Aggregates. Cement and Concrete Research 2014, 56, 213–229, doi:10.1016/j.cemconres.2013.11.003.
139. Grattan-Bellew, P.; Danay, A. Comparison of Laboratory and Field Evaluation of Alkali- Silica Reaction in Large Dams. In Proceedings of the Proceedings of the International Conference on Concrete Alkali–Aggregate Reactions in Hydroelectric Plants and Dams; Fredericton, NB, 1992; Vol. 18.
140. Villeneuve, V.; Fournier, B. Determination of the Damage in Concrete Affected by ASR – the Damage Rating Index (DRI). In Proceedings of the 14th ICAAR - International Conference on Alkali-Aggregate Reaction in Concrete; Austin, Texas, USA, May 20 2012.
141. Sanchez, L.; Fournier, B.; Jolin, M.; Mitchell, D.; Bastien, J. Overall Assessment of Alkali-Aggregate Reaction (AAR) in Concretes Presenting Different Strengths and Incorporating a Wide Range of Reactive Aggregate Types and Natures. Cement and Concrete Research 2017, 93, 17–31, doi:10.1016/j.cemconres.2016.12.001.
142. Zahedi, A.; Sanchez, L. Effect of Confinement on ASR-Induced Expansion and Damage. In Proceedings of the 16th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR); Lisbon, Portugal, June 2 2022.
143. Zahedi, A.; Trottier, C.; Sanchez, L.; Noël, M. Microscopic Assessment of ASR-Affected Concrete Under Confinement Conditions. Cement and Concrete Research 2021, 145, 106456, doi:10.1016/j.cemconres.2021.106456.
144. Zahedi, A.; Trottier, C.; Sanchez, L.F.M.; Noël, M. Microscopic Assessment of ASR-Affected Concrete under Confinement Conditions. Cement and Concrete Research 2021, 145, 106456, doi:10.1016/j.cemconres.2021.106456.
145. Sanchez, L.; Fournier, B.; Jolin, M.; Pouliot, N.; Hovington, A. Evaluation of Damage in the Concrete Elements of the Viaduct “Robert-Bourassa Charest” after Nearly 50 Years in Service. In Proceedings of the International Conference on Alkali-Aggregate Reaction (ICAAR); Austin, Texas, USA, May 1 2012.
146. Bui, T.T.; Nana, W.S.A.; Abouri, S.; Limam, A.; Tedoldi, B.; Roure, T. Influence of Uniaxial Tension and Compression on Shear Strength of Concrete Slabs without Shear Reinforcement under Concentrated Loads. Construction and Building Materials 2017, 146, 86–101, doi:10.1016/j.conbuildmat.2017.04.068.
147. Haskett, M.; Oehlers, D.J.; Mohamed Ali, M.S.; Sharma, S.K. Evaluating the Shear-Friction Resistance across Sliding Planes in Concrete. Engineering Structures 2011, 33, 1357–1364, doi:10.1016/j.engstruct.2011.01.013.
148. Barr, B.; Hasso, E.B.D. Development of a Compact Cylindrical Shear Test Specimen. J Mater Sci Lett 1986, 5, 1305–1308, doi:10.1007/BF01729401.
149. Barbosa, R.A.; Hansen, K.K.; Hoang, L.C.; Maag, I. Alkali-Silica Reaction in Reinforced Concrete Structures, Part II: XXII Nordic Concrete Research Symposium. Proceedings of the XXII Nordic Concrete Research Symposium 2014, 69–72.
150. ASTM E 104 Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solution 1985.
151. QA Supplies iButton Temp & Humidity Logger Available online: https://qasupplies.com/ibutton-temp-humidity-logger/ (accessed on 30 December 2023).
152. Granja, J.L.; Azenha, M.; de Sousa, C.; Faria, R.; Barros, J. Hygrometric Assessment of Internal Relative Humidity in Concrete: Practical Application Issues. 2014, 12.
153. Fournier, B.; Rogers, C.; MacDonald, C.-A. Multi Laboratory Study of the Concrete Prism and Accelerated Mortar Bar Expansion Tests with Spratt Aggregate. In Proceedings of the 15th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR); Sao Paulo, Brazil, 2016.
