Hakimara, Mahsa (2024) What Drives Insect Herbivory Patterns in A Sugar Maple Temperate Forest? Bottom-Up and Top-Down Pressures on Insect Defoliators Within and Between Maple Trees. PhD thesis, Concordia University.
Preview |
Text (application/pdf)
6MBHakimara_PhD_S2025.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
Insect herbivory plays a vital role in forest ecosystems, structuring trophic webs and maintaining biodiversity. While dramatic insect outbreaks often dominate attention, low intensity but persistent background herbivory also contributes to ecological processes. This thesis investigates the ecological drivers of background insect herbivory in sugar maple-dominated forests, focusing on within-tree variations, between-tree diversity, and trophic interactions.
Using the "green world" hypothesis as a framework, this study examines how bottom-up and top-down forces shape herbivore populations. Bottom-up pressures from leaf physical traits varied with vertical stratification and light gradients: sunlit canopy leaves exhibited higher thickness, lower specific leaf area (SLA), and lower water content with less herbivory damage, whereas shaded understory leaves showed lower thickness, higher SLA and greater water content with increased herbivory damage. Paradoxically, feeding bioassays revealed that a local lepidopteran herbivore preferred sun-exposed leaves over shaded leaves and had a better performance on sun-exposed leaves. These findings underscore the complex interplay between leaf traits and herbivore behavior, indicating that physical defenses alone cannot fully explain observed patterns of herbivory.
Top-down forces, including predation and parasitism, were further studied. Predation rates varied across vertical gradients but not between saplings under different light conditions, with arthropods dominating shaded understories and birds in sunlit canopies. While higher bird predation may contribute to reduced herbivory in the sun canopy, limited parasitoids data prevented robust conclusions about vertical variation of natural enemies. These spatially variable top-down pressures on herbivore populations deserves further attention.
Comparisons between sugar maple and black maple (Acer nigrum) revealed key differences in leaf traits, like tougher leaves and denser trichomes in black maples, but no difference in herbivore communities. This suggests that despite notable trait differences, insect herbivores did not distinguish between the two tree species, likely reflecting their close evolutionary relationship.
By integrating within-tree and between-tree variations with trophic interactions, this thesis provides a comprehensive view of insect herbivory regulation in sugar maple forests. These results refine our understanding of the green world hypothesis by highlighting how spatial variation in plant traits and predator communities shapes herbivore populations. This insight enhances ecological theory and informs forest management strategies.
Divisions: | Concordia University > Faculty of Arts and Science > Biology |
---|---|
Item Type: | Thesis (PhD) |
Authors: | Hakimara, Mahsa |
Institution: | Concordia University |
Degree Name: | Ph. D. |
Program: | Biology |
Date: | 11 December 2024 |
Thesis Supervisor(s): | Despland, Emma |
Keywords: | Plant-insect interaction Temperate forest Insect herbivory Leaf physical traits insect defoliatores' natural enemies |
ID Code: | 995078 |
Deposited By: | Mahsa Hakimara |
Deposited On: | 17 Jun 2025 14:16 |
Last Modified: | 17 Jun 2025 14:16 |
References:
Agrawal, A. A. (2007). Macroevolution of plant defense strategies. Trends in Ecology & Evolution, 22(2), 103–109. https://doi.org/10.1016/j.tree.2006.10.012Agrawal, A. A., & Fishbein, M. (2006). Plant Defense Syndromes. Ecology, 87(sp7), S132–S149. https://doi.org/10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2
Aikens, K. R. (2008). Heterogeneity in a temperate forest canopy: Describing patterns of distribution and depredation of arthropod assemblages. McGill University.
Aikens, K. R., Timms, L. L., & Buddle, C. M. (2013). Vertical heterogeneity in predation pressure in a temperate forest canopy. PeerJ, 1, e138.
Angulo-Sandoval, P., & Aide, T. M. (2000). Effect of plant density and light availability on leaf damage in Manilkara bidentata (Sapotaceae). Journal of Tropical Ecology, 16(3), 447–464. https://doi.org/10.1017/S0266467400001504
Ashton, L. A., Nakamura, A., Basset, Y., Burwell, C. J., Cao, M., Eastwood, R., Odell, E., de Oliveira, E. G., Hurley, K., Katabuchi, M., Maunsell, S., McBroom, J., Schmidl, J., Sun, Z., Tang, Y., Whitaker, T., Laidlaw, M. J., McDonald, W. J. F., & Kitching, R. L. (2016). Vertical stratification of moths across elevation and latitude. Journal of Biogeography, 43(1), 59–69. https://doi.org/10.1111/jbi.12616
Awmack, C. S., & Leather, S. R. (2002). Host Plant Quality and Fecundity in Herbivorous Insects. Annual Review of Entomology, 47(Volume 47, 2002), 817–844. https://doi.org/10.1146/annurev.ento.47.091201.145300
Ayotte-Beaudet, J.-P., Chastenay, P., Beaudry, M.-C., L’Heureux, K., Giamellaro, M., Smith, J., Desjarlais, E., & Paquette, A. (2021). Exploring the impacts of contextualised outdoor science education on learning: The case of primary school students learning about ecosystem relationships. Journal of Biological Education, 1–18. https://doi.org/10.1080/00219266.2021.1909634
Barber, N. A., & Marquis, R. J. (2011). Light environment and the impacts of foliage quality on herbivorous insect attack and bird predation. Oecologia, 166(2), 401–409. https://doi.org/10.1007/s00442-010-1840-9
Bar-Ness, Y. D., McQuillan, P. B., Whitman, M., Junker, R. R., Cracknell, M., & Barrows, A. (2012). Sampling forest canopy arthropod biodiversity with three novel minimal-cost trap designs. Australian Journal of Entomology, 51(1), 12–21. https://doi.org/10.1111/j.1440-6055.2011.00836.x
Baron, J. N., & Rubin, B. D. (2021). Secondary invasion? Emerald ash borer (Agrilus planipennis) induced ash (Fraxinus spp.) mortality interacts with ecological integrity to facilitate European buckthorn (Rhamnus cathartica). Canadian Journal of Forest Research, 51(3), 455–464. https://doi.org/10.1139/cjfr-2020-0134
Barton, K. E., & Koricheva, J. (2010). The Ontogeny of Plant Defense and Herbivory: Characterizing General Patterns Using Meta‐Analysis. The American Naturalist, 175(4), 481–493. https://doi.org/10.1086/650722
Basset, Y. (1991). The Spatial Distribution of Herbivory, Mines and Galls Within an Australian Rain Forest Tree. Biotropica, 23(3), 271. https://doi.org/10.2307/2388204
Basset, Y., & Novotny, V. (1999). Species richness of insect herbivore communities on Ficus in Papua New Guinea. Biological Journal of the Linnean Society, 67(4), 477–499. https://doi.org/10.1111/j.1095-8312.1999.tb01943.x
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
Björkman, C., Dalin, P., & Ahrné, K. (2008). Leaf trichome responses to herbivory in willows: Induction, relaxation and costs. New Phytologist, 179(1), 176–184. https://doi.org/10.1111/j.1469-8137.2008.02442.x
Black Maple-Endangered species in Quebec. (2024, December 11). CDPNQ-Ministry of the Environment, the Fight against Climate Change, Wildlife and Parks in Quebec. https://www.environnement.gouv.qc.ca/biodiversite/especes-designees-susceptibles/acer-nigrum/index.htm
Boege, K., & Marquis, R. J. (2006). Plant quality and predation risk mediated by plant ontogeny: Consequences for herbivores and plants. Oikos, 115(3), 559–572. https://doi.org/10.1111/j.2006.0030-1299.15076.x
Boerner, R. E., & Brinkman, J. A. (1996). Ten years of tree seedling establishment and mortality in an Ohio deciduous forest complex. Bulletin of the Torrey Botanical Club, 309–317.
