Login | Register

Design of a Systematic Comprehensive Integrative Indicator-based Sustainability Assessment Framework for Organizations

Title:

Design of a Systematic Comprehensive Integrative Indicator-based Sustainability Assessment Framework for Organizations

Farahdel, Sarah (2024) Design of a Systematic Comprehensive Integrative Indicator-based Sustainability Assessment Framework for Organizations. PhD thesis, Concordia University.

[thumbnail of Farahdel_PhD_S2025.pdf]
Text (application/pdf)
Farahdel_PhD_S2025.pdf - Accepted Version
Restricted to Repository staff only until 1 May 2027.
Available under License Spectrum Terms of Access.
10MB

Abstract

In response to the urgent need for organizations to comprehensively assess their sustainability performance, this research introduces a novel approach through the development of the Systematic Comprehensive Integrative Indicator-based Sustainability Assessment Framework (SCII-SAF). This framework addresses the limitations of existing sustainability assessment frameworks (SAFs) by providing a systematic and integrative method for selecting, evaluating, and understanding sustainability indicators (SIs). A thorough literature review of SAFs across diverse industries reveals a critical gap: the lack of a universal method for identifying the most relevant indicators and assessing their interdependencies without heavy reliance on subjective expert judgment. Current multi-criteria decision-making models, such as AHP, DEMATEL, TOPSIS and VIKOR, offer valuable insights but suffer from their dependence on expert opinion, leading to subjective assignments of importance. To address this, this research proposes an innovative data-driven approach that integrates correlation analysis and network analysis for evaluating static relationships and interdependencies, and system dynamics simulation to capture dynamic changes and the performance impact of SIs over time. This hybrid methodology, combining graph theory with machine learning, represents a unique approach not previously applied in academic literature. By minimizing reliance on expert judgment, the SCII-SAF enhances objectivity and analytical rigor. The SCII-SAF model provides a groundbreaking, data-driven framework that aligns SIs with long-term sustainability objectives, offering decision-makers valuable insights. It facilitates informed decision-making by quantifying trade-offs between economic, social, and environmental dimensions of sustainability, tailored to specific industry needs. By integrating Network Analysis for structural understanding and System Dynamics Simulation for temporal and dynamic insights, this research not only addresses significant limitations in existing SAFs but also represents a transformative contribution to sustainability assessment practices.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Concordia Institute for Information Systems Engineering
Item Type:Thesis (PhD)
Authors:Farahdel, Sarah
Institution:Concordia University
Degree Name:Ph. D.
Program:Information and Systems Engineering
Date:13 October 2024
Thesis Supervisor(s):Anjali, Awasthi and Chun, Wang
Keywords:Sustainability; Assessment Framework; Sustainability Indicators; Sustainability Development Goals; Network Analysis, System Dynamics Simulation, Urban Transportation Systems
ID Code:995301
Deposited By: SARAH FARAHDEL
Deposited On:17 Jun 2025 14:13
Last Modified:17 Jun 2025 14:13

References:

References
[1] Abbasi, M. H., Abdullah, B., Castaño-Rosa, R., Ahmad, M. W., & Rostami, A. (2023). A framework to identify and prioritise the key sustainability indicators: Assessment of heating systems in the built environment. Sustainable Cities and Society, 95, 104629. https://doi.org/10.1016/j.scs.2023.104629
[2] Adams, C. A., Muir, S., & Hoque, Z. (2014). Measurement of sustainability performance in the public sector. Sustainability Accounting, Management and Policy Journal, 5(1), 46–67. https://doi.org/10.1108/SAMPJ-04-2012-0018
[3] Adams, M. A., & Ghaly, A. E. (2006). An integral framework for sustainability assessment in agro-industries: Application to the Costa Rican coffee industry. International Journal of Sustainable Development & World Ecology, 13(2), 83–102. https://doi.org/10.1080/13504500609469664
[4] Adewumi, A. S., Onyango, V., Moyo, D., Al Waer, H., & Dawodu, A. (2023). Conceptualising the characteristics of the indicators of a neighbourhood sustainability assessment framework in a developing country context. Environmental Impact Assessment Review, 102, 107197. https://doi.org/10.1016/j.eiar.2023.107197
[5] Agarwal, S., Kant, R., & Shankar, R. (2022). Exploring sustainability balanced scorecard for performance evaluation of humanitarian organizations. Cleaner Logistics and Supply Chain, 3, 100026. https://doi.org/10.1016/j.clscn.2021.100026
[6] Ahi, P., & Searcy, C. (2015). Assessing sustainability in the supply chain: A triple bottom line approach. Applied Mathematical Modelling, 39(10–11), 2882–2896. https://doi.org/10.1016/j.apm.2014.10.055
[7] Ahmad, S., & Wong, K. Y. (2018). Sustainability assessment in the manufacturing industry: A review of recent studies. Benchmarking: An International Journal, 25(8), 3162–3179. https://doi.org/10.1108/BIJ-08-2017-0214
[8] Alonso, A., Monzón, A., & Cascajo, R. (2015). Comparative analysis of passenger transport sustainability in European cities. Ecological Indicators, 48, 578–592. https://doi.org/10.1016/j.ecolind.2014.09.022
[9] Ameen, R. F. M., & Mourshed, M. (2019). Urban sustainability assessment framework development: The ranking and weighting of sustainability indicators using analytic hierarchy process. Sustainable Cities and Society, 44, 356–366. https://doi.org/10.1016/j.scs.2018.10.020
[10] Azadi, M., Azizi, H., & Saen, R. F. (2023). Coordination of public-private transport and sustainability measurement: A futuristic perspective in transport. Journal of Cleaner Production, 420, 138464. https://doi.org/10.1016/j.jclepro.2023.138464
[11] Becker, J. (2005). Measuring progress towards sustainable development: An ecological framework for selecting indicators. Local Environment, 10(1), 87–101. https://doi.org/10.1080/1354983042000309333
[12] Bell, S., & Morse, S. (2010). Sustainability indicators: Measuring the immeasurable? (2. ed., rev. ed., repr). Earthscan Publ.
[13] Berardi, U. (2013). Sustainability assessment of urban communities through rating systems. Environment, Development and Sustainability, 15(6), 1573–1591. https://doi.org/10.1007/s10668-013-9462-0
[14] Bertolini, M., Braglia, M., & Carmignani, G. (2006). Application of the AHP methodology in making a proposal for a public work contract. International Journal of Project Management, 24(5), 422–430. https://doi.org/10.1016/j.ijproman.2006.01.005
[15] Bhakar, V., Digalwar, A. K., & Sangwan, K. S. (2018). Sustainability Assessment Framework for Manufacturing Sector – A Conceptual Model. Procedia CIRP, 69, 248–253. https://doi.org/10.1016/j.procir.2017.11.101
[16] Bhyan, P., Shrivastava, B., & Kumar, N. (2023). Allocating weightage to sustainability criteria’s for performance assessment of group housing developments: Using fuzzy analytic hierarchy process. Journal of Building Engineering, 65, 105684. https://doi.org/10.1016/j.jobe.2022.105684
[17] Bond, A., Morrison-Saunders, A., & Pope, J. (2012). Sustainability assessment: The state of the art. Impact Assessment and Project Appraisal, 30(1), 53–62. https://doi.org/10.1080/14615517.2012.661974
[18] Booth, A., Sutton, A., & Papaioannou, D. (2016). Systematic approaches to a successful literature review (Second edition). SAGE Publications, Ltd.