154. Smith, A.D.H.; Crabtree, D.R.; Bilzon, J.L.J.; Walsh, N.P. The Validity of Wireless iButtons® and Thermistors for Human Skin Temperature Measurement. Physiol. Meas. 2010, 31, 95–114, doi:10.1088/0967-3334/31/1/007.
155. Sanchez, L.; Fournier, B.; Jolin, M.; Bastien, J.; Mitchell, D. Practical Use of the Stiffness Damage Test (SDT) for Assessing Damage in Concrete Infrastructure Affected by Alkali-Silica Reaction. Construction and Building Materials 2016, 125, 1178–1188, doi:10.1016/j.conbuildmat.2016.08.101.
156. Deschenes, R.; Waidner, M.; Hale, W.M. Mitigation of Alkali-Silica Reaction in Concrete Pavements by Silane Treatment.
157. Fournier, B.; Ideker, J.H.; Folliard, K.J.; Thomas, M.D.A.; Nkinamubanzi, P.-C.; Chevrier, R. Effect of Environmental Conditions on Expansion in Concrete Due to Alkali–Silica Reaction (ASR). Materials Characterization 2009, 60, 669–679, doi:10.1016/j.matchar.2008.12.018.
158. Zhou, J.K.; Chen, X.D.; Zhang, J.; Kan, X.W. Measurement of the Internal Relative Humidity Distribution in Concrete. AMR 2010, 163–167, 1409–1413, doi:10.4028/www.scientific.net/AMR.163-167.1409.
159. Jensen, V. In-Situ Measurement of Relative Humidity and Expansion of Cracks in Structures Damaged by AAR. 12.
160. Zhang, J.; Huang, Y.; Qi, K.; Gao, Y. Interior Relative Humidity of Normal- and High-Strength Concrete at Early Age. J. Mater. Civ. Eng. 2012, 24, 615–622, doi:10.1061/(ASCE)MT.1943-5533.0000441.
161. Figueira, R.B.; Sousa, R.; Coelho, L.; Azenha, M.; de Almeida, J.M.; Jorge, P.A.S.; Silva, C.J.R. Alkali-Silica Reaction in Concrete: Mechanisms, Mitigation and Test Methods. Construction and Building Materials 2019, 222, 903–931, doi:10.1016/j.conbuildmat.2019.07.230.
162. Chatterji, S. Chemistry of Alkali–Silica Reaction and Testing of Aggregates. Cement and Concrete Composites 2005, 27, 788–795, doi:10.1016/j.cemconcomp.2005.03.005.
163. Al-Jabari, M. 1 - Introduction to Concrete Chemistry. In Integral Waterproofing of Concrete Structures; Al-Jabari, M., Ed.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing, 2022; pp. 1–36 ISBN 978-0-12-824354-1.
164. Hover, K.C. The Influence of Water on the Performance of Concrete. Construction and Building Materials 2011, 25, 3003–3013, doi:10.1016/j.conbuildmat.2011.01.010.
165. Santos, A.R.; Veiga, M. do R.; Santos Silva, A.; de Brito, J. Microstructure as a Critical Factor of Cement Mortars’ Behaviour: The Effect of Aggregates’ Properties. Cement and Concrete Composites 2020, 111, 103628, doi:10.1016/j.cemconcomp.2020.103628.
166. Sant, G.; Bentz, D.; Weiss, J. Capillary Porosity Depercolation in Cement-Based Materials: Measurement Techniques and Factors Which Influence Their Interpretation. Cement and Concrete Research 2011, 41, 854–864, doi:10.1016/j.cemconres.2011.04.006.
167. Joshaghani, A.; Balapour, M.; Ramezanianpour, A.A. Effect of Controlled Environmental Conditions on Mechanical, Microstructural and Durability Properties of Cement Mortar. Construction and Building Materials 2018, 164, 134–149, doi:10.1016/j.conbuildmat.2017.12.206.
168. Zhang, J.; Gao, Y.; Han, Y. Interior Humidity of Concrete under Dry-Wet Cycles. J. Mater. Civ. Eng. 2012, 24, 289–298, doi:10.1061/(ASCE)MT.1943-5533.0000382.
169. Zhang, H.; Li, J.; Kang, F. Real-Time Monitoring of Humidity inside Concrete Structures Utilizing Embedded Smart Aggregates. Construction and Building Materials 2022, 331, 127317, doi:10.1016/j.conbuildmat.2022.127317.