Bolker, B. (2019). Getting started with the glmmTMB package. Cran. R-Project Vignette, 9. https://cran.r-hub.io/web/packages/glmmTMB/vignettes/glmmTMB.pdf
Bolker, B. M. (2020). Post-model-fitting procedures with glmmTMB models: Diagnostics, inference, and model output(pp. 1–18).
Boukouvala, M. C., Kavallieratos, N. G., Skourti, A., Pons, X., Alonso, C. L., Eizaguirre, M., Fernandez, E. B., Solera, E. D., Fita, S., Bohinc, T., Trdan, S., Agrafioti, P., & Athanassiou, C. G. (2022). Lymantria dispar (L.) (Lepidoptera: Erebidae): Current Status of Biology, Ecology, and Management in Europe with Notes from North America. Insects, 13(9), Article 9. https://doi.org/10.3390/insects13090854
Bray, J. R. (1956). Gap Phase Replacement in a Maple-Basswood Forest. Ecology, 37(3), 598–600. https://doi.org/10.2307/1930185
Brehm, G. (2007). Contrasting patterns of vertical stratification in two moth families in a Costa Rican lowland rain forest. Basic and Applied Ecology, 8(1), 44–54. https://doi.org/10.1016/j.baae.2006.02.002
Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Machler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378–400.
Caldwell, E., Read, J., & Sanson, G. D. (2016). Which leaf mechanical traits correlate with insect herbivory among feeding guilds? Annals of Botany, 117(2), 349–361. https://doi.org/10.1093/aob/mcv178
Cánovas, F. M., Lüttge, U., & Matyssek, R. (Eds.). (2018). Progress in Botany Vol. 79 (Vol. 79). Springer International Publishing. https://doi.org/10.1007/978-3-319-71413-4
Carmona, D., Lajeunesse, M. J., & Johnson, M. T. J. (2011). Plant traits that predict resistance to herbivores. Functional Ecology, 25(2), 358–367. https://doi.org/10.1111/j.1365-2435.2010.01794.x
Chen, Y., & Poland, T. M. (2009). Interactive Influence of Leaf Age, Light Intensity, and Girdling on Green Ash Foliar Chemistry and Emerald Ash Borer Development. Journal of Chemical Ecology, 35(7), 806–815. https://doi.org/10.1007/s10886-009-9661-1
Choong, M. F. (1996). What Makes a Leaf Tough and How This Affects the Pattern of Castanopsis fissa Leaf Consumption by Caterpillars. Functional Ecology, 10(5), 668–674. https://doi.org/10.2307/2390178
Coley, P. D., & Barone, J. A. (1996). HERBIVORY AND PLANT DEFENSES IN TROPICAL FORESTS. Annual Review of Ecology and Systematics, 27(1), 305–335. https://doi.org/10.1146/annurev.ecolsys.27.1.305
Coley, P. D., Bryant, J. P., & Chapin, F. S. (1985). Resource availability and plant antiherbivore defense. Science (New York, N.Y.), 230(4728), 895–899. https://doi.org/10.1126/science.230.4728.895
Comeau, P. G., Filipescu, C. N., Kabzems, R., & DeLong, C. (2009). Corrigendum to: Growth of white spruce underplanted beneath spaced and unspaced aspen stands in northeastern B.C.—10 year results. Forest Ecology and Management, 257(7), 1629–1636. https://doi.org/10.1016/j.foreco.2009.01.025
Corff, J. LE., & Marquis, R. J. (1999). Differences between understorey and canopy in herbivore community composition and leaf quality for two oak species in Missouri. Ecological Entomology, 24(1), 46–58. https://doi.org/10.1046/j.1365-2311.1999.00174.x
Côté, B., & Ouimet, R. (1996). Decline of the maple-dominated forest in southern Quebec: Impact of natural stresses and forest management. Environmental Reviews, 4(2), 133–148. https://doi.org/10.1139/a96-009
Cribari-Neto, F., & Zeileis, A. (2010). Beta regression in R. Journal of Statistical Software, 34, 1–24.