[19] Booysen, F. (2002). An Overview and Evaluation of Composite Indices of Development. Social Indicators Research, 59(2), 115–151. https://doi.org/10.1023/A:1016275505152
[20] Borshchev, A., & Filippov, A. (2004). From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques, Tools.
[21] Bozdağ, C. E., Kahraman, C., & Ruan, D. (2003). Fuzzy group decision making for selection among computer integrated manufacturing systems. Computers in Industry, 51(1), 13–29. https://doi.org/10.1016/S0166-3615(03)00029-0
[22] Brace, I. (2008). Questionnaire Design: How to Plan, Structure and Write Survey Material for Effective Market Research. (2nd edition). Kogan Page Publishers.
[23] Brandenburg, M., Gruchmann, T., & Oelze, N. (2019). Sustainable Supply Chain Management—A Conceptual Framework and Future Research Perspectives. Sustainability, 11(24), 7239. https://doi.org/10.3390/su11247239
[24] Breuer, A., Janetschek, H., & Malerba, D. (2019). Translating Sustainable Development Goal (SDG) Interdependencies into Policy Advice. Sustainability, 11(7), 2092. https://doi.org/10.3390/su11072092
[25] Brundtland. (1987). Report of the World Commission on Environment and Development: Our Common Future (p. 247). NGO Committee on Education of the Conference of NGOs from United Nations.
[26] Bryson, J. M. (2007). What to do when Stakeholders matter Stakeholder Identification and Analysis Techniques. Public Management Review, 6(1), 21–53. https://doi.org/10.1080/14719030410001675722
[27] Bui, N. T., Kawamura, A., Kim, K. W., Prathumratana, L., Kim, T.-H., Yoon, S.-H., Jang, M., Amaguchi, H., Bui, D. D., & Truong, N. T. (2017). Proposal of an indicator-based sustainability assessment framework for the mining sector of APEC economies. Resources Policy, 52, 405–417. https://doi.org/10.1016/j.resourpol.2017.05.005
[28] Buys, L., Mengersen, K., Johnson, S., Van Buuren, N., & Chauvin, A. (2014). Creating a Sustainability Scorecard as a predictive tool for measuring the complex social, economic and environmental impacts of industries, a case study: Assessing the viability and sustainability of the dairy industry. Journal of Environmental Management, 133, 184–192. https://doi.org/10.1016/j.jenvman.2013.12.013
[29] Buzási, A., & Csete, M. (2015). Sustainability Indicators in Assessing Urban Transport Systems. Periodica Polytechnica Transportation Engineering, 43(3), 138–145. https://doi.org/10.3311/PPtr.7825
[30] Cagno, E., Negri, M., Neri, A., & Giambone, M. (2023). One Framework to Rule Them All: An Integrated, Multi-level and Scalable Performance Measurement Framework of Sustainability, Circular Economy and Industrial Symbiosis. Sustainable Production and Consumption, 35, 55–71. https://doi.org/10.1016/j.spc.2022.10.016
[31] Campos, V. B. G., Ramos, R. A. R., & de Miranda e Siva Correia, D. (2009). Multi‐criteria analysis procedure for sustainable mobility evaluation in urban areas. Journal of Advanced Transportation, 43(4), 371–390. https://doi.org/10.1002/atr.5670430403
[32] Carter, C. R., & Rogers, D. S. (2008). A framework of sustainable supply chain management: Moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360–387. https://doi.org/10.1108/09600030810882816
[33] Castillo, H., & Pitfield, D. E. (2010). ELASTIC – A methodological framework for identifying and selecting sustainable transport indicators. Transportation Research Part D: Transport and Environment, 15(4), 179–188. https://doi.org/10.1016/j.trd.2009.09.002
[34] Chakhtoura, C., & Pojani, D. (2016). Indicator-based evaluation of sustainable transport plans: A framework for Paris and other large cities. Transport Policy, 50, 15–28. https://doi.org/10.1016/j.tranpol.2016.05.014
[35] Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655. https://doi.org/10.1016/0377-2217(95)00300-2
[36] Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1–9.
[37] Cheng, C.-H., Yang, K.-L., & Hwang, C.-L. (1999). Evaluating attack helicopters by AHP based on linguistic variable weight. European Journal of Operational Research, 116(2), 423–435. https://doi.org/10.1016/S0377-2217(98)00156-8
[38] Cinelli, M., Coles, S. R., & Kirwan, K. (2014). Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecological Indicators, 46, 138–148. https://doi.org/10.1016/j.ecolind.2014.06.011
[39] Coenen, J., Glass, L.-M., & Sanderink, L. (2022). Two degrees and the SDGs: A network analysis of the interlinkages between transnational climate actions and the Sustainable Development Goals. Sustainability Science, 17(4), 1489–1510. https://doi.org/10.1007/s11625-021-01007-9
[40] Cohen, B., & Kietzmann, J. (2014). Ride On! Mobility Business Models for the Sharing Economy. Organization & Environment, 27(3), 279–296. https://doi.org/10.1177/1086026614546199
[41] Da Ponte, M., Foley, M., & Cho, C. H. (2020). Assessing the Degree of Sustainability Integration in Canadian Public Sector Procurement. Sustainability, 12(14), 5550. https://doi.org/10.3390/su12145550
[42] De Andrade Guerra, J. B. S. O., Garcia, J., De Andrade Lima, M., Barbosa, S. B., Heerdt, M. L., & Berchin, I. I. (2018). A proposal of a Balanced Scorecard for an environmental education program at universities. Journal of Cleaner Production, 172, 1674–1690. https://doi.org/10.1016/j.jclepro.2016.11.179
[43] Dias, F. T., Leite, M. E., Fernandes, E. N., Cembranel, P., Rita, R. M., & De Andrade Guerra, J. B. S. O. (2023). Urban sustainability as a social function of the city: Strategic correlation based on legislation with the new urban agenda and sustainable development goals. Sustainable Development, sd.2726. https://doi.org/10.1002/sd.2726
[44] Dubey, R., Gunasekaran, A., & Samar Ali, S. (2015). Exploring the relationship between leadership, operational practices, institutional pressures and environmental performance: A framework for green supply chain. International Journal of Production Economics, 160, 120–132. https://doi.org/10.1016/j.ijpe.2014.10.001
[45] Dvaipayana, M. A. T., Ridwan, A. Y., & Santosa, B. (2021). Design of Sustainable Supply Chain Performance Monitoring System for Construction Material Management: Sustainable Balanced Scorecard – SCOR – ISO 14001 Model. 2021 International Conference Advancement in Data Science, E-Learning and Information Systems (ICADEIS), 1–6. https://doi.org/10.1109/ICADEIS52521.2021.9702023
[46] Egilmez, G., Gumus, S., & Kucukvar, M. (2015). Environmental sustainability benchmarking of the U.S. and Canada metropoles: An expert judgment-based multi-criteria decision making approach. Cities, 42, 31–41. https://doi.org/10.1016/j.cities.2014.08.006
[47] Elkington, J. (1994). Towards the Sustainable Corporation: Win-Win-Win Business Strategies for Sustainable Development. California Management Review, 36(2), 90–100. https://doi.org/10.2307/41165746
[48] Elkington, J. (1998). ACCOUNTING FOR THE TRIPLE BOTTOM LINE. Measuring Business Excellence, 2(3), 18–22. https://doi.org/10.1108/eb025539
[49] Epstein, M. J., & Wisner, P. S. (2001). Using a Balanced Scorecard to Implement Sustainability. Environmental Quality Management, 11(2), 1–10. https://doi.org/10.1002/tqem.1300
[50] Ercan, T., Onat, N. C., & Tatari, O. (2016). Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach. Journal of Cleaner Production, 133, 1260–1276. https://doi.org/10.1016/j.jclepro.2016.06.051
[51] Erol, I., Sencer, S., & Sari, R. (2011). A new fuzzy multi-criteria framework for measuring sustainability performance of a supply chain. Ecological Economics, 70(6), 1088–1100. https://doi.org/10.1016/j.ecolecon.2011.01.001
[52] Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster Analysis (1st ed.). Wiley. https://doi.org/10.1002/9780470977811
[53] Farahdel, S. (2020). A Visual Performance Management Framework to Improve Decision Making using Lean Six Sigma [Masters Thesis]. Concordia University.