170. Honglei, C.; Zuquan, J.; Tiejun, Z.; Benzhen, W.; Zhe, L.; Jian, L. Capillary Suction Induced Water Absorption and Chloride Transport in Non-Saturated Concrete: The Influence of Humidity, Mineral Admixtures and Sulfate Ions. Construction and Building Materials 2020, 236, 117581, doi:10.1016/j.conbuildmat.2019.117581.
171. Wu, Z.; Wong, H.S.; Buenfeld, N.R. Transport Properties of Concrete after Drying-Wetting Regimes to Elucidate the Effects of Moisture Content, Hysteresis and Microcracking. Cement and Concrete Research 2017, 98, 136–154, doi:10.1016/j.cemconres.2017.04.006.
172. Jin, H.; Fan, X.; Li, Z.; Zhang, W.; Liu, J.; Zhong, D.; Tang, L. An Experimental Study on the Influence of Continuous Ambient Humidity Conditions on Relative Humidity Changes, Chloride Diffusion and Microstructure in Concrete. Journal of Building Engineering 2022, 59, 105112, doi:10.1016/j.jobe.2022.105112.
173. Grasley, Z.C.; Lange, D.A.; D’Ambrosia, M.D. Internal Relative Humidity and Drying Stress Gradients in Concrete. Mater Struct 2006, 39, 901–909, doi:10.1617/s11527-006-9090-3.
174. Taheri, S. A Review on Five Key Sensors for Monitoring of Concrete Structures. Construction and Building Materials 2019, 204, 492–509, doi:10.1016/j.conbuildmat.2019.01.172.
175. Zhang, J.; Dongwei, H.; Wei, S. Experimental Study on the Relationship between Shrinkage and Interior Humidity of Concrete at Early Age. Magazine of Concrete Research 2010, 62, 191–199, doi:10.1680/macr.2010.62.3.191.
176. Kim, J.-K.; Lee, C.-S. Moisture Diffusion of Concrete Considering Self-Desiccation at Early Ages. Cement and Concrete Research 1999, 29, 1921–1927, doi:10.1016/S0008-8846(99)00192-1.
177. Zhou, F.; Li, W.; Hu, Y.; Huang, L.; Xie, Z.; Yang, J.; Wu, D.; Chen, Z. Moisture Diffusion Coefficient of Concrete under Different Conditions. Buildings 2023, 13, 2421, doi:10.3390/buildings13102421.
178. Ryu, D.-W.; Ko, J.-W.; Noguchi, T. Effects of Simulated Environmental Conditions on the Internal Relative Humidity and Relative Moisture Content Distribution of Exposed Concrete. Cement and Concrete Composites 2011, 33, 142–153, doi:10.1016/j.cemconcomp.2010.09.009.
179. Wilson, C.; Weiss, J. The Measurement of the Internal Relative Humidity of Concrete at Early Ages. Advances in Civil Engineering Materials 2019, 8, 655–669, doi:doi:10.1520/ACEM20190109.
180. Zhou, J.K.; Chen, X.D.; Zhang, J.; Kan, X.W. Measurement of the Internal Relative Humidity Distribution in Concrete. AMR 2010, 163–167, 1409–1413, doi:10.4028/www.scientific.net/AMR.163-167.1409.
181. ASTM C 1293 ASTM International, West Conshohocken, PA, USA. Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction (Contrete Prism Method); 2008.
182. A23.2-14A Potential Expansivity of Aggregates (Procedure for Length Change Due to Alkali-Aggregate Reaction in Concrete Prisms at 38 °C); 246–256; Mississauga, ON, CA, 2004a.
183. Rivard, P.; Bérubé, M.A.; Ollivier, J.P.; Ballivy, G. Decrease of Pore Solution Alkalinity in Concrete Tested for Alkali-Silica Reaction. Mater Struct 2007, 40, 909–921, doi:10.1617/s11527-006-9191-z.
184. Zhang, Q.; Kang, Z.; Ling, Y.; Chen, H.; Li, K. Influence of Temperature on the Moisture Transport in Concrete. Crystals 2021, 11, 8, doi:10.3390/cryst11010008.
185. Keskin, Ö.K.; Keskin, S.B.; Tekin, K. Predicting the Ultimate Properties of Engineered Cementitious Composites by Maturity Method. ACT 2023, 21, 735–747, doi:10.3151/jact.21.735.
