Login | Register

Stability of oxylipins stored on biocompatible solid-phase microextraction (SPME) devices

Title:

Stability of oxylipins stored on biocompatible solid-phase microextraction (SPME) devices

Kuteyi, Oluwatosin (2025) Stability of oxylipins stored on biocompatible solid-phase microextraction (SPME) devices. PhD thesis, Concordia University.

[thumbnail of KUTEYI_PhD_F2025.pdf]
Preview
Text (application/pdf)
KUTEYI_PhD_F2025.pdf - Accepted Version
Available under License Spectrum Terms of Access.
25MB

Abstract

ABSTRACT
Stability of oxylipins stored on biocompatible solid-phase microextraction (SPME) devices
Oluwatosin Kuteyi, PhD.
Concordia University, 2025
Oxylipins are lipid mediators involved in inflammation, immunity, and oxidative stress. Accurately measuring oxylipins in biospecimens is analytically challenging due to their poor stability and susceptibility to enzymatic and non-enzymatic reactions during sampling, storage, and transportation. Recently, in vivo solid-phase microextraction (SPME) has been introduced as an effective method for direct sampling and extraction of oxylipins from biological tissues and fluids. Although in vivo SPME protects oxylipins from enzymatic degradation, it is not known how the storage in the SPME coating affects oxylipin stability and susceptibility to non-enzymatic reactions such as autoxidation, hydrolysis, and isomerization. The objective of this thesis was to evaluate the stability of oxylipins on SPME devices post-extraction and investigate whether the use of antioxidants, such as butylated hydroxytoluene (BHT), is useful in minimizing degradation processes. To evaluate the effect of 3-freeze-and-thaw cycles (3-FT), and 18-day room temperature (RT) storage on the stability of oxylipins on SPME devices, oxylipins were extracted from standard solutions or citrated human plasma samples using hydrophobic lipophilic balance (HLB) SPME devices and analyzed by C18 liquid chromatography-high-resolution mass spectrometry (LC-HRMS). The pre- and post-extraction loading methods for antioxidants were successfully developed in order to investigate the ability of BHT to minimize oxylipin autooxidation during storage of SPME devices. Finally, degradation products of selected unstable oxylipins were comprehensively mapped by forced degradation studies including photooxidation (365 nm for 5 and 7 days), copper sulphate oxidation, and elevated temperatures (37°C and 50°C for 3 days). In conclusion, this is the first study to characterize the stability of oxylipins on SPME devices, demonstrating how SPME can effectively improve stability during sample storage, handling, and shipping even without the use of BHT. Importantly, these results also show how the degradation of unstable oxylipins can impact the accurate measurement of stable oxylipins and provide novel insight into major degradation products of PUFAs and selected unstable oxylipins.

Divisions:Concordia University > Faculty of Arts and Science > Chemistry and Biochemistry
Item Type:Thesis (PhD)
Authors:Kuteyi, Oluwatosin
Institution:Concordia University
Degree Name:Ph. D.
Program:Chemistry
Date:16 May 2025
Thesis Supervisor(s):Vuckovic, Dajana
Keywords:Oxylipins, Solid Phase Microextraction (SPME) LC-MS
ID Code:995556
Deposited By: Oluwatosin Kuteyi
Deposited On:04 Nov 2025 15:22
Last Modified:04 Nov 2025 15:22

References:

References
[1] M. Gabbs, S. Leng, J. G. Devassy, M. Monirujjaman, and H. M. Aukema, “Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs,” Adv. Nutr. Bethesda Md, vol. 6, no. 5, pp. 513–540, Sep. 2015, doi: 10.3945/an.114.007732.
[2] W. L. Smith, “The eicosanoids and their biochemical mechanisms of action,” Biochem. J., vol. 259, no. 2, pp. 315–324, Apr. 1989, doi: 10.1042/bj2590315.
[3] S. M. Camunas-Alberca, M. Moran-Garrido, J. Sáiz, A. Villaseñor, A. Y. Taha, and C. Barbas, “The role of oxylipins and their validation as biomarkers in the clinical context,” TrAC Trends Anal. Chem., p. 117065, Apr. 2023, doi: 10.1016/j.trac.2023.117065.
[4] J. Revol-Cavalier, A. Quaranta, J. W. Newman, A. R. Brash, M. Hamberg, and C. E. Wheelock, “The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi,” Chem. Rev., vol. 125, no. 1, pp. 1–90, Jan. 2025, doi: 10.1021/acs.chemrev.3c00520.
[5] Y. Saito, H. Yamamoto, Y. Imai, and E. Niki, “Hydroxyoctadecadienoic acid and oxidatively modified peroxiredoxins in the blood of Alzheimer’s disease patients and their potential as biomarkers,” Neurobiol. Aging, vol. 30, no. 2, pp. 174–185, Feb. 2009, doi: 10.1016/j.neurobiolaging.2007.06.012.
[6] C. A. Rouzer and L. J. Marnett, “Cyclooxygenases: structural and functional insights,” J. Lipid Res., vol. 50 Suppl, no. Suppl, pp. S29-34, Apr. 2009, doi: 10.1194/jlr.R800042-JLR200.
[7] C. M. Jenkins, A. Cedars, and R. W. Gross, “Eicosanoid signalling pathways in the heart,” Cardiovasc. Res., vol. 82, no. 2, pp. 240–249, May 2009, doi: 10.1093/cvr/cvn346.
[8] H. Tian, Y. Lu, S. P. Shah, and S. Hong, “Novel 14S,21-dihydroxy-docosahexaenoic acid rescues wound healing and associated angiogenesis impaired by acute ethanol intoxication/exposure,” J. Cell. Biochem., vol. 111, no. 2, pp. 266–273, Oct. 2010, doi: 10.1002/jcb.22709.
[9] J. R. Vane and R. M. Botting, “The mechanism of action of aspirin,” Thromb. Res., vol. 110, no. 5–6, pp. 255–258, Jun. 2003, doi: 10.1016/s0049-3848(03)00379-7.
[10] F. Seuter, “Inhibition of Platelet Aggregation by Acetylsalicylic Acid and other Inhibitors,” Pathophysiol. Haemost. Thromb., vol. 5, no. 2, pp. 85–95, Apr. 2009, doi: 10.1159/000214122.
[11] S. Hong, K. Gronert, P. R. Devchand, R.-L. Moussignac, and C. N. Serhan, “Novel Docosatrienes and 17S-Resolvins Generated from Docosahexaenoic Acid in Murine Brain, Human Blood, and Glial Cells: AUTACOIDS IN ANTI-INFLAMMATION *,” J. Biol. Chem., vol. 278, no. 17, pp. 14677–14687, Apr. 2003, doi: 10.1074/jbc.M300218200.
[12] S. Krishnamoorthy et al., “Resolvin D1 binds human phagocytes with evidence for proresolving receptors,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 4, pp. 1660–1665, Jan. 2010, doi: 10.1073/pnas.0907342107.
[13] P. Chen et al., “Full characterization of PDX, a neuroprotectin/protectin D1 isomer, which inhibits blood platelet aggregation,” FEBS Lett., vol. 583, no. 21, pp. 3478–3484, Nov. 2009, doi: 10.1016/j.febslet.2009.10.004.
[14] P. Chen, E. Véricel, M. Lagarde, and M. Guichardant, “Poxytrins, a class of oxygenated products from polyunsaturated fatty acids, potently inhibit blood platelet aggregation,” FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., vol. 25, no. 1, pp. 382–388, Jan. 2011, doi: 10.1096/fj.10-161836.