Crowley, D., & Barstow, M. (2017). IUCN Red List of Threatened Species: Acer nigrum. IUCN Red List of Threatened Species. https://www.iucnredlist.org/en
Dansereau, P., & Desmarais, Y. (1947). Introgression in Sugar Maples II. The American Midland Naturalist, 37(1), 146–161. https://doi.org/10.2307/2421649
Descombes, P., Kergunteuil, A., Glauser, G., Rasmann, S., & Pellissier, L. (2020). Plant physical and chemical traits associated with herbivory in situ and under a warming treatment. Journal of Ecology, 108(2), 733–749. https://doi.org/10.1111/1365-2745.13286
DiTommaso, A., & Losey, J. E. (2003). Oviposition preference and larval performance of monarch butterflies (Danaus plexippus) on two invasive swallow-wort species. Entomologia Experimentalis et Applicata, 108(3), 205–209. https://doi.org/10.1046/j.1570-7458.2003.00089.x
Duchesne, L., Ouimet, R., & Morneau, C. (2003). Assessment of sugar maple health based on basal area growth pattern. Canadian Journal of Forest Research, 33(11), 2074–2080. https://doi.org/10.1139/x03-141
Dudt, J. F., & Shure, D. J. (1994). The Influence of Light and Nutrients on Foliar Phenolics and Insect Herbivory. Ecology, 75(1), 86–98. https://doi.org/10.2307/1939385
Eisenring, M., Unsicker, S. B., & Lindroth, R. L. (2021). Spatial, genetic and biotic factors shape within‐crown leaf trait variation and herbivore performance in a foundation tree species. Functional Ecology, 35(1), 54–66. https://doi.org/10.1111/1365-2435.13699
Ellsworth, D. S., & Reich, P. B. (1992). Leaf Mass Per Area, Nitrogen Content and Photosynthetic Carbon Gain in Acer saccharum Seedlings in Contrasting Forest Light Environments. Functional Ecology, 6(4), 423–435. https://doi.org/10.2307/2389280
Endara, M.-J., Coley, P. D., Ghabash, G., Nicholls, J. A., Dexter, K. G., Donoso, D. A., Stone, G. N., Pennington, R. T., & Kursar, T. A. (2017). Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proceedings of the National Academy of Sciences, 114(36), E7499–E7505. https://doi.org/10.1073/pnas.1707727114
Fauna. (2024, December 9). Kenauk Institute. https://institutkenauk.org/conservations/fauna/
Favret, C., Lessard, V., Trépanier, A., Eon‐Le Guern, T., & Théry, T. (2019). Voegtlin‐style suction traps measure insect diversity and community heterogeneity. Insect Conservation and Diversity, 12(5), 373–381. https://doi.org/10.1111/icad.12368
Fleak, S. (1967). Hybridization in Acer saccharum Marsh. And Acer nigrum Michx. F. 12–16.
Floate, K. D., & Whitham, T. G. (1993). The “Hybrid Bridge” Hypothesis: Host Shifting via Plant Hybrid Swarms. The American Naturalist, 141(4), 651–662. https://doi.org/10.1086/285497
Fortin, M., & Mauffette, Y. (2002). The suitability of leaves from different canopy layers for a generalist herbivore (Lepidoptera: Lasiocampidae) foraging on sugar maple. 32, 13.
Fortin, M., Mauffette, Y., & Albert, P. J. (1997). The effects of ozone-exposed sugar maple seedlings on the biological performance and the feeding preference of the forest tent caterpillar (Malacosoma disstria Hbn.). Environmental Pollution, 97(3), 303–309. https://doi.org/10.1016/S0269-7491(97)00079-1
Foss, L. K., & Rieske, L. K. (2003). Species-specific differences in oak foliage affect preference and performance of gypsy moth caterpillars: Oak foliage differences and gypsy moth caterpillars. Entomologia Experimentalis et Applicata, 108(2), 87–93. https://doi.org/10.1046/j.1570-7458.2003.00067.x
Gabriel, W. J. (1973). MORPHOLOGICAL DIFFERENCES BETWEEN BLACK MAPLE AND SUGAR MAPLE AND THEIR HYBRIDS.
Gabriel, W. J. (1990). Acer nigrum Michx. F. Black maple. Silvics of North America, 2, 46–52.
Gardescu, S. (2003). Herbivory, Disease, and Mortality of Sugar Maple Seedlings. Northeastern Naturalist, 10(3), 253–268.
Gaucher, C., Gougeon, S., Mauffette, Y., & Messier, C. (2005). Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) seedlings. Tree Physiology, 25(1), 93–100. https://doi.org/10.1093/treephys/25.1.93
Godman, R. M., Yawney, H. W., & Tubbs, C. H. (1990). Acer saccharum Marsh. Sugar Maple. Silvics of North America, 2(654), 78.