186. Soutsos, M.; Kanavaris, F. The Modified Nurse-Saul (MNS) Maturity Function for Improved Strength Estimates at Elevated Curing Temperatures. Case Studies in Construction Materials 2018, 9, e00206, doi:10.1016/j.cscm.2018.e00206.
187. Yikici, T.A.; Chen, H.-L. (Roger) Use of Maturity Method to Estimate Compressive Strength of Mass Concrete. Construction and Building Materials 2015, 95, 802–812, doi:10.1016/j.conbuildmat.2015.07.026.
188. Zhang, J.; Cusson, D.; Monteiro, P.; Harvey, J. New Perspectives on Maturity Method and Approach for High Performance Concrete Applications. Cement and Concrete Research 2008, 38, 1438–1446, doi:10.1016/j.cemconres.2008.08.001.
189. Waller, V.; d’Aloı̈a, L.; Cussigh, F.; Lecrux, S. Using the Maturity Method in Concrete Cracking Control at Early Ages. Cement and Concrete Composites 2004, 26, 589–599, doi:10.1016/S0958-9465(03)00080-5.
190. Poyet, S.; Sellier, A.; Capra, B.; Foray, G.; Torrenti, J.-M.; Cognon, H.; Bourdarot, E. Chemical Modelling of Alkali Silica Reaction: Influence of the Reactive Aggregate Size Distribution. Mater Struct 2007, 40, 229–239, doi:10.1617/s11527-006-9139-3.
191. Reinhardt, H.W.; Özkan, H.; Mielich, O. Changes in Mechanical Properties of Concrete Due to ASR. Hormigón y Acero 2018, S0439568918300172, doi:10.1016/j.hya.2018.02.001.
192. Esposito, R.; Anaç, C.; Hendriks, M.A.N.; Çopuroğlu, O. Influence of the Alkali-Silica Reaction on the Mechanical Degradation of Concrete. J. Mater. Civ. Eng. 2016, 28, 04016007, doi:10.1061/(ASCE)MT.1943-5533.0001486.
193. Na, O.; Xi, Y.; Ou, E.; Saouma, V.E. The Effects of Alkali-Silica Reaction on the Mechanical Properties of Concretes with Three Different Types of Reactive Aggregate. Structural Concrete 2016, 17, 74–83, doi:10.1002/suco.201400062.
194. Diamond, S. Alkali Silica Reactions — Some Paradoxes. Cement and Concrete Composites 1997, 19, 391–401, doi:10.1016/S0958-9465(97)00004-8.
195. Yang, L.; Pathirage, M.; Su, H.; Alnaggar, M.; Di Luzio, G.; Cusatis, G. Computational Modeling of Temperature and Relative Humidity Effects on Concrete Expansion Due to Alkali–Silica Reaction. Cement and Concrete Composites 2021, 124, 104237, doi:10.1016/j.cemconcomp.2021.104237.
196. Deschenes, R.A.; Murray, C.D.; Hale, W.M. Prevention and Mitigation of ASR in Median Barriers with Varying Degrees of Damage. In Proceedings of the T&DI Congress 2014; American Society of Civil Engineers: Orlando, Florida, May 29 2014; pp. 111–120.
197. Zahedi, A.; Trottier, C.; Sanchez, L.; Noël, M. Evaluation of the Induced Mechanical Deterioration of Alkali-Silica Reaction Affected Concrete under Distinct Confinement Conditions through the Stiffness Damage Test. Cement and Concrete Composites 2021, 104343, doi:10.1016/j.cemconcomp.2021.104343.
198. Kongshaug, S.S.; Oseland, O.; Kanstad, T.; Hendriks, M.A.N.; Rodum, E.; Markeset, G. Experimental Investigation of ASR-Affected Concrete – The Influence of Uniaxial Loading on the Evolution of Mechanical Properties, Expansion and Damage Indices. Construction and Building Materials 2020, 245, 118384, doi:10.1016/j.conbuildmat.2020.118384.
199. Gholizadeh-Vayghan, A.; Rajabipour, F. The Influence of Alkali–Silica Reaction (ASR) Gel Composition on Its Hydrophilic Properties and Free Swelling in Contact with Water Vapor. Cement and Concrete Research 2017, 94, 49–58, doi:10.1016/j.cemconres.2017.01.006.