[15] I. Liakh, A. Pakiet, T. Sledzinski, and A. Mika, “Modern Methods of Sample Preparation for the Analysis of Oxylipins in Biological Samples,” Molecules, vol. 24, no. 8, Apr. 2019, doi: 10.3390/molecules24081639.
[16] R. N. Schuck et al., “Cytochrome P450-derived eicosanoids and vascular dysfunction in coronary artery disease patients,” Atherosclerosis, vol. 227, no. 2, pp. 442–448, Apr. 2013, doi: 10.1016/j.atherosclerosis.2013.01.034.
[17] J. Morgenstern et al., “Sensitive mass spectrometric assay for determination of 15-deoxy-Δ12,14-prostaglandin J2 and its application in human plasma samples of patients with diabetes,” Anal. Bioanal. Chem., vol. 410, no. 2, pp. 521–528, Jan. 2018, doi: 10.1007/s00216-017-0748-1.
[18] D. Biagini et al., “MS-based targeted profiling of oxylipins in COVID-19: A new insight into inflammation regulation,” Free Radic. Biol. Med., vol. 180, pp. 236–243, Feb. 2022, doi: 10.1016/j.freeradbiomed.2022.01.021.
[19] C. Dalle et al., “The Plasma Oxylipin Signature Provides a Deep Phenotyping of Metabolic Syndrome Complementary to the Clinical Criteria,” Int. J. Mol. Sci., vol. 23, no. 19, Art. no. 19, Jan. 2022, doi: 10.3390/ijms231911688.
[20] E. Pourmand, F. Zhang, M. Sarparast, J. K. Alan, and K. S. S. Lee, “Quantitative Profiling Method for Oxylipins in Neurodegenerative Diseases by Liquid Chromatography Coupled with Tandem Mass Spectrometry,” bioRxiv, p. 2023.10.02.560544, Oct. 2023, doi: 10.1101/2023.10.02.560544.
[21] J. R. Jensen, M. H. Pitcher, Z. X. Yuan, C. E. Ramsden, and A. F. Domenichiello, “Concentrations of oxidized linoleic acid derived lipid mediators in the amygdala and periaqueductal grey are reduced in a mouse model of chronic inflammatory pain,” Prostaglandins Leukot. Essent. Fatty Acids, vol. 135, pp. 128–136, Aug. 2018, doi: 10.1016/j.plefa.2018.07.015.
[22] D. Wang and R. N. DuBois, “Prostaglandins and Cancer,” Gut, vol. 55, no. 1, pp. 115–122, Jan. 2006, doi: 10.1136/gut.2004.047100.
[23] S. A. Brose, B. T. Thuen, and M. Y. Golovko, “LC/MS/MS method for analysis of E2 series prostaglandins and isoprostanes,” J. Lipid Res., vol. 52, no. 4, pp. 850–859, Apr. 2011, doi: 10.1194/jlr.D013441.
[24] A. Katoh, H. Ikeda, T. Murohara, N. Haramaki, H. Ito, and T. Imaizumi, “Platelet-derived 12-hydroxyeicosatetraenoic acid plays an important role in mediating canine coronary thrombosis by regulating platelet glycoprotein IIb/IIIa activation,” Circulation, vol. 98, no. 25, pp. 2891–2898, Dec. 1998, doi: 10.1161/01.cir.98.25.2891.
[25] S. Bergström et al., “The Isolation of Prostaglandin.,” Acta Chem. Scand., vol. 11, pp. 1086–1086, 1957, doi: 10.3891/acta.chem.scand.11-1086.
[26] S. Wu, C. R. Moomaw, K. B. Tomer, J. R. Falck, and D. C. Zeldin, “Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart,” J. Biol. Chem., vol. 271, no. 7, pp. 3460–3468, Feb. 1996, doi: 10.1074/jbc.271.7.3460.
[27] C. Arnold et al., “Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of {omega}-3 fatty acids,” J. Biol. Chem., vol. 285, no. 43, pp. 32720–32733, Oct. 2010, doi: 10.1074/jbc.M110.118406.