Gonzáles, W. L., & Gianoli, E. (2003). Evaluation of induced responses, insect population growth, and host-plant fitness may change the outcome of tests of the preference-performance hypothesis: A case study. Entomologia Experimentalis et Applicata, 109(3), 211–216. https://doi.org/10.1046/j.0013-8703.2003.00110.x
Graça, M. B., Pequeno, P. A. C. L., Franklin, E., & Morais, J. W. (2017). Coevolution between flight morphology, vertical stratification and sexual dimorphism: What can we learn from tropical butterflies? Journal of Evolutionary Biology, 30(10), 1862–1871. https://doi.org/10.1111/jeb.13145
Graves, W. R. (1994). Seedling Development of Sugar Maple and Black Maple Irrigated at Various Frequencies. HortScience, 29(11), 1292–1294. https://doi.org/10.21273/HORTSCI.29.11.1292
Grayson, K. L., Parry, D., Faske, T. M., Hamilton, A., Tobin, P. C., Agosta, S. J., & Johnson, D. M. (2015). Performance of Wild and Laboratory-Reared Gypsy Moth (Lepidoptera: Erebidae): A Comparison between Foliage and Artificial Diet. Environmental Entomology, 44(3), 864–873. https://doi.org/10.1093/ee/nvv063
Grimbacher, P. S., & Stork, N. E. (2007). Vertical stratification of feeding guilds and body size in beetle assemblages from an Australian tropical rainforest. Austral Ecology, 32(1), 77–85. https://doi.org/10.1111/j.1442-9993.2007.01735.x
Gripenberg, S., Mayhew, P. J., Parnell, M., & Roslin, T. (2010). A meta-analysis of preference–performance relationships in phytophagous insects. Ecology Letters, 13(3), 383–393. https://doi.org/10.1111/j.1461-0248.2009.01433.x
Guerra, P. C., Becerra, J., & Gianoli, E. (2010). Explaining differential herbivory in sun and shade: The case of Aristotelia chilensis saplings. Arthropod-Plant Interactions, 4(4), 229–235. https://doi.org/10.1007/s11829-010-9099-y
Hairston, N. G., Smith, F. E., & Slobodkin, L. B. (1960). Community Structure, Population Control, and Competition. The American Naturalist, 94(879), 421–425. https://doi.org/10.1086/282146
Hakimara, M., & Despland, E. (2024). Vertical stratification of leaf physical traits exerts bottom–up pressures on insect herbivory in a sugar maple temperate forest. Insect Conservation and Diversity, Online Version of Record before inclusion in an issue. https://doi.org/10.1111/icad.12777
Hamelin, C., Truax, B., & Gagnon, D. (2016). Invasive glossy buckthorn impedes growth of red oak and sugar maple under-planted in a mature hybrid poplar plantation. New Forests, 47(6), 897–911. https://doi.org/10.1007/s11056-016-9551-7
Hanley, M. E., Lamont, B. B., Fairbanks, M. M., & Rafferty, C. M. (2007). Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics, 8(4), 157–178. https://doi.org/10.1016/j.ppees.2007.01.001
Hannerz, M. (1999). Evaluation of temperature models for predicting bud burst in Norway spruce. Canadian Journal of Forest Research, 29(1), 9–19.
Harrow, S. (2014). Comparative Analysis of Four Tree Species in a Northern Hardwood Forest. Kansas State University.
Hartig, F. (2022). Package ‘DHARMa.’ R Package. Available Online: Https://CRAN. R-Project. Org/Package= DHARMa (Accessed on 5 September 2022). https://scholar.google.com/scholar?cluster=7277662741730037362&hl=en&oi=scholarr
Hébert, C., Comtois, B., & Morneau, L. (2017). Insectes des arbres du Québec. Les Publications du Québec.
Heinrich, B. (1993). How avian predators constrain caterpillar foraging. In Caterpillars. Ecological and Evolutionary Constraints on Foraging In: Stamp, N.E. and Casey, T.M. (pp. 224–247). Chapman and Hall.
Henry, C. R., Walters, M. B., Finley, A. O., Roloff, G. J., & Farinosi, E. J. (2021). Complex drivers of sugar maple (Acer saccharum) regeneration reveal challenges to long-term sustainability of managed northern hardwood forests. Forest Ecology and Management, 479, 118541. https://doi.org/10.1016/j.foreco.2020.118541
Hett, J. M., & Loucks, O. L. (1971). Sugar maple (Acer saccharum Marsh.) seedling mortality. The Journal of Ecology, 507–520.
Hilaire, R. St., & Graves, W. R. (1999). Foliar Traits of Sugar Maples and Black Maples Near 43 °N Latitude in the Eastern and Central United States. Journal of the American Society for Horticultural Science, 124(6), 605–611. https://doi.org/10.21273/JASHS.124.6.605
Hochuli, D. F. (2001). Insect herbivory and ontogeny: How do growth and development influence feeding behaviour, morphology and host use? Austral Ecology, 26(5), 563–570. https://doi.org/10.1046/j.1442-9993.2001.01135.x
Hochwender, C. G., & Fritz, R. S. (2004). Plant genetic differences influence herbivore community structure: Evidence from a hybrid willow system. Oecologia, 138(4), 547–557. https://doi.org/10.1007/s00442-003-1472-4
Horsley, S. B., Long, R. P., Bailey, S. W., Hallett, R. A., & Wargo, P. M. (2002). Health of Eastern North American Sugar Maple Forests and Factors Affecting Decline. Northern Journal of Applied Forestry, 19(1), 34–44. https://doi.org/10.1093/njaf/19.1.34
Houston, D. R., Allen, D. C., & Lachance, D. (1990). Sugarbush management: A guide to maintaining tree health (NE-GTR-129; p. NE-GTR-129). U.S. Department of Agriculture, Forest Service, Northeastern Forest Experimental Station. https://doi.org/10.2737/NE-GTR-129
Howe, A., Lövei, G. L., & Nachman, G. (2009). Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. Entomologia Experimentalis et Applicata, 131(3), 325–329. https://doi.org/10.1111/j.1570-7458.2009.00860.x
Hunter, A. F., & Lechowicz, M. J. (1992). Foliage quality changes during canopy development of some northern hardwood trees. Oecologia, 89(3), 316–323. https://doi.org/10.1007/BF00317408
Iverson, L. R., Prasad, A. M., Matthews, S. N., & Peters, M. (2008). Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management, 254(3), 390–406.
Jackson, W. A. (2020). Physiology and genetic studies of the hard maple group [PhD Thesis, Rutgers The State University of New Jersey, School of Graduate Studies]. https://search.proquest.com/openview/c7809a544128bd89f29ba4317ff75d3f/1?pq-origsite=gscholar&cbl=51922&diss=y
Jactel, H., & Brockerhoff, E. G. (2007). Tree diversity reduces herbivory by forest insects. Ecology Letters, 10(9), 835–848. https://doi.org/10.1111/j.1461-0248.2007.01073.x
Jaenike, J. (1978). On optimal oviposition behavior in phytophagous insects. Theoretical Population Biology, 14(3), 350–356. https://doi.org/10.1016/0040-5809(78)90012-6
Jeffries, M., & Lawton, J. H. (1984). Enemy free space and the structure of ecological communities. Biological Journal of the Linnean Society, 23, 269–286. https://doi.org/10.1111/j.1095-8312.1984.tb00145.x
Johns, R. C., Flaherty, L., Carleton, D., Edwards, S., Morrison, A., & Owens, E. (2016). Population studies of tree-defoliating insects in Canada: A century in review. The Canadian Entomologist, 148(S1), S58–S81. https://doi.org/10.4039/tce.2015.69
Johnson, M. T. J., Bertrand, J. A., & Turcotte, M. M. (2016). Precision and accuracy in quantifying herbivory. Ecological Entomology, 41(1), 112–121. https://doi.org/10.1111/een.12280
Johnson, N. M., & Baucom, R. S. (2023). The double life of trichomes: Understanding their dual role in herbivory and herbicide resistance (p. 2023.04.28.538721). bioRxiv. https://doi.org/10.1101/2023.04.28.538721
Keena, M. A., & Richards, J. Y. (2020). Comparison of Survival and Development of Gypsy Moth Lymantria dispar L. (Lepidoptera: Erebidae) Populations from Different Geographic Areas on North American Conifers. Insects, 11(4), 260. https://doi.org/10.3390/insects11040260
Kennedy, C. E. J., & Southwood, T. R. E. (1984). The number of species of insects associated with British trees: A re-analysis. The Journal of Animal Ecology, 455–478.