200. Fournier, B.; Bérubé, M.-A. Alkali–Aggregate Reaction in Concrete: A Review of Basic Concepts and Engineering Implications. Canadian Journal of Civil Engineering 2000, 27, 167–191, doi:10.1139/cjce-27-2-167.
201. Wu, S.; Chen, X.; Zhou, J. Tensile Strength of Concrete under Static and Intermediate Strain Rates: Correlated Results from Different Testing Methods. Nuclear Engineering and Design 2012, 250, 173–183, doi:10.1016/j.nucengdes.2012.05.004.
202. Yurtdas, I.; Chen, D.; Hu, D.W.; Shao, J.F. Influence of Alkali Silica Reaction (ASR) on Mechanical Properties of Mortar. Construction and Building Materials 2013, 47, 165–174, doi:10.1016/j.conbuildmat.2013.04.046.
203. Giaccio, G.; Zerbino, R.; Ponce, J.M.; Batic, O.R. Mechanical Behavior of Concretes Damaged by Alkali-Silica Reaction. Cement and Concrete Research 2008, 38, 993–1004, doi:10.1016/j.cemconres.2008.02.009.
204. Ahmed, T.; Burley, E.; Rigden, S.; Abu-Tair, A.I. The Effect of Alkali Reactivity on the Mechanical Properties of Concrete. Construction and Building Materials 2003, 17, 123–144, doi:10.1016/S0950-0618(02)00009-0.
205. Swartz, S.E.; Taha, N.M. Mixed Mode Crack Propagation and Fracture in Concrete. Engineering Fracture Mechanics 1990, 35, 137–144, doi:10.1016/0013-7944(90)90191-I.
206. Ziapourrazlighi, R.; Trottier, C.; Zahedi, A.; Sanchez, L. Assessment of Effects of ASR-Induced Cracking on Direct Shear Strength of Recycled Concrete. Materiales de Construcción 2022, 72, e280, doi:10.3989/mc.2022.17621.
207. Munir, M.J.; Abbas, S.; Qazi, A.U.; Nehdi, M.L.; Kazmi, S.M.S. Ga. Proceedings of the Institution of Civil Engineers - Construction Materials 2018, 171, 203–221, doi:10.1680/jcoma.16.00058.
208. Islam, M.S.; Ghafoori, N. Relation of ASR-Induced Expansion and Compressive Strength of Concrete. Mater Struct 2015, 48, 4055–4066, doi:10.1617/s11527-014-0465-6.
209. Kawabata, Y.; Dunant, C.; Nakamura, S.; Yamada, K.; Kawakami, T. Effects of Temperature on Expansion of Concrete Due to the Alkali-Silica Reaction: A Simplified Numerical Approach. materconstrucc 2022, 72, e282, doi:10.3989/mc.2022.17121.
210. Nasir, M.; Alimi, W.O.; Adeoluwa Oladapo, E.; Imran, M.; Kazmi, Z.A. Behavior of Drying and Plastic Shrinkage of Portland Cement Concrete Prepared and Cured under Harsh Field. Developments in the Built Environment 2023, 16, 100252, doi:10.1016/j.dibe.2023.100252.
211. Maruyama, I. Impact of Drying on Concrete and Concrete Structures. RILEM Tech Lett 2022, 7, 1–11, doi:10.21809/rilemtechlett.2022.154.
212. Nixon, P.J.; Sims, I. RILEM Recommended Test Method: AAR-4.1—Detection of Potential Alkali-Reactivity—60 °C Test Method for Aggregate Combinations Using Concrete Prisms. In RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures: State-of-the-Art Report of the RILEM Technical Committee 219-ACS; Nixon, P.J., Sims, I., Eds.; Springer Netherlands: Dordrecht, 2016; pp. 99–116 ISBN 978-94-017-7252-5.
213. Lindgård, J.; Andiç-Çakır, Ö.; Fernandes, I.; Rønning, T.F.; Thomas, M.D.A. Alkali–Silica Reactions (ASR): Literature Review on Parameters Influencing Laboratory Performance Testing. Cement and Concrete Research 2012, 42, 223–243, doi:10.1016/j.cemconres.2011.10.004.