[54] Farahdel, S., Wang, C., & Awasthi, A. (2024). Assessing Sustainability for Urban Transportation Systems: A Comparative Study and Key Considerations. In Next-Generation Cities Encyclopedia (Vol. 4).
[55] Ferreira, L. M. D. F., & Silva, C. (2016). Integrating Sustainability Metrics in the Supply Chain Performance Measurement System. In M. Peris-Ortiz, J. J. Ferreira, L. Farinha, & N. O. Fernandes (Eds.), Multiple Helix Ecosystems for Sustainable Competitiveness (pp. 113–132). Springer International Publishing. https://doi.org/10.1007/978-3-319-29677-7_8
[56] Ferreira, L. M. D. F., Silva, C., & Azevedo, S. G. (2016). An environmental balanced scorecard for supply chain performance measurement (Env_BSC_4_SCPM). Benchmarking: An International Journal, 23(6), 1398–1422. https://doi.org/10.1108/BIJ-08-2013-0087
[57] Figge, F., Hahn, T., Schaltegger, S., & Wagner, M. (2002). The Sustainability Balanced Scorecard – linking sustainability management to business strategy. Business Strategy and the Environment, 11(5), 269–284. https://doi.org/10.1002/bse.339
[58] Filzmoser, P., Hron, K., & Clemens Reimann. (2009). Principal component analysis for compositional data with outliers. Environmetrics. https://doi.org/10.1002/env.966
[59] Fisk, P. (2010). People Planet Profit: How to Embrace Sustainability for Innovation and Business Growth. Kogan Page Publishers.
[60] Forrester, J. W. (1971). World Dynamics. Wright-Allen Press, Inc.
[61] Forrester, J. W. (2009). Some Basic Concepts in System Dynamics (p. 17). Sloan School of Management Massachusetts Institute of Technology. https://sites.cc.gatech.edu/classes/AY2013/cs7601_spring/papers/Forrester-SystemDynamics.pdf
[62] Fowler, F. (2013). Survey Research Methods (5th ed.).
[63] Francis, A., & Thomas, A. (2022). A System Dynamics Simulation-Based Sustainability Benchmarking. 2022 Winter Simulation Conference (WSC), 796–807. https://doi.org/10.1109/WSC57314.2022.10015300
[64] Gambelli, D., Solfanelli, F., Orsini, S., & Zanoli, R. (2021). Measuring the Economic Performance of Small Ruminant Farms Using Balanced Scorecard and Importance-Performance Analysis: A European Case Study. Sustainability, 13(6), 3321. https://doi.org/10.3390/su13063321
[65] Gani, A., Asjad, M., Talib, F., Khan, Z. A., & Siddiquee, A. N. (2021). Identification, ranking and prioritisation of vital environmental sustainability indicators in manufacturing sector using pareto analysis cum best-worst method. International Journal of Sustainable Engineering, 14(3), 226–244. https://doi.org/10.1080/19397038.2021.1889705
[66] Gao, Z., Huang, H., Guo, J., Yang, L., & Wu, J. (2023). Future urban transport management. Frontiers of Engineering Management, 10(3), 534–539. https://doi.org/10.1007/s42524-023-0255-3
[67] Gasparatos, A., El-Haram, M., & Horner, M. (2008). A critical review of reductionist approaches for assessing the progress towards sustainability. Environmental Impact Assessment Review, 28(4–5), 286–311. https://doi.org/10.1016/j.eiar.2007.09.002
[68] Gasparatos, A., & Scolobig, A. (2012). Choosing the most appropriate sustainability assessment tool. https://doi.org/10.1016/j.ecolecon.2012.05.005
[69] Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. https://doi.org/10.1016/j.jclepro.2016.12.048
[70] Ghaffarzadegan, N., Lyneis, J., & Richardson, G. P. (2011). How small system dynamics models can help the public policy process. System Dynamics Review, 27(1), 22–44. https://doi.org/10.1002/sdr.442
[71] Gibson, R. B. (2006a). Sustainability assessment: Basic components of a practical approach. Impact Assessment and Project Appraisal, 24(3), 170–182. https://doi.org/10.3152/147154606781765147
[72] Gibson, R. B. (2006b). Sustainability assessment: Basic components of a practical approach. Impact Assessment and Project Appraisal, 24(3), 170–182. https://doi.org/10.3152/147154606781765147
[73] Gillis, D., Semanjski, I., & Lauwers, D. (2015). How to Monitor Sustainable Mobility in Cities? Literature Review in the Frame of Creating a Set of Sustainable Mobility Indicators. Sustainability, 8(1), 29. https://doi.org/10.3390/su8010029
[74] Gordon, G. (1961). System Simulation. Prentice Hall.
[75] GRI. (2020). The GRI Standards—A Guide for Policy Makers. GRI. https://www.globalreporting.org/media/nmmnwfsm/gri-policymakers-guide.pdf
[76] Gross, J. L., & Yellen, J. (2005). Graph Theory and Its Applications (2nd edition). Chapman and Hall/CRC. https://doi.org/10.1201/9781420057140
[77] Gudlaugsson, B., Dawood, H., Pillai, G., & Short, M. (2021). First Step Towards a System Dynamic Sustainability Assessment Model for Urban Energy Transition. In I. Mporas, P. Kourtessis, A. Al-Habaibeh, A. Asthana, V. Vukovic, & J. Senior (Eds.), Energy and Sustainable Futures (pp. 225–232). Springer International Publishing. https://doi.org/10.1007/978-3-030-63916-7_28
[78] Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International Journal of Production Economics, 87(3), 333–347. https://doi.org/10.1016/j.ijpe.2003.08.003
[79] Guo, R., & Wu, Z. (2022). Social sustainable supply chain performance assessment using hybrid fuzzy-AHP–DEMATEL–VIKOR: A case study in manufacturing enterprises. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02565-3
[80] Hacking, T., & Guthrie, P. (2008). A framework for clarifying the meaning of Triple Bottom-Line, Integrated, and Sustainability Assessment. Environmental Impact Assessment Review, 28(2–3), 73–89. https://doi.org/10.1016/j.eiar.2007.03.002
[81] Haghshenas, H., & Vaziri, M. (2012). Urban sustainable transportation indicators for global comparison. Ecological Indicators, 15(1), 115–121. https://doi.org/10.1016/j.ecolind.2011.09.010
[82] Hair, J. F. (2011). Multivariate Data Analysis: An Overview. Springer.
[83] Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis (7th edition). Pearson.
[84] Hansen, E. G., & Schaltegger, S. (2016a). The Sustainability Balanced Scorecard: A Systematic Review of Architectures. Journal of Business Ethics, 133(2), 193–221. https://doi.org/10.1007/s10551-014-2340-3
[85] Hansen, E. G., & Schaltegger, S. (2016b). The Sustainability Balanced Scorecard: A Systematic Review of Architectures. Journal of Business Ethics, 133(2), 193–221. https://doi.org/10.1007/s10551-014-2340-3
[86] Hassini, E., Surti, C., & Searcy, C. (2012). A literature review and a case study of sustainable supply chains with a focus on metrics. International Journal of Production Economics, 140(1), 69–82. https://doi.org/10.1016/j.ijpe.2012.01.042
[87] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning—Data Mining, Inference, and Prediction (2nd Edition). Springer.