Kitajima, K., Llorens, A., Stefanescu, C., Timchenko, M. V., Lucas, P. W., & Wright, S. J. (2012). How cellulose‐based leaf toughness and lamina density contribute to long leaf lifespans of shade‐tolerant species. New Phytologist, 195(3), 640–652. https://doi.org/10.1111/j.1469-8137.2012.04203.x
Kriebel, H. B. (1957). Patterns of genetic variation in sugar maple. https://kb.osu.edu/bitstream/handle/1811/62575/1/OARDC_research_bulletin_n0791.pdf
Kriebel, H. B. (1989). Genetic improvement of sugar maple for high sap sugar content. I. Clone selection and seed orchard development. Canadian Journal of Forest Research, 19(7), 917–923. https://doi.org/10.1139/x89-139
Landsberg, J. (1989). A comparison of methods for assessing defoliation, tested on eucalypt trees. Austral Ecology, 14(4), 423–440. https://doi.org/10.1111/j.1442-9993.1989.tb01452.x
Levesque, K. R., Fortin, M., & Mauffette, Y. (2002). Temperature and food quality effects on growth, consumption and post-ingestive utilization ef.ciencies of the forest tent caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Bulletin of Entomological Research, 92(2), 127–136. https://doi.org/10.1079/BER2002153
Leyva, K. J., Clancy, K. M., & Price, P. W. (2000). Oviposition Preference and Larval Performance of the Western Spruce Budworm (Lepidoptera: Tortricidae). Environmental Entomology, 29(2), 281–289. https://doi.org/10.1093/ee/29.2.281
Libra, M., Tulai, S., Novotny, V., & Hrcek, J. (2019). Elevational contrast in predation and parasitism risk to caterpillars in a tropical rainforest. Entomologia Experimentalis et Applicata, 167(11), 922–931. https://doi.org/10.1111/eea.12851
Lill, J. T., & Marquis, R. J. (2001). The effects of leaf quality on herbivore performance and attack from natural enemies. Oecologia, 126(3), 418–428. https://doi.org/10.1007/s004420000557
López-Carretero, A., Boege, K., Díaz-Castelazo, C., Domínguez, Z., & Rico-Gray, V. (2016). Influence of plant resistance traits in selectiveness and species strength in a tropical plant-herbivore network. American Journal of Botany, 103(8), 1436–1448. https://doi.org/10.3732/ajb.1600045
Low, P. A., Sam, K., McArthur, C., Posa, M. R. C., & Hochuli, D. F. (2014). Determining predator identity from attack marks left in model caterpillars: Guidelines for best practice. Entomologia Experimentalis et Applicata, 152(2), 120–126. https://doi.org/10.1111/eea.12207
Lowman, M. D. (1992). Herbivory in Australian Rain Forests, with Particular Reference to the Canopies of Doryphora sassafras (Monimiaceae). Biotropica, 24(2), 263. https://doi.org/10.2307/2388521
Maguire, D. Y., Nicole, T., Buddle, C. M., & Bennett, E. M. (2015). Effect of fragmentation on predation pressure of insect herbivores in a north temperate deciduous forest ecosystem. Ecological Entomology, 40(2), 182–186. https://doi.org/10.1111/een.12166
Maguire, D. Y., Robert, K., Brochu, K., Larrivée, M., Buddle, C. M., & Wheeler, T. A. (2014). Vertical Stratification of Beetles (Coleoptera) and Flies (Diptera) in Temperate Forest Canopies. Environmental Entomology, 43(1), 9–17. https://doi.org/10.1603/EN13056
Marques, E. S. D. A., Price, P. W., & Cobb, N. S. (2000). Resource Abundance and Insect Herbivore Diversity on Woody Fabaceous Desert Plants. Environmental Entomology, 29(4), 696–703. https://doi.org/10.1603/0046-225X-29.4.696
Mauffette, Y., Lechowicz, M. J., & Jobin, L. (1983). Host preferences of the gypsy moth, Lymantria dispar (L.), in southern Quebec. Canadian Journal of Forest Research, 13(1), 53–60. https://doi.org/10.1139/x83-008
Mayhew, P. J. (1997). Adaptive Patterns of Host-Plant Selection by Phytophagous Insects. Oikos, 79(3), 417–428. https://doi.org/10.2307/3546884
Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heß, M., Lancashire, P. D., Schnock, U., Stauß, R., Van Den Boom, T., Weber, E., & Zwerger, P. (2009). The BBCH system to coding the phenological growth stages of plants – history and publications –. Journal of Cultivated Plants, 41-52 Pages. https://doi.org/10.5073/JFK.2009.02.01
Messier, J., McGill, B. J., Enquist, B. J., & Lechowicz, M. J. (2017). Trait variation and integration across scales: Is the leaf economic spectrum present at local scales? Ecography, 40(6), 685–697. https://doi.org/10.1111/ecog.02006
Mina, M., Messier, C., Duveneck, M. J., Fortin, M., & Aquilué, N. (2022). Managing for the unexpected: Building resilient forest landscapes to cope with global change. Global Change Biology, 28(14), 4323–4341. https://doi.org/10.1111/gcb.16197
Mooney, K. A., Pratt, R. T., & Singer, M. S. (2012). The Tri-Trophic Interactions Hypothesis: Interactive Effects of Host Plant Quality, Diet Breadth and Natural Enemies on Herbivores. PLOS ONE, 7(4), e34403. https://doi.org/10.1371/journal.pone.0034403
Morrow, C. J., Jaeger, S. J., & Lindroth, R. L. (2022). Intraspecific variation in plant economic traits predicts trembling aspen resistance to a generalist insect herbivore. Oecologia, 199(1), 119–128. https://doi.org/10.1007/s00442-022-05158-z
Muiruri, E. W., Barantal, S., Iason, G. R., Salminen, J., Perez‐Fernandez, E., & Koricheva, J. (2019). Forest diversity effects on insect herbivores: Do leaf traits matter? New Phytologist, 221(4), 2250–2260. https://doi.org/10.1111/nph.15558
Murakami, M., & Wada, N. (1997). Difference in leaf quality between canopy trees and seedlings affects migration and survival of spring-feeding moth larvae. 27, 6.