214. Costa, U.; Mangialardi, T.; Paolini, A.E. Minimizing Alkali Leaching in the Concrete Prism Expansion Test at 38 °C. Construction and Building Materials 2017, 146, 547–554, doi:10.1016/j.conbuildmat.2017.04.116.
215. Strack, C.M.; Thornell, T.L.; Jefcoat, J.A.; Borne, G.J.; Alapati, P.; Kurtis, K.E.; Moser, R.D. The Viscoelastic Behavior of Synthetic Alkali-Silica Gels at Ambient Temperature. Cement and Concrete Research 2023, 165, 107069, doi:10.1016/j.cemconres.2022.107069.
216. Diamond, S. A Review of Alkali-Silica Reaction and Expansion Mechanisms 2. Reactive Aggregates. Cement and Concrete Research 1976, 6, 549–560, doi:10.1016/0008-8846(76)90083-1.
217. Winnicki, A.; Pietruszczak, S. On Mechanical Degradation of Reinforced Concrete Affected by Alkali-Silica Reaction. J. Eng. Mech. 2008, 134, 611–627, doi:10.1061/(ASCE)0733-9399(2008)134:8(611).
218. Salim, M.U.; Mosaberpanah, M.A. The Mechanism of Alkali-Aggregate Reaction in Concrete/Mortar and Its Mitigation by Using Geopolymer Materials and Mineral Admixtures: A Comprehensive Review. European Journal of Environmental and Civil Engineering 2022, 26, 6766–6806, doi:10.1080/19648189.2021.1960899.
219. Matteini, I.; Noyce, P.; Crevello, G. ASR: Practical Investigative Techniques and Field Monitoring Systems Used to Assess ASR for Service Life Modeling. MATEC Web Conf. 2019, 289, 08004, doi:10.1051/matecconf/201928908004.
220. Multon, S.; Sellier, A. Multi-Scale Analysis of Alkali–Silica Reaction (ASR): Impact of Alkali Leaching on Scale Effects Affecting Expansion Tests. Cement and Concrete Research 2016, 81, 122–133, doi:10.1016/j.cemconres.2015.12.007.
221. Marko, M.; Hrubý, P.; Janča, M.; Kříkala, J.; Hajzler, J.; Šoukal, F.; Vojtíšek, J.; Doležal, M. Monitoring of Ion Mobility in the Cement Matrix to Establish Sensitivity to the ASR Caused by External Sources. Materials 2022, 15, 4730, doi:10.3390/ma15144730.
222. Saccani, A.; Bignozzi, M.C. ASR Expansion Behavior of Recycled Glass Fine Aggregates in Concrete. Cement and Concrete Research 2010, 40, 531–536, doi:10.1016/j.cemconres.2009.09.003.
223. Fernandes, I.; Broekmans, M.A.T.M. Alkali–Silica Reactions: An Overview. Part I. Metallogr. Microstruct. Anal. 2013, 2, 257–267, doi:10.1007/s13632-013-0085-5.
224. Comi, C.; Pignatelli, R. On Damage Modeling of Concrete Affected by Alkali- Silica Reaction in the Presence of Humidity Gradients. In Proceedings of the XVIII GIMC Conference; Siracusa, 2010; pp. 1–4.
225. Reinhardt, H.W.; Mielich, O. A Fracture Mechanics Approach to the Crack Formation in Alkali-Sensitive Grains. Cement and Concrete Research 2011, 41, 255–262, doi:10.1016/j.cemconres.2010.11.008.
226. Ponce, J.M.; Batic, O.R. Different Manifestations of the Alkali-Silica Reaction in Concrete According to the Reaction Kinetics of the Reactive Aggregate. Cement and Concrete Research 2006, 36, 1148–1156, doi:10.1016/j.cemconres.2005.12.022.
227. Sanchez, L.F.M.; Fournier, B.; Jolin, M.; Duchesne, J. Reliable Quantification of AAR Damage through Assessment of the Damage Rating Index (DRI). Cement and Concrete Research 2015, 67, 74–92, doi:10.1016/j.cemconres.2014.08.002.
228. Sinno, N.; Shehata, M.H. Role of Temperature on Alkali-Silica Reaction and the Efficacy of Supplementary Cementitious Materials. Construction and Building Materials 2021, 313, 125427, doi:10.1016/j.conbuildmat.2021.125427.