[88] Hervani, A. A., Helms, M. M., & Sarkis, J. (2005). Performance measurement for green supply chain management. Benchmarking: An International Journal, 12(4), 330–353. https://doi.org/10.1108/14635770510609015
[89] Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems.
[90] Hsu, C.-C., & Sandford, B. A. (2007). The Delphi Technique: Making Sense Of Consensus. Practical Assessment, Research, and Evaluation, 12(10). https://doi.org/10.7275/pdz9-th90
[91] Husgafvel, R., Pajunen, N., Virtanen, K., Paavola, I.-L., Päällysaho, M., Inkinen, V., Heiskanen, K., Dahl, O., & Ekroos, A. (2015). Social sustainability performance indicators – experiences from process industry. International Journal of Sustainable Engineering, 8(1), 14–25. https://doi.org/10.1080/19397038.2014.898711
[92] Ishizaka, A., & Labib, A. (2011). Review of the main developments in the analytic hierarchy process. Expert Systems with Applications, 38(11), 14336–14345. https://doi.org/10.1016/j.eswa.2011.04.143
[93] Janssen, M., & Kuk, G. (2016). The challenges and limits of big data algorithms in technocratic governance. Government Information Quarterly, 33(3), 371–377. https://doi.org/10.1016/j.giq.2016.08.011
[94] Jauhar, S. K., Pant, M., & Nagar, A. K. (2017). Sustainable educational supply chain performance measurement through DEA and differential evolution: A case on Indian HEI. Journal of Computational Science, 19, 138–152. https://doi.org/10.1016/j.jocs.2016.10.007
[95] Jayakrishna, K., Vinodh, S., & Anish, S. (2016). A Graph Theory approach to measure the performance of sustainability enablers in a manufacturing organization. International Journal of Sustainable Engineering, 9(1), 47–58. https://doi.org/10.1080/19397038.2015.1050970
[96] Jiang, Q., Liu, Z., Liu, W., Li, T., Cong, W., Zhang, H., & Shi, J. (2018). A principal component analysis based three-dimensional sustainability assessment model to evaluate corporate sustainable performance. Journal of Cleaner Production, 187, 625–637. https://doi.org/10.1016/j.jclepro.2018.03.255
[97] Jiménez-Fernández, E., Sánchez, A., & Ortega-Pérez, M. (2022). Dealing with weighting scheme in composite indicators: An unsupervised distance-machine learning proposal for quantitative data. Socio-Economic Planning Sciences, 83, 101339. https://doi.org/10.1016/j.seps.2022.101339
[98] Kaabi, B. R. A., & Jowmer, B. (2018). The Use of Sustainable Balanced Scorecard for Strategic Planning and Resource Efficiency Improvement based on Supply Chain Performance Measurement and Productivity. 7(5), 12.
[99] Kaganski, S., Majak, J., & Karjust, K. (2018). Fuzzy AHP as a tool for prioritization of key performance indicators. Procedia CIRP, 72, 1227–1232. https://doi.org/10.1016/j.procir.2018.03.097
[100] Kahraman, C., Onar, S. C., & Oztaysi, B. (2015). Fuzzy Multicriteria Decision-Making: A Literature Review: International Journal of Computational Intelligence Systems, 8(4), 637. https://doi.org/10.1080/18756891.2015.1046325
[101] Kaplan, R. S., & Norton, D. P. (1992). The Balanced Scorecard—Measures that Drive Performance. Harvard Business Review. https://hbr.org/1992/01/the-balanced-scorecard-measures-that-drive-performance-2
[102] Karjalainen, L. E., & Juhola, S. (2021). Urban transportation sustainability assessments: A systematic review of literature. Transport Reviews, 41(5), 659–684. https://doi.org/10.1080/01441647.2021.1879309
[103] Karjalainen, L., & Juhola, S. (2019). Framework for Assessing Public Transportation Sustainability in Planning and Policy-Making. Sustainability, 11(4), 1028. https://doi.org/10.3390/su11041028
[104] Kaur, J., Sidhu, R., Awasthi, A., Chauhan, S., & Goyal, S. (2018). A DEMATEL based approach for investigating barriers in green supply chain management in Canadian manufacturing firms. International Journal of Production Research, 56(1–2), Article 1–2. https://doi.org/10.1080/00207543.2017.1395522
[105] Kaya, R., & Yet, B. (2019). Building Bayesian networks based on DEMATEL for multiple criteria decision problems: A supplier selection case study. Expert Systems with Applications, 134, 234–248. https://doi.org/10.1016/j.eswa.2019.05.053
[106] Klein, N., Ramos, T., & Deutz, P. (2020). Circular Economy Practices and Strategies in Public Sector Organizations: An Integrative Review. Sustainability, 12(10), 4181. https://doi.org/10.3390/su12104181
[107] Klewitz, J., & Hansen, E. G. (2014). Sustainability-oriented innovation of SMEs: A systematic review. Journal of Cleaner Production, 65, 57–75. https://doi.org/10.1016/j.jclepro.2013.07.017
[108] Kou, G., Lu, Y., Peng, Y., & Shi, Y. (2012). EVALUATION OF CLASSIFICATION ALGORITHMS USING MCDM AND RANK CORRELATION. International Journal of Information Technology & Decision Making, 11(01), 197–225. https://doi.org/10.1142/S0219622012500095
[109] Kuhlman, T., & Farrington, J. (2010). What is Sustainability? Sustainability, 2(11), 3436–3448. https://doi.org/10.3390/su2113436
[110] Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer New York. https://doi.org/10.1007/978-1-4614-6849-3
[111] Kutner, M. H., & Neter, J. (2004). Applied Linear Regression Models (4th edition). McGraw-Hill/Irwin.
[112] Leal Filho, W., Skanavis, C., Kounani, A., Brandli, L. L., Shiel, C., Paço, A. do, Pace, P., Mifsud, M., Beynaghi, A., Price, E., Salvia, A. L., Will, M., & Shula, K. (2019). The role of planning in implementing sustainable development in a higher education context. Journal of Cleaner Production, 235, 678–687. https://doi.org/10.1016/j.jclepro.2019.06.322
[113] Lee, K.-H., & Farzipoor Saen, R. (2012). Measuring corporate sustainability management: A data envelopment analysis approach. International Journal of Production Economics, 140(1), 219–226. https://doi.org/10.1016/j.ijpe.2011.08.024
[114] Leksono, E., Suparno, & Vanany, I. (2018). Using DEMATEL approach to develop relationships of performance indicators on sustainable service only supply chain performance measurement. IOP Conference Series: Materials Science and Engineering, 337, 012023. https://doi.org/10.1088/1757-899X/337/1/012023
[115] Li, T., Zhang, H., Yuan, C., Liu, Z., & Fan, C. (2012). A PCA-based method for construction of composite sustainability indicators. The International Journal of Life Cycle Assessment, 17(5), 593–603. https://doi.org/10.1007/s11367-012-0394-y
[116] Lim, C. I., & Biswas, W. K. (2018). Development of triple bottom line indicators for sustainability assessment framework of Malaysian palm oil industry. Clean Technologies and Environmental Policy, 20(3), 539–560. https://doi.org/10.1007/s10098-017-1453-7
[117] Lima, J. P., Lima, R. D. S., & Silva, A. N. R. D. (2014). Evaluation and Selection of Alternatives for the Promotion of Sustainable Urban Mobility. Procedia - Social and Behavioral Sciences, 162, 408–418. https://doi.org/10.1016/j.sbspro.2014.12.222
[118] Lindén, D., Cinelli, M., Spada, M., Becker, W., Gasser, P., & Burgherr, P. (2021). A framework based on statistical analysis and stakeholders’ preferences to inform weighting in composite indicators. Environmental Modelling & Software, 145, 105208. https://doi.org/10.1016/j.envsoft.2021.105208
[119] Litman, T. (2007). Developing Indicators for Comprehensive and Sustainable Transport Planning. Transportation Research Record: Journal of the Transportation Research Board, 2017(1), 10–15. https://doi.org/10.3141/2017-02
[120] Litman, T. (2008). 02 Current MobilityTrends – Implications for Sustainability.