Murakami, M., Yoshida, K., Hara, H., & Toda, M. J. (2005). Spatio-temporal variation in Lepidopteran larval assemblages associated with oak, Quercus crispula: The importance of leaf quality. Ecological Entomology, 30(5), 521–531. https://doi.org/10.1111/j.0307-6946.2005.00724.x
Murphy, S. M., & Loewy, K. J. (2015). Trade-offs in host choice of an herbivorous insect based on parasitism and larval performance. Oecologia, 179(3), 741–751. https://doi.org/10.1007/s00442-015-3373-8
Nakadai, R., Murakami, M., & Hirao, T. (2014). Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species. Oecologia, 175(4), 1237–1245. https://doi.org/10.1007/s00442-014-2964-0
Narango, D. L., Tallamy, D. W., & Shropshire, K. J. (2020). Few keystone plant genera support the majority of Lepidoptera species. Nature Communications, 11(1), 5751. https://doi.org/10.1038/s41467-020-19565-4
Nobel, P. S., Zaragoza, L. J., & Smith, W. K. (1975). Relation between Mesophyll Surface Area, Photosynthetic Rate, and Illumination Level during Development for Leaves of Plectranthus parviforus Henckel’. 55.
Panzuto, M., Lorenzetti, F., Mauffette, Y., & Albert, P. J. (2001). Perception of Aspen and Sun/Shade Sugar Maple Leaf Soluble Extracts by Larvae of Malacosoma disstria. Journal of Chemical Ecology.
Parry, M. L. (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press. https://books.google.com/books?hl=en&lr=&id=TNo-SeGpn7wC&oi=fnd&pg=PA135&dq=Parry,+2007&ots=vS3Bqg1qkC&sig=q95em66ioB4CnPGqj2D26TTbHMU
Payette, S., Morneau, C., & Fortin, M. J. (1996). The recent sugar maple decline in southern Quebec: Probable causes deduced from tree rings. Canadian Journal of Forest Research, 26(6), 1069–1078.
Pearse, I. S., & Hipp, A. L. (2009). Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proceedings of the National Academy of Sciences, 106(43), 18097–18102. https://doi.org/10.1073/pnas.0904867106
Pearse, I. S., & Hipp, A. L. (2012). GLOBAL PATTERNS OF LEAF DEFENSES IN OAK SPECIES. Evolution, 66(7), 2272–2286. https://doi.org/10.1111/j.1558-5646.2012.01591.x
Potter, K. M., & Hargrove, W. W. (2013). Quantitative assessment of predicted climate change pressure on North American tree species. Mathematical and Computational Forestry & Natural-Resource Sciences (MCFNS), 5(2), 151–169.
Pugeaut, A., Postaire, B., & Surget-Groba, Y. (2024). Genomics for species delineation and conservation status determination: The Black Maple as a case study. Authorea, 902, 90211437.
Quebec 4-H clubs. (2019). La Chenille Espionne. https://www.chenilles-espionnes.com/le-projet
Quebec Ministry of Forests. (2023). Forest Domain Map of Quebec, Retrieved from https://www.forestsquebec.gouv.qc.ca/domaines-forestiers/carte.jsp. https://www.forestsquebec.gouv.qc.ca/domaines-forestiers/carte.jsp
Rasmann, S., & Agrawal, A. A. (2011). Evolution of specialization: A phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus). The American Naturalist, 177(6), 728–737. https://doi.org/10.1086/659948
Reich, P. B. (2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 102(2), 275–301. https://doi.org/10.1111/1365-2745.12211
Robinson, S. K., & Holmes, R. T. (1982). Foraging Behavior of Forest Birds: The Relationships Among Search Tactics, Diet, and Habitat Structure. Ecology, 63(6), 1918–1931. https://doi.org/10.2307/1940130
Roland, J. (1993). Large-scale forest fragmentation increases the duration of tent caterpillar outbreak. Oecologia, 93(1), 25–30. https://doi.org/10.1007/BF00321186
Rowe, W. J., & Potter, D. A. (1996). Vertical stratification of feeding by Japanese beetles within linden tree canopies: Selective foraging or height per se? Oecologia, 108(3), 459–466. https://doi.org/10.1007/BF00333722
Salgado-Luarte, C., González-Teuber, M., Madriaza, K., & Gianoli, E. (2023). Trade-off between plant resistance and tolerance to herbivory: Mechanical defenses outweigh chemical defenses. Ecology, 104(1), e3860. https://doi.org/10.1002/ecy.3860
Schoonhoven, L. M., Loon, J. J. A. van, & Dicke, and M. (2006). Insect-Plant Biology (Second Edition, Second Edition). Oxford University Press.
Schowalter, T. D. (2006). Insect ecology: An ecosystem approach. Academic press.
Schowalter, T. D., & Ganio, L. M. (1998). Vertical and seasonal variation in canopy arthropod communities in an old-growth conifer forest in southwestern Washington, USA. Bulletin of Entomological Research, 88(6), 633–640.