229. Lothenbach, B.; Winnefeld, F.; Alder, C.; Wieland, E.; Lunk, P. Effect of Temperature on the Pore Solution, Microstructure and Hydration Products of Portland Cement Pastes. Cement and Concrete Research 2007, 37, 483–491, doi:10.1016/j.cemconres.2006.11.016.
230. Fournier, B.; Ideker, J.H.; Folliard, K.J.; Thomas, M.D.A.; Nkinamubanzi, P.-C.; Chevrier, R. Effect of Environmental Conditions on Expansion in Concrete Due to Alkali–Silica Reaction (ASR). Materials Characterization 2009, 60, 669–679, doi:10.1016/j.matchar.2008.12.018.
231. Krüger, M.E.; Heisig, A.; Heinz, D.; Machner, A. Effect of Cement Composition and the Storage Conditions on the Morphology of ASR Products in Concrete. ce/papers 2023, 6, 1151–1159, doi:10.1002/cepa.2943.
232. Bissonnette, B.; Pierre, P.; Pigeon, M. Influence of Key Parameters on Drying Shrinkage of Cementitious Materials. Cement and Concrete Research 1999, 29, 1655–1662, doi:10.1016/S0008-8846(99)00156-8.
233. Tapas, M.J.; Sofia, L.; Vessalas, K.; Thomas, P.; Sirivivatnanon, V.; Scrivener, K. Efficacy of SCMs to Mitigate ASR in Systems with Higher Alkali Contents Assessed by Pore Solution Method. Cement and Concrete Research 2021, 142, 106353, doi:10.1016/j.cemconres.2021.106353.
234. Adams, M.P.; Ideker, J.H. Using Supplementary Cementitious Materials to Mitigate Alkali-Silica Reaction in Concrete with Recycled-Concrete Aggregate. Journal of Materials in Civil Engineering 2020, 32, 04020209, doi:10.1061/(ASCE)MT.1943-5533.0003277.
235. Akhnoukh, A.; Namian, M.; Skinner, P.; Elia, H. Impact of Supplementary Cementitious Materials on Alkali-Silica Reactivity of Concrete. In Proceedings of the Proceedings of 59th Annual Associated Schools of Construction International Conference; Vol. 4, pp. 280–270.
236. Thomas, M. The Effect of Supplementary Cementing Materials on Alkali-Silica Reaction: A Review. Cement and Concrete Research 2011, 41, 1224–1231, doi:10.1016/j.cemconres.2010.11.003.
237. De Souza, D.J.; Sanchez, L.F.M. Evaluating the Efficiency of SCMs to Avoid or Mitigate ASR-Induced Expansion and Deterioration through a Multi-Level Assessment. Cement and Concrete Research 2023, 173, 107262, doi:10.1016/j.cemconres.2023.107262.
238. Nsiah-Baafi, E.; Tapas, M.J.; Vessalas, K.; Thomas, P. Mitigation of ASR Using Aggregate Fines as an Alternative for SCMs. In Proceedings of the 16th International Conference on Alkali Aggregate Reaction in Concrete; Lisbon, Portugal, 2021; pp. 431–438.
239. Ghafari, E.; Feys, D.; Khayat, K. Feasibility of Using Natural SCMs in Concrete for Infrastructure Applications. Construction and Building Materials 2016, 127, 724–732, doi:10.1016/j.conbuildmat.2016.10.070.
240. Mahmood, A.H.; Afroz, S.; Kashani, A.; Kim, T.; Foster, S.J. The Efficiency of Recycled Glass Powder in Mitigating the Alkali-Silica Reaction Induced by Recycled Glass Aggregate in Cementitious Mortars. Mater Struct 2022, 55, 156, doi:10.1617/s11527-022-01989-7.
241. Esteves, H.; Fernandes, I.; Janeiro, A.; Santos Silva, A.; Pereira, M.; Medeiros, S.; Nunes, J. Potentially Reactive Forms of Silica in Volcanic Rocks Using Different Analytical Approaches. IOP Conference Series: Earth and Environmental Science 2017, 95, 022040, doi:10.1088/1755-1315/95/2/022040.
242. Fanijo, E.; Kolawole, J.; Almakrab, A. Alkali-Silica Reaction (ASR) in Concrete Structures: Mechanisms, Effects and Evaluation Test Methods Adopted in the United States. Case Studies in Construction Materials 2021, 15, e00563, doi:10.1016/j.cscm.2021.e00563.