[121] Lukman, R., Krajnc, D., & Glavič, P. (2010). University ranking using research, educational and environmental indicators. Journal of Cleaner Production, 18(7), 619–628. https://doi.org/10.1016/j.jclepro.2009.09.015
[122] Lundberg, K., Balfors, B., & Folkeson, L. (2009). Framework for environmental performance measurement in a Swedish public sector organization. Journal of Cleaner Production, 17(11), 1017–1024. https://doi.org/10.1016/j.jclepro.2009.01.011
[123] Lusseau, D., & Mancini, F. (2019). Income-based variation in Sustainable Development Goal interaction networks. Nature Sustainability, 2, 242–247. https://doi.org/10.1038/s41893-019-0231-4
[124] Macal, C. M., & North, M. J. (2009). Agent-based modeling and simulation. Proceedings of the 2009 Winter Simulation Conference (WSC), 86–98. https://doi.org/10.1109/WSC.2009.5429318
[125] Mainali, B., & Silveira, S. (2015). Using a sustainability index to assess energy technologies for rural electrification. Renewable and Sustainable Energy Reviews, 41, 1351–1365. https://doi.org/10.1016/j.rser.2014.09.018
[126] Mardani, A., Jusoh, A., Md Nor, K., Khalifah, Z., Zakwan, N., & Valipour, A. (2015). Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Economic Research-Ekonomska Istraživanja, 28(1), 516–571. https://doi.org/10.1080/1331677X.2015.1075139
[127] Marletto, G., & Mameli, F. (2012). A participative procedure to select indicators of policies for sustainable urban mobility. Outcomes of a national test. European Transport Research Review, 4(2), 79–89. https://doi.org/10.1007/s12544-012-0075-8
[128] Martilla, J. A., & James, J. C. (1977). Importance-Performance Analysis. Journal of Marketing, 41(1), 77–79.
[129] Mayer, A. L. (2008). Strengths and weaknesses of common sustainability indices for multidimensional systems. Environment International, 34(2), 277–291. https://doi.org/10.1016/j.envint.2007.09.004
[130] Medel-González, F., García-Ávila, L., Acosta-Beltrán, A., & Hernández, C. (2013). Measuring and Evaluating Business Sustainability: Development and Application of Corporate Index of Sustainability Performance. In M. G. Erechtchoukova, P. A. Khaiter, & P. Golinska (Eds.), Sustainability Appraisal: Quantitative Methods and Mathematical Techniques for Environmental Performance Evaluation (pp. 33–61). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32081-1_3
[131] Medel-González, F., García-Ávila, L. F., Salomon, V. A. P., Marx-Gómez, J., & Hernández, C. T. (2016). Sustainability performance measurement with Analytic Network Process and balanced scorecard: Cuban practical case. Production, 26(3), 527–539. https://doi.org/10.1590/0103-6513.189315
[132] Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335–341.
[133] Mio, C., Costantini, A., & Panfilo, S. (2021). Performance measurement tools for sustainable business: A systematic literature review on the sustainability balanced scorecard use. Corporate Social Responsibility and Environmental Management, n/a(n/a). https://doi.org/10.1002/csr.2206
[134] Miranda, H. D. F., & Rodrigues Da Silva, A. N. (2012). Benchmarking sustainable urban mobility: The case of Curitiba, Brazil. Transport Policy, 21, 141–151. https://doi.org/10.1016/j.tranpol.2012.03.009
[135] Molina-Gómez, N. I., Rodríguez-Rojas, K., Calderón-Rivera, D., Díaz-Arévalo, J. L., & López-Jiménez, P. A. (2020). Using Machine Learning Tools to Classify Sustainability Levels in the Development of Urban Ecosystems. Sustainability, 12(8), 3326. https://doi.org/10.3390/su12083326
[136] Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis (4th edition). John Wiley & Sons, Ltd. Publication.
[137] Moon, Y. B. (2017). Simulation modelling for sustainability: A review of the literature. International Journal of Sustainable Engineering, 10(1), 2–19. https://doi.org/10.1080/19397038.2016.1220990
[138] Morais, D. O. C., & Barbieri, J. C. (2022). Supply Chain Social Sustainability: Unveiling Focal Firm’s Archetypes under the Lens of Stakeholder and Contingency Theory. Sustainability, 14(3), 1185. https://doi.org/10.3390/su14031185
[139] Morrison-Saunders, A., Pope, J., Bond, A., & Retief, F. (2014). Towards sustainability assessment follow-up. Environmental Impact Assessment Review, 45, 38–45. https://doi.org/10.1016/j.eiar.2013.12.001
[140] Na, H. J., Lee, K. C., Choi, S. U., & Kim, S. T. (2020). Exploring CEO Messages in Sustainability Management Reports: Applying Sentiment Mining and Sustainability Balanced Scorecard Methods. Sustainability, 12(2), 590. https://doi.org/10.3390/su12020590
[141] Namavar, M., Moghaddam, M. R. A., & Shafiei, M. (2023). Developing an indicator-based assessment framework for assessing the sustainability of urban water management. Sustainable Production and Consumption, 40, 1–12. https://doi.org/10.1016/j.spc.2023.06.006
[142] Nathan, H. S. K., & Reddy, B. S. (2011). Criteria selection framework for sustainable development indicators. International Journal of Multicriteria Decision Making. https://www.inderscienceonline.com/doi/10.1504/IJMCDM.2011.041189
[143] Nathanail, E., Mitropoulos, L., Karakikes, I., & Adamos, G. (2018). Sustainability Framework for Assessing Urban Freight Transportation Measures. Logistics & Sustainable Transport, 9(2), 16–36. https://doi.org/10.2478/jlst-2018-0007
[144] NCSSF. (2005). Science Biodiversity and Sustainable Forestry: A Findings Report of the National Commission on Science for Sustainable Forestry (NCSSF). National Council for Science and the Environment. https://www.dorisduke.org/globalassets/news-and-publications/imported-news-and-publications/ncssffindingsreport2005.pdf
[145] Neely, A., Gregory, M., & Platts, K. (1995). Performance measurement system design: A literature review and research agenda. International Journal of Operations & Production Management, 15(4), 80–116. https://doi.org/10.1108/01443579510083622
[146] Negri, M., Cagno, E., Colicchia, C., & Sarkis, J. (2021). Integrating sustainability and resilience in the supply chain: A systematic literature review and a research agenda. Business Strategy and the Environment, 30(7), 2858–2886. https://doi.org/10.1002/bse.2776
[147] Neri, A., Cagno, E., Lepri, M., & Trianni, A. (2021). A triple bottom line balanced set of key performance indicators to measure the sustainability performance of industrial supply chains. Sustainable Production and Consumption, 26, 648–691. https://doi.org/10.1016/j.spc.2020.12.018
[148] Ness, B., Urbel-Piirsalu, E., Anderberg, S., & Olsson, L. (2007). Categorising tools for sustainability assessment. Ecological Economics, 60(3), 498–508. https://doi.org/10.1016/j.ecolecon.2006.07.023
[149] Newman, M. (2010). Networks: An Introduction (1st edition). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
[150] Niemeijer, D., & De Groot, R. S. (2008). A conceptual framework for selecting environmental indicator sets. Ecological Indicators, 8(1), 14–25. https://doi.org/10.1016/j.ecolind.2006.11.012
[151] Olakitan Atanda, J. (2019). Developing a social sustainability assessment framework. Sustainable Cities and Society, 44, 237–252. https://doi.org/10.1016/j.scs.2018.09.023
[152] Oliveira, L. R., Medeiros, R. M., Bragança-Terra, P., & GonçalvesQuelhas, O. L. (2012). Sustainability: The evolution of concepts to implementation as strategy in organizations. Production, 22(1), 70–82. http://dx.doi.org/10.1590/ S0103-65132011005000062.