Schowalter, T. D., Hargrove, W. W., & Crossley, D. A. (1986). Herbivory in Forested Ecosystems. Annual Review of Entomology, 31(1), 177–196. https://doi.org/10.1146/annurev.en.31.010186.001141
Schultz, J. C., Nothnagle, P. J., & Baldwin, I. T. (1982). Seasonal and Individual Variation in Leaf Quality of Two Northern Hardwoods Tree Species. 8.
Seifert, C. L., Jorge, L. R., Volf, M., Wagner, D. L., Lamarre, G. P. A., Miller, S. E., Gonzalez‐Akre, E., Anderson‐Teixeira, K. J., & Novotný, V. (2021). Seasonality affects specialisation of a temperate forest herbivore community. Oikos, 130(9), 1450–1461. https://doi.org/10.1111/oik.08265
Seifert, C. L., Lamarre, G. P. A., Volf, M., Jorge, L. R., Miller, S. E., Wagner, D. L., Anderson-Teixeira, K. J., & Novotný, V. (2020). Vertical stratification of a temperate forest caterpillar community in eastern North America. Oecologia, 192(2), 501–514. https://doi.org/10.1007/s00442-019-04584-w
Seiwa, K. (1998). Advantages of early germination for growth and survival of seedlings of Acer mono under different overstorey phenologies in deciduous broad‐leaved forests. Journal of Ecology, 86(2), 219–228. https://doi.org/10.1046/j.1365-2745.1998.00245.x
Sigut, M., Šigutová, H., Šipoš, J., Pyszko, P., Kotásková, N., & Drozd, P. (2018). Vertical canopy gradient shaping the stratification of leaf‐chewer–parasitoid interactions in a temperate forest. Ecology and Evolution, 8(15), 7297–7311. https://doi.org/10.1002/ece3.4194
Singer, M. S., & Stireman, J. O. (2005). The tri-trophic niche concept and adaptive radiation of phytophagous insects. Ecology Letters, 8(12), 1247–1255. https://doi.org/10.1111/j.1461-0248.2005.00835.x
Skepner, A. P. (1997). cpDNA of Acer saccharum and Acer nigrum are Very Similar. The Ohio Journal of Science, 97(4), 90–93.
Southwood, T. R. E., Wint, G. W., Kennedy, C. E., & Greenwood, S. R. (2005). The composition of the arthropod fauna of the canopies of some species of oak (Quercus). European Journal of Entomology, 102(1), 65–72.
Stemmelen, A., Paquette, A., Benot, M.-L., Kadiri, Y., Jactel, H., & Castagneyrol, B. (2022). Insect herbivory on urban trees: Complementary effects of tree neighbours and predation. Peer Community Journal, 2, e22. https://doi.org/10.24072/pcjournal.106
Stireman, J. O., Cerretti, P., Whitmore, D., Hardersen, S., & Gianelle, D. (2012). Composition and stratification of a tachinid (Diptera: Tachinidae) parasitoid community in a European temperate plain forest: Tachinid parasitoid community stratification. Insect Conservation and Diversity, 5(5), 346–357. https://doi.org/10.1111/j.1752-4598.2011.00168.x
Stoepler, T. M., & Lill, J. T. (2013). Direct and indirect effects of light environment generate ecological trade-offs in herbivore performance and parasitism. Ecology, 94(10), 2299–2310. https://doi.org/10.1890/12-2068.1
Strong, A. M., Sherry, T. W., & Holmes, R. T. (2000). Bird predation on herbivorous insects: Indirect effects on sugar maple saplings. Oecologia, 125(3), 370–379. https://doi.org/10.1007/s004420000467
Taylor, K. M., & Aarssen, L. W. (1989). NEIGHBOR EFFECTS IN MAST YEAR SEEDLINGS OF ACER SACCHARUM. American Journal of Botany, 76(4), 546–554. https://doi.org/10.1002/j.1537-2197.1989.tb11346.x
Thomas, S. C., Sztaba, A. J., & Smith, S. M. (2010). Herbivory patterns in mature sugar maple: Variation with vertical canopy strata and tree ontogeny. Ecological Entomology, 35(1), 1–8. https://doi.org/10.1111/j.1365-2311.2009.01133.x
Thompson, J. N. (1988). Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomologia Experimentalis et Applicata, 47(1), 3–14. https://doi.org/10.1111/j.1570-7458.1988.tb02275.x
Turcotte, M. M., Thomsen, C. J. M., Broadhead, G. T., Fine, P. V. A., Godfrey, R. M., Lamarre, G. P. A., Meyer, S. T., Richards, L. A., & Johnson, M. T. J. (2014). Percentage leaf herbivory across vascular plant species: Ecological Archives E095-065. Ecology, 95(3), 788–788. https://doi.org/10.1890/13-1741.1
Turgeon, J. (2019). The Effect of Vertical Stratification and Forest Management on Beetle (Insecta: Coleoptera) and Spider (Arachnida: Araneae) Communities in a Temperate Forest. McGill University.
Ulyshen, M. D. (2011). Arthropod vertical stratification in temperate deciduous forests: Implications for conservation-oriented management. Forest Ecology and Management, 261(9), 1479–1489. https://doi.org/10.1016/j.foreco.2011.01.033
Van Bael, S. A., Brawn, J. D., & Robinson, S. K. (2003). Birds defend trees from herbivores in a Neotropical forest canopy. Proceedings of the National Academy of Sciences, 100(14), 8304–8307. https://doi.org/10.1073/pnas.1431621100
van Ginkel, J. R. (2023). Handling Missing Data in Principal Component Analysis Using Multiple Imputation. In L. A. van der Ark, W. H. M. Emons, & R. R. Meijer (Eds.), Essays on Contemporary Psychometrics (pp. 141–161). Springer International Publishing. https://doi.org/10.1007/978-3-031-10370-4_8
Vance, C. C., Smith, S. M., Malcolm, J. R., Huber, J., & Bellocq, M. I. (2007). Differences Between Forest Type and Vertical Strata in the Diversity and Composition of Hymenpteran Families and Mymarid Genera in Northeastern Temperate Forests. Environmental Entomology, 36(5), 1073–1083. https://doi.org/10.1603/0046-225X(2007)36[1073:DBFTAV]2.0.CO;2
Vet, L. E. M., & Dicke, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Annual Review of Entomology, 37, 141–172.