[28] E. Hill, F. Fitzpatrick, and R. C. Murphy, “Biological activity and metabolism of 20-hydroxyeicosatetraenoic acid in the human platelet.,” Br. J. Pharmacol., vol. 106, no. 2, pp. 267–274, Jun. 1992.
[29] M. L. Schwartzman, J. R. Falck, P. Yadagiri, and B. Escalante, “Metabolism of 20-hydroxyeicosatetraenoic acid by cyclooxygenase. Formation and identification of novel endothelium-dependent vasoconstrictor metabolites,” J. Biol. Chem., vol. 264, no. 20, pp. 11658–11662, Jul. 1989.
[30] J. H. Capdevila, J. R. Falck, and R. C. Harris, “Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase,” J. Lipid Res., vol. 41, no. 2, pp. 163–181, Feb. 2000.
[31] B. Eklund and L. A. Carlson, “Central and peripheral circulatory effects and metabolic effects of different prostaglandins given I.V. to man,” Prostaglandins, vol. 20, no. 2, pp. 333–347, Aug. 1980, doi: 10.1016/S0090-6980(80)80051-7.
[32] J. Yeung, M. Hawley, and M. Holinstat, “The expansive role of oxylipins on platelet biology,” J. Mol. Med. Berl. Ger., vol. 95, no. 6, pp. 575–588, Jun. 2017, doi: 10.1007/s00109-017-1542-4.
[33] P. Yang, Y. Jiang, and S. M. Fischer, “Prostaglandin E3 metabolism and cancer,” Cancer Lett., vol. 348, no. 0, pp. 1–11, Jun. 2014, doi: 10.1016/j.canlet.2014.03.010.
[34] D. Iyú, J. R. Glenn, A. E. White, A. Johnson, S. Heptinstall, and S. C. Fox, “The role of prostanoid receptors in mediating the effects of PGE3 on human platelet function,” Thromb. Haemost., vol. 107, no. 4, pp. 797–799, Apr. 2012, doi: 10.1160/TH11-11-0794.
[35] F. Rauzi et al., “Aspirin inhibits the production of proangiogenic 15(S)-HETE by platelet cyclooxygenase-1,” FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., vol. 30, no. 12, pp. 4256–4266, Dec. 2016, doi: 10.1096/fj.201600530R.
[36] L. Sun, Y.-W. Xu, J. Han, H. Liang, N. Wang, and Y. Cheng, “12/15-Lipoxygenase metabolites of arachidonic acid activate PPARγ: a possible neuroprotective effect in ischemic brain,” J. Lipid Res., vol. 56, no. 3, p. 502, Mar. 2015, doi: 10.1194/jlr.M053058.
[37] M. W. Buczynski, D. S. Dumlao, and E. A. Dennis, “Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology,” J. Lipid Res., vol. 50, no. 6, pp. 1015–1038, Jun. 2009, doi: 10.1194/jlr.R900004-JLR200.
[38] B. Samuelsson, S. E. Dahlén, J. A. Lindgren, C. A. Rouzer, and C. N. Serhan, “Leukotrienes and lipoxins: structures, biosynthesis, and biological effects,” Science, vol. 237, no. 4819, pp. 1171–1176, Sep. 1987, doi: 10.1126/science.2820055.
[39] H. E. Cummings et al., “Leukotriene C4 Activates Mouse Platelets in Plasma Exclusively Through the Type 2 Cysteinyl Leukotriene Receptor,” J. Immunol. Baltim. Md 1950, vol. 191, no. 12, p. 10.4049/jimmunol.1302187, Dec. 2013, doi: 10.4049/jimmunol.1302187.
[40] J. Yeung et al., “12-lipoxygenase activity plays an important role in PAR4 and GPVI-mediated platelet reactivity,” Thromb. Haemost., vol. 110, no. 3, pp. 569–581, Sep. 2013, doi: 10.1160/TH13-01-0014.
[41] J. Yeung et al., “12(S)-HETrE, a 12-Lipoxygenase Oxylipin of Dihomo-γ-Linolenic Acid, Inhibits Thrombosis via Gαs Signaling in Platelets,” Arterioscler. Thromb. Vasc. Biol., vol. 36, no. 10, pp. 2068–2077, Oct. 2016, doi: 10.1161/ATVBAHA.116.308050.