[153] Opferkuch, K., Caeiro, S., Salomone, R., & Ramos, T. B. (2021). Circular economy in corporate sustainability reporting: A review of organisational approaches. Business Strategy and the Environment, 30(8), 4015–4036. https://doi.org/10.1002/bse.2854
[154] Opricovic, S., & Tzeng, G.-H. (2007). Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178(2), 514–529. https://doi.org/10.1016/j.ejor.2006.01.020
[155] Pagell, M., & Wu, Z. (2009). Building a More Complete Theory of Sustainable Supply Chain Management Using Case Studies of 10 Exemplars. Journal of Supply Chain Management, 45(2), 37–56. https://doi.org/10.1111/j.1745-493X.2009.03162.x
[156] Pan, W., Yu, C., Bai, Y., & Du, J. (2023a). A four-level hierarchical framework for reviewing infrastructure sustainability assessment systems. Renewable and Sustainable Energy Reviews, 187, 113764. https://doi.org/10.1016/j.rser.2023.113764
[157] Pan, W., Yu, C., Bai, Y., & Du, J. (2023b). A four-level hierarchical framework for reviewing infrastructure sustainability assessment systems. Renewable and Sustainable Energy Reviews, 187, 113764. https://doi.org/10.1016/j.rser.2023.113764
[158] Parmenter, D. (2019). Key Performance Indicators: Developing, Implementing, and Using Winning KPIs (4th edition). Wiley.
[159] Pathak, D. K., Shankar, R., & Choudhary, A. (2021). Performance assessment framework based on competitive priorities for sustainable freight transportation systems. Transportation Research Part D: Transport and Environment, 90, 102663. https://doi.org/10.1016/j.trd.2020.102663
[160] Pearl, J. (2003). CAUSALITY: MODELS, REASONING, AND INFERENCE. Econometric Theory, 19, 675–685. https://doi.org/10.1017/S0266466603004109
[161] Pei, Y. L., Amekudzi, A. A., Meyer, M. D., Barrella, E. M., & Ross, C. L. (2010). Performance Measurement Frameworks and Development of Effective Sustainable Transport Strategies and Indicators. Transportation Research Record: Journal of the Transportation Research Board, 2163(1), 73–80. https://doi.org/10.3141/2163-08
[162] Pham‐Truffert, M., Metz, F., Fischer, M., Rueff, H., & Messerli, P. (2020). Interactions among Sustainable Development Goals: Knowledge for identifying multipliers and virtuous cycles. Sustainable Development, 28(5), 1236–1250. https://doi.org/10.1002/sd.2073
[163] Phillis, Y. A., & Andriantiatsaholiniaina, L. A. (2001). Sustainability: An ill-defined concept and its assessment using fuzzy logic. Ecological Economics, 37(3), 435–456. https://doi.org/10.1016/S0921-8009(00)00290-1
[164] Pintér, L., Hardi, P., & Peter Bartelmus. (2005). Sustainable Development Indicators: Proposals for the Way Forward. United Nations Division for Sustainable Development.
[165] Pope, J., Annandale, D., & Morrison-Saunders, A. (2004a). Conceptualising sustainability assessment. Environmental Impact Assessment Review, 24(6), 595–616. https://doi.org/10.1016/j.eiar.2004.03.001
[166] Pope, J., Annandale, D., & Morrison-Saunders, A. (2004b). Conceptualising sustainability assessment. Environmental Impact Assessment Review, 24(6), 595–616. https://doi.org/10.1016/j.eiar.2004.03.001
[167] Pope, J., Bond, A., Hugé, J., & Morrison-Saunders, A. (2017). Reconceptualising sustainability assessment. Environmental Impact Assessment Review, 62, 205–215. https://doi.org/10.1016/j.eiar.2016.11.002
[168] Poveda, C. A., & Lipsett, M. (2011). A Review of Sustainability Assessment and Sustainability/Environmental Rating Systems and Credit Weighting Tools. Journal of Sustainable Development, 4(6), p36. https://doi.org/10.5539/jsd.v4n6p36
[169] Pradhan, P., Costa, L., Rybski, D., Lucht, W., & Kropp, J. P. (2017). A Systematic Study of Sustainable Development Goal (SDG) Interactions. Earth’s Future, 5(11), 1169–1179. https://doi.org/10.1002/2017EF000632
[170] Pribićević, I., & Boris Delibašić. (2021). Critical sustainability indicators identification and cause–effect relationships analysis for sustainable organization strategy based on fuzzy DEMATEL. Environment, Development and Sustainability, 23, 17263–17304.
[171] Ramani, T. L., Zietsman, J., Gudmundsson, H., Hall, R. P., & Marsden, G. (2011). Framework for Sustainability Assessment by Transportation Agencies. Transportation Research Record: Journal of the Transportation Research Board, 2242(1), 9–18. https://doi.org/10.3141/2242-02
[172] Ramos, T. B., & Caeiro, S. (2010a). Meta-performance evaluation of sustainability indicators. Ecological Indicators, 10(2), 157–166. https://doi.org/10.1016/j.ecolind.2009.04.008
[173] Ramos, T. B., & Caeiro, S. (2010b). Meta-performance evaluation of sustainability indicators. Ecological Indicators, 10(2), 157–166. https://doi.org/10.1016/j.ecolind.2009.04.008
[174] Ramos, T. B., Domingues, A. R., Caeiro, S., Cartaxo, J., Painho, M., Antunes, P., Santos, R., Videira, N., Walker, R. M., & Huisingh, D. (2021). Co-creating a sustainability performance assessment tool for public sector organisations. Journal of Cleaner Production, 320, 128738. https://doi.org/10.1016/j.jclepro.2021.128738
[175] Reed, M. S. (2008). Stakeholder participation for environmental management: A literature review. Biological Conservation, 141(10), 2417–2431. https://doi.org/10.1016/j.biocon.2008.07.014
[176] Reed, M. S., Graves, A., Dandy, N., Posthumus, H., Hubacek, K., Morris, J., Prell, C., Quinn, C. H., & Stringer, L. C. (2009). Who’s in and why? A typology of stakeholder analysis methods for natural resource management. Journal of Environmental Management, 90(5), 1933–1949. https://doi.org/10.1016/j.jenvman.2009.01.001
[177] Reefke, H., & Sundaram, D. (2017). Key themes and research opportunities in sustainable supply chain management – identification and evaluation. Omega, 66, 195–211. https://doi.org/10.1016/j.omega.2016.02.003
[178] Richardson, G. P. (2011). Reflections on the Foundations of System Dynamics. System Dynamics Review, 27(3), 219–243. https://doi.org/10.1002/sdr.462
[179] Saad, M. H., Nazzal, M. A., & Darras, B. M. (2019). A general framework for sustainability assessment of manufacturing processes. Ecological Indicators, 97, 211–224. https://doi.org/10.1016/j.ecolind.2018.09.062
[180] Saaty, T. (1980). The Analytic Hierarchy Process. McGraw-Hill.