Vidal, M. C., & Murphy, S. M. (2018). Bottom‐up vs. top‐down effects on terrestrial insect herbivores: A meta‐analysis. Ecology Letters, 21(1), 138–150. https://doi.org/10.1111/ele.12874
Ville de Montreal. (2023, March 25). Ville de Montréal. Ville de Montréal. http://ville.montreal.qc.ca/pls/portal/docs/page/conseil_patrimoine_mtl_fr/media/documents/ecoterritoire2fr.pdf
Volf, M., Klimeš, P., Lamarre, G. P. A., Redmond, C. M., Seifert, C. L., Abe, T., Auga, J., Anderson-Teixeira, K., Basset, Y., Beckett, S., Butterill, P. T., Drozd, P., Gonzalez-Akre, E., Kaman, O., Kamata, N., Laird-Hopkins, B., Libra, M., Manumbor, M., Miller, S. E., … Novotny, V. (2019). Quantitative assessment of plant-arthropod interactions in forest canopies: A plot-based approach. PLoS ONE, 14(10), 20.
Volf, M., Pyszko, P., Abe, T., Libra, M., Kotásková, N., Šigut, M., Kumar, R., Kaman, O., Butterill, P. T., Šipoš, J., Abe, H., Fukushima, H., Drozd, P., Kamata, N., Murakami, M., & Novotny, V. (2017). Phylogenetic composition of host plant communities drives plant-herbivore food web structure. Journal of Animal Ecology, 86(3), 556–565. https://doi.org/10.1111/1365-2656.12646
Welch, B. L. (1938). The Significance of the Difference Between Two Means when the Population Variances are Unequal. Biometrika, 29(3/4), 350–362. https://doi.org/10.2307/2332010
Whitfeld, T. J. S., Novotny, V., Miller, S. E., Hrcek, J., Klimes, P., & Weiblen, G. D. (2012). Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology, 93(sp8), S211–S222. https://doi.org/10.1890/11-0503.1
Wickham, H. (2016). Ggplot2. Springer International Publishing. https://doi.org/10.1007/978-3-319-24277-4
Wilkinson, D. M., & Sherratt, T. N. (2016). Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecology & Diversity, 9(2), 127–140. https://doi.org/10.1080/17550874.2016.1178353
Wint, G. W. (1983). Leaf damage in tropical rain forest canopies. In Tropical rain forest: Ecology and management (pp. 229–239).
Witkowski, E. T. F., & Lamont, B. B. (1991). Leaf specific mass confounds leaf density and thickness. Oecologia, 88(4), 486–493. https://doi.org/10.1007/BF00317710
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821–827. https://doi.org/10.1038/nature02403
Yang, B., Li, B., He, Y., Zhang, L., Bruelheide, H., & Schuldt, A. (2018). Tree diversity has contrasting effects on predation rates by birds and arthropods on three broadleaved, subtropical tree species. Ecological Research, 33(1), 205–212. https://doi.org/10.1007/s11284-017-1531-7
Yang, L. H. (2014). Insects as drivers of ecosystem processes. Current Opinion in Insect Science, 7.
Yataco, A. P., Noor, S., Girona, M. M., Work, T., & Despland, E. (2024). Limited Differences in Insect Herbivory on Young White Spruce Growing in Small Open Plantations and under Natural Canopies in Boreal Mixed Forests. Insects, 15(3), 196. https://doi.org/10.3390/insects15030196
Zalucki, M. P., Clarke, A. R., & Malcolm, S. B. (2002). Ecology and Behavior of First Instar Larval Lepidoptera. Annual Review of Entomology, 47(Volume 47, 2002), 361–393. https://doi.org/10.1146/annurev.ento.47.091201.145220
Zalucki, M. P., Malcolm, S. B., Paine, T. D., Hanlon, C. C., Brower, L. P., & Clarke, A. R. (2001). It’s the first bites that count: Survival of first-instar monarchs on milkweeds. Austral Ecology, 26(5), 547–555. https://doi.org/10.1046/j.1442-9993.2001.01132.x
Zehnder, C. B., Stodola, K. W., Joyce, B. L., Egetter, D., Cooper, R. J., & Hunter, M. D. (2009). Elevational and Seasonal Variation in the Foliar Quality and Arthropod Community of Acer pensylvanicum. Environmental Entomology, 38(4), 1161–1167. https://doi.org/10.1603/022.038.0424
Zhang, S., Xu, G., Zhang, Y., Zhang, W., & Cao, M. (2023). Canopy height, rather than neighborhood effects, shapes leaf herbivory in a tropical rainforest. Ecology, 104(5), e4028. https://doi.org/10.1002/ecy.4028
Zhong-Tao, P., Guang-Ze, J. I. N., & Zhi-Li, L. I. U. (2024). Leaf trait variations and relationships of three Acer species in different tree sizes and canopy conditions in Xiao Hinggan Mountains of Northeast China. Chinese Journal of Plant Ecology, 48(6), 730. https://doi.org/10.17521/cjpe.2023.0369
Zuur, A. F., Ieno, E. N., & Smith, G. M. (Eds.). (2007). Principal component analysis and redundancy analysis. In Analysing Ecological Data (pp. 193–224). Springer. https://doi.org/10.1007/978-0-387-45972-1_12
Zvereva, E. L., & Kozlov, M. V. (2023). Predation risk estimated on live and artificial insect prey follows different patterns. Ecology, 104(3), e3943. https://doi.org/10.1002/ecy.3943
Zvereva, E. L., Paolucci, L. N., & Kozlov, M. V. (2020). Top-down factors contribute to differences in insect herbivory between saplings and mature trees in boreal and tropical forests. Oecologia, 193(1), 167–176. https://doi.org/10.1007/s00442-020-04659-z
Repository Staff Only: item control page