243. Constantiner, D.; Diamond, S. Alkali Release from Feldspars into Pore Solutions. Cement and Concrete Research 2003, 33, 549–554, doi:10.1016/S0008-8846(02)01001-3.
244. Leemann, A.; Holzer, L. Alkali-Aggregate Reaction—Identifying Reactive Silicates in Complex Aggregates by ESEM Observation of Dissolution Features. Cement and Concrete Composites 2005, 27, 796–801, doi:10.1016/j.cemconcomp.2005.03.007.
245. Kazemi, P.; Nikudel, M.R.; Khamehchiyan, M.; Giri, P.; Taheri, S.; Clark, S.M. Assessment of Alkali–Silica Reaction Potential in Aggregates from Iran and Australia Using Thin-Section Petrography and Expansion Testing. Materials (Basel) 2022, 15, 4289, doi:10.3390/ma15124289.
246. Saha, A.K.; Khan, M.N.N.; Sarker, P.K.; Shaikh, F.A.; Pramanik, A. The ASR Mechanism of Reactive Aggregates in Concrete and Its Mitigation by Fly Ash: A Critical Review. Construction and Building Materials 2018, 171, 743–758, doi:10.1016/j.conbuildmat.2018.03.183.
247. Lu, D.; Fournier, B.; Grattan-Bellew, P.E. Evaluation of Accelerated Test Methods for Determining Alkali-Silica Reactivity of Concrete Aggregates. Cement and Concrete Composites 2006, 28, 546–554, doi:10.1016/j.cemconcomp.2006.03.001.
248. Lu, D.; Fournier, B.; Grattan-Bellew, P.E.; Xu, Z.; Tang, M. Development of a Universal Accelerated Test for Alkali-Silica and Alkali-Carbonate Reactivity of Concrete Aggregates. Mater Struct 2008, 41, 235–246, doi:10.1617/s11527-007-9232-2.
249. Zahedi, A.; Trottier, C.; Sanchez, L.; Noël, M. Condition Assessment of Alkali-Silica Reaction Affected Concrete under Various Confinement Conditions Incorporating Fine and Coarse Reactive Aggregates. Cement and Concrete Research 2022, 153, 106694, doi:10.1016/j.cemconres.2021.106694.
250. Zahedi, A.; Trottier, C.; Sanchez, L.; Noël, M. Evaluation of the Induced Mechanical Deterioration of Alkali-Silica Reaction Affected Concrete under Distinct Confinement Conditions through the Stiffness Damage Test. Cement and Concrete Composites 2021, 104343, doi:10.1016/j.cemconcomp.2021.104343.
251. Giannini, E.; Sanchez, L.; Tuinukuafe, A.; Folliard, K. Characterization of Concrete Affected by Delayed Ettringite Formation Using the Stiffness Damage Test. Construction and Building Materials 2018, 162, 253–264, doi:10.1016/j.conbuildmat.2017.12.012.
252. Olajide, O.; Nokken, M.; Sanchez, L. Effect of Moisture History on ASR Expansion and Microstructural Properties. In Proceedings of the 16th International Conference on Durability of Building Materials and Components; CIMNE, 2023.
253. Olajide, O.D.; Nokken, M.R.; Sanchez, L.F.M. Efficiency of the Dynamic Resonance Frequency in Assessing ASR Induced Damage at Numerous Exposure Conditions. In Proceedings of the Proceedings of the 17th International Conference on Alkali-Aggregate Reaction in Concrete; Sanchez, L.F.M., Trottier, C., Eds.; Springer Nature Switzerland: Cham, 2024; pp. 28–35.
254. Zahedi, A.; Sanchez, L.; Noël, M. Appraisal of Visual Inspection Techniques to Understand and Describe ASR-Induced Development under Distinct Confinement Conditions. Construction and Building Materials 2022, 323, 126549, doi:10.1016/j.conbuildmat.2022.126549.
255. Azur, M.J.; Stuart, E.A.; Frangakis, C.; Leaf, P.J. Multiple Imputation by Chained Equations: What Is It and How Does It Work? Int J Methods Psychiatr Res 2011, 20, 40–49, doi:10.1002/mpr.329.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top