[181] Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. https://doi.org/10.1504/IJSSCI.2008.017590
[182] Sala, S., Ciuffo, B., & Nijkamp, P. (2015). A systemic framework for sustainability assessment. Ecological Economics, 119, 314–325. https://doi.org/10.1016/j.ecolecon.2015.09.015
[183] Salami, S. F., Isah, A. D., & Muhammad, I. B. (2021). Critical indicators of sustainability for mixed-use buildings in Lagos, Nigeria. Environmental and Sustainability Indicators, 9, 100101. https://doi.org/10.1016/j.indic.2021.100101
[184] Santos, A. S., & Ribeiro, S. K. (2013). The use of sustainability indicators in urban passenger transport during the decision-making process: The case of Rio de Janeiro, Brazil. Current Opinion in Environmental Sustainability, 5(2), 251–260. https://doi.org/10.1016/j.cosust.2013.04.010
[185] Saroha, M., Garg, D., & Luthra, S. (2022). Analyzing the circular supply chain management performance measurement framework: The modified balanced scorecard technique. International Journal of System Assurance Engineering and Management, 13(S2), 951–960. https://doi.org/10.1007/s13198-021-01482-4
[186] Schianetz, K., & Kavanagh, L. (2008). Sustainability Indicators for Tourism Destinations: A Complex Adaptive Systems Approach Using Systemic Indicator Systems. Journal of Sustainable Tourism, 16(6), 601–628. https://doi.org/10.1080/09669580802159651
[187] Seuring, S. (2013). A review of modeling approaches for sustainable supply chain management. Decision Support Systems, 54(4), 1513–1520. https://doi.org/10.1016/j.dss.2012.05.053
[188] Shah, Y., Manaugh, K., Badami, M., & El-Geneidy, A. (2013). Diagnosing Transportation: Developing Key Performance Indicators to Assess Urban Transportation Systems. Transportation Research Record: Journal of the Transportation Research Board, 2357(1), 1–12. https://doi.org/10.3141/2357-01
[189] Shen, L., Olfat, L., Govindan, K., Khodaverdi, R., & Diabat, A. (2013). A fuzzy multi criteria approach for evaluating green supplier’s performance in green supply chain with linguistic preferences. Resources, Conservation and Recycling, 74, 170–179. https://doi.org/10.1016/j.resconrec.2012.09.006
[190] Shi, H., & Lai, E. (2013). An alternative university sustainability-rating framework with a structured criteria tree. Journal of Cleaner Production, 61, 59–69.
[191] Shih, H.-S., Shyur, H.-J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7–8), 801–813. https://doi.org/10.1016/j.mcm.2006.03.023
[192] Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2009a). An overview of sustainability assessment methodologies. Ecological Indicators, 9(2), 189–212. https://doi.org/10.1016/j.ecolind.2008.05.011
[193] Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2009b). An overview of sustainability assessment methodologies. Ecological Indicators, 9(2), 189–212. https://doi.org/10.1016/j.ecolind.2008.05.011
[194] Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2012). An overview of sustainability assessment methodologies. Ecological Indicators, 15(1), 281–299. https://doi.org/10.1016/j.ecolind.2011.01.007
[195] Skulmoski, G., T. Hartman, F., & Krahn, J. (2007). The Delphi Method for Graduate Research. Journal of Information Technology Education: Research, 6, 001–021. https://doi.org/10.28945/199
[196] Slack, N. (1994). The Importance‐Performance Matrix as a Determinant of ImprovementPriority. International Journal of Operations & Production Management, 14(5), 59–75. https://doi.org/10.1108/01443579410056803
[197] Slaper, T., & Hall, T. J. (2011). The Triple Bottom Line: What is it and how does it work. Indiana Business Review, 86(1), 4–8.
[198] Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72. https://doi.org/10.2307/1412159
[199] Stauropoulou, A., & Sardianou, E. (2019). Understanding and Measuring Sustainability Performance in the Banking Sector. IOP Conference Series: Earth and Environmental Science, 362(1), 012128. https://doi.org/10.1088/1755-1315/362/1/012128
[200] Sterman, J. D. (2000). System Dynamics: Systems Thinking and Modeling for a Complex World.
[201] STM. (2014). Sustainable Development Report Complete table of sustainability indicators 2006-2014 (p. 9) [Annual Sustainable Development Report]. STM. https://www.stm.info/sites/default/files/pdf/en/15001_bilandd2014_tableau_indicateurs_a.pdf
[202] STM. (2017). SUSTAINABLE DEVELOPMENT PLAN 2025—Excellence in Mobility (p. 26). Bibliothèque et Archives nationales du Québec.
[203] Stringer, L. C., Dougill, A. J., Fraser, E., Hubacek, K., Prell, C., & Reed, M. S. (2006). Unpacking “Participation” in the Adaptive Management of Social-ecological Systems: A Critical Review. Ecology and Society, 11(2), 39. https://doi.org/10.5751/ES-01896-110239
[204] Sueyoshi, T., & Goto, M. (2010). Measurement of a linkage among environmental, operational, and financial performance in Japanese manufacturing firms: A use of Data Envelopment Analysis with strong complementary slackness condition. European Journal of Operational Research, 207(3), 1742–1753.
[205] Tafidis, P., Sdoukopoulos, A., & Pitsiava-Latinopoulou, M. (2017). Sustainable urban mobility indicators: Policy versus practice in the case of Greek cities. Transportation Research Procedia, 24, 304–312. https://doi.org/10.1016/j.trpro.2017.05.122
[206] Tajbakhsh, A. (2016). Sustainability in Supply Chains: Models and Metrics. McMaster University.
[207] Tajbakhsh, A., & Hassini, E. (2015). A data envelopment analysis approach to evaluate sustainability in supply chain networks. Journal of Cleaner Production, 105, 74–85. https://doi.org/10.1016/j.jclepro.2014.07.054
[208] Talbot, J., & Venkataraman, R. (2011). Integration Of Sustainability Principles Into Project Baselines Using A Comprehensive Indicator Set. International Business & Economics Research Journal (IBER), 10(9), 29. https://doi.org/10.19030/iber.v10i9.5624
[209] Tang, C. S., & Zhou, S. (2012). Research advances in environmentally and socially sustainable operations. European Journal of Operational Research, 223(3), Article 3. https://doi.org/10.1016/j.ejor.2012.07.030
[210] Trianni, A., Cagno, E., & Neri, A. (2017). Modelling barriers to the adoption of industrial sustainability measures. Journal of Cleaner Production, 168, 1482–1504. https://doi.org/10.1016/j.jclepro.2017.07.244
[211] Tsai, F. M., Bui, T.-D., Tseng, M.-L., Wu, K.-J., & Chiu, A. SF. (2020). A performance assessment approach for integrated solid waste management using a sustainable balanced scorecard approach. Journal of Cleaner Production, 251, 119740. https://doi.org/10.1016/j.jclepro.2019.119740
[212] Tseng, M.-L., Wu, K.-J., Lim, M. K., & Wong, W.-P. (2019). Data-driven sustainable supply chain management performance: A hierarchical structure assessment under uncertainties. Journal of Cleaner Production, 227, 760–771. https://doi.org/10.1016/j.jclepro.2019.04.201
[213] United Nations. (2012, June 20). United Nations Conference on Sustainable Development, Rio+20 .:. Sustainable Development Knowledge Platform. https://sustainabledevelopment.un.org/rio20
[214] Urquiza Gómez, F., Sáez-Navarrete, C., Rencoret Lioi, S., & Ishanoglu Marzuca, V. (2015). Adaptable model for assessing sustainability in higher education. Journal of Cleaner Production, 107, 475–485. https://doi.org/10.1016/j.jclepro.2014.07.047
[215] Uysal, F. (2012). An Integrated Model for Sustainable Performance Measurement in Supply Chain. Procedia - Social and Behavioral Sciences, 62, 689–694. https://doi.org/10.1016/j.sbspro.2012.09.117
[216] Voelpel, S. C., Leibold, M., & Eckhoff, R. A. (2006). The tyranny of the Balanced Scorecard in the innovation economy. Journal of Intellectual Capital, 7(1), 43–60. https://doi.org/10.1108/14691930610639769
[217] Waheed, B., Khan, F. I., & Veitch, B. (2011). Developing a quantitative tool for sustainability assessment of HEIs. International Journal of Sustainability in Higher Education, 12(4), 355–368. https://doi.org/10.1108/14676371111168278
[218] Wang, T.-C., & Chang, T.-H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33(4), 870–880.
[219] Waqar, A., Alshehri, A. H., Alanazi, F., Alotaibi, S., & Almujibah, H. R. (2023). Evaluation of challenges to the adoption of intelligent transportation system for urban smart mobility. Research in Transportation Business & Management, 51, 101060. https://doi.org/10.1016/j.rtbm.2023.101060
[220] Warchold, A., Pradhan, P., Thapa, P., Putra, M. P. I. F., & Kropp, J. P. (2022). Building a unified sustainable development goal database: Why does sustainable development goal data selection matter? Sustainable Development, 30(5), 1278–1293. https://doi.org/10.1002/sd.2316
[221] Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845
[222] WCED. (1987). Report of the World Commission on Environment and Development: Our Common Future. Oxford University Press: New York, NY, USA.
[223] Williams, B., Wilmshurst, T., & Clift, R. (2011). Sustainability reporting by local government in Australia: Current and future prospects. Accounting Forum, 35(3), 176–186. https://doi.org/10.1016/j.accfor.2011.06.004
[224] Wu, I.-L., Chuang, C.-H., & Hsu, C.-H. (2014). Information sharing and collaborative behaviors in enabling supply chain performance: A social exchange perspective. International Journal of Production Economics, 148, 122–132. https://doi.org/10.1016/j.ijpe.2013.09.016
[225] Wu, K.-J., Tseng, M.-L., Ali, M. H., Xue, B., Chiu, A. S. F., Fujii, M., Xu, M., Lan, S., Ren, M., & Bin, Y. (2021). Opportunity or threat in balancing social, economic and environmental impacts: The appearance of the Polar Silk Road. Environmental Impact Assessment Review, 88, 106570. https://doi.org/10.1016/j.eiar.2021.106570
[226] Wynder, M., Wellner, K.-U., & Reinhard, K. (2013). Rhetoric or Reality? Do Accounting Education and Experience Increase Weighting on Environmental Performance in a Balanced Scorecard? Accounting Education, 22(4), 366–381. https://doi.org/10.1080/09639284.2013.817802
[227] Yang, W., Yuan, Q., Wang, Y., Zheng, F., Shi, X., & Li, Y. (2023). Carbon Emission Forecasting Study Based on Influence Factor Mining and Mini-Batch Stochastic Gradient Optimization. Energies, 17(1), 188. https://doi.org/10.3390/en17010188
[228] Yigitcanlar, T., & Dur, F. (2010). Developing a Sustainability Assessment Model: The Sustainable Infrastructure, Land-Use, Environment and Transport Model. Sustainability, 2(1), 321–340. https://doi.org/10.3390/su2010321
[229] Zadeh, L. A. (1965). Fuzzy Sets. Information and Control (Vol. 8). http://dx.doi.org/10.1016/S0019-9958(65)90241-X
[230] Zavadskas, E. K., & Turskis, Z. (2010). A NEW ADDITIVE RATIO ASSESSMENT (ARAS) METHOD IN MULTICRITERIA DECISION‐MAKING / NAUJAS ADITYVINIS KRITERIJŲ SANTYKIŲ ĮVERTINIMO METODAS (ARAS) DAUGIAKRITERINIAMS UŽDAVINIAMS SPRĘSTI. Technological and Economic Development of Economy, 16(2), 159–172. https://doi.org/10.3846/tede.2010.10
[231] Zhang, H. (2019). Understanding the Linkages: A Dynamic Sustainability Assessment Method and Decision Making in Manufacturing Systems. Procedia CIRP, 80, 233–238. https://doi.org/10.1016/j.procir.2019.01.064
[232] Zhang, H., Liu, Y., Li, X., Feng, R., Gong, Y., Jiang, Y., Guan, X., & Li, S. (2023). Combing remote sensing information entropy and machine learning for ecological environment assessment of Hefei-Nanjing-Hangzhou region, China. Journal of Environmental Management, 325, 116533. https://doi.org/10.1016/j.jenvman.2022.116533
[233] Zhang, J., Wang, S., Pradhan, P., Zhao, W., & Fu, B. (2022). Untangling the interactions among the Sustainable Development Goals in China. Science Bulletin, 67(9), 977–984. https://doi.org/10.1016/j.scib.2022.01.006
[234] Zhang, L., & Zhou, J. (2016). The effect of carbon reduction regulations on contractors’ awareness and behaviors in China’s building sector. Journal of Cleaner Production, 113, 93–101.
[235] Zheng, J., Garrick, N. W., Atkinson-Palombo, C., McCahill, C., & Marshall, W. (2013). Guidelines on developing performance metrics for evaluating transportation sustainability. Research in Transportation Business & Management, 7, 4–13. https://doi.org/10.1016/j.rtbm.2013.02.001
[236] Zhou, P., Ang, B. W., & Poh, K. L. (2008). Measuring environmental performance under different environmental DEA technologies. Energy Economics, 30(1), 1–14.
[237] Zhou, X., & Moinuddin, M. (2017). Sustainable Development Goals Interlinkages and Network Analysis: A practical tool for SDG integration and policy coherence (IGES Research Report).
[238] Zhu, Q., Dou, Y., & Sarkis, J. (2010). A portfolio-based analysis for green supplier management using the analytical network process. Supply Chain Management An International Journal, 15(4), 306–319. https://doi.org/10.1108/13598541011054670
[239] Zhu, Q., & Sarkis, J. (2006). An inter-sectoral comparison of green supply chain management in China: Drivers and practices. Journal of Cleaner Production, 14(5), 472–486. https://doi.org/10.1016/j.jclepro.2005.01.003
[240] Zito, P., & Salvo, G. (2011). Toward an urban transport sustainability index: An European comparison. European Transport Research Review, 3(4), 179–195. https://doi.org/10.1007/s12544-011-0059-0
[241] Zong, J., Zhang, Y., Mu, X., Wang, L., Lu, C., Du, Y., Ji, X., & Wang, Q. (2023). Prioritizing sustainable development goals in China based on a comprehensive assessment accounting for indicator interlinkages. Heliyon, 9(12), e22751. https://doi.org/10.1016/j.heliyon.2023.e22751
[242] Zou, H., & Hastie, T. (2005). Regularization and Variable Selection Via the Elastic Net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2), 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top