[42] S. Akiba, T. Murata, K. Kitatani, and T. Sato, “Involvement of lipoxygenase pathway in docosapentaenoic acid-induced inhibition of platelet aggregation,” Biol. Pharm. Bull., vol. 23, no. 11, pp. 1293–1297, Nov. 2000, doi: 10.1248/bpb.23.1293.
[43] S. Fischer, C. v. Schacky, W. Siess, Th. Strasser, and P. C. Weber, “Uptake, release and metabolism of docosahexaenoic acid (DHA, C22:6ω3) in human platelets and neutrophils,” Biochem. Biophys. Res. Commun., vol. 120, no. 3, pp. 907–918, May 1984, doi: 10.1016/S0006-291X(84)80193-X.
[44] J. Folch, M. Lees, and G. H. Sloane Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” J. Biol. Chem., vol. 226, no. 1, pp. 497–509, May 1957.
[45] L. M. Hall and R. C. Murphy, “Electrospray mass spectrometric analysis of 5-hydroperoxy and 5-hydroxyeicosatetraenoic acids generated by lipid peroxidation of red blood cell ghost phospholipids,” J. Am. Soc. Mass Spectrom., vol. 9, no. 5, pp. 527–532, May 1998, doi: 10.1016/S1044-0305(98)00013-0.
[46] O. Ai, K. E, R. Km, K. L, M. M, and S. Nh, “Targeting esterified oxylipins by LC-MS - Effect of sample preparation on oxylipin pattern,” Prostaglandins Other Lipid Mediat., vol. 146, Feb. 2020, doi: 10.1016/j.prostaglandins.2019.106384.
[47] E. Vericel and M. Lagarde, “15-Hydroperoxyeicosatetraenoic acid inhibits human platelet aggregation,” Lipids, vol. 15, no. 6, pp. 472–474, Jun. 1980, doi: 10.1007/BF02534075.
[48] P. Y. Wong, P. Westlund, M. Hamberg, E. Granström, P. H. Chao, and B. Samuelsson, “15-Lipoxygenase in human platelets,” J. Biol. Chem., vol. 260, no. 16, pp. 9162–9165, Aug. 1985.
[49] A. I. Ostermann, I. Willenberg, and N. H. Schebb, “Comparison of sample preparation methods for the quantitative analysis of eicosanoids and other oxylipins in plasma by means of LC-MS/MS,” Anal. Bioanal. Chem., vol. 407, no. 5, pp. 1403–1414, Feb. 2015, doi: 10.1007/s00216-014-8377-4.
[50] Y. Yang, C. Cruickshank, M. Armstrong, S. Mahaffey, R. Reisdorph, and N. Reisdorph, “New sample preparation approach for mass spectrometry-based profiling of plasma results in improved coverage of metabolome,” J. Chromatogr. A, vol. 1300, pp. 217–226, Jul. 2013, doi: 10.1016/j.chroma.2013.04.030.
[51] W. S. Powell, “Extraction of eicosanoids from biological fluids, cells, and tissues,” Methods Mol. Biol. Clifton NJ, vol. 120, pp. 11–24, 1999, doi: 10.1385/1-59259-263-5:11.
[52] O. Reinaud, M. Delaforge, J. L. Boucher, F. Rocchiccioli, and D. Mansuy, “Oxidative metabolism of linoleic acid by human leukocytes,” Biochem. Biophys. Res. Commun., vol. 161, no. 2, pp. 883–891, Jun. 1989, doi: 10.1016/0006-291x(89)92682-x.
[53] K. Strassburg et al., “Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery,” Anal. Bioanal. Chem., vol. 404, no. 5, pp. 1413–1426, 2012, doi: 10.1007/s00216-012-6226-x.
[54] M. Masoodi, A. A. Mir, N. A. Petasis, C. N. Serhan, and A. Nicolaou, “Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray tandem mass spectrometry,” Rapid Commun. Mass Spectrom. RCM, vol. 22, no. 2, pp. 75–83, 2008, doi: 10.1002/rcm.3331.
[55] D. R. Nelson, D. C. Zeldin, S. M. G. Hoffman, L. J. Maltais, H. M. Wain, and D. W. Nebert, “Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants,” Pharmacogenetics, vol. 14, no. 1, pp. 1–18, Jan. 2004, doi: 10.1097/00008571-200401000-00001.
[56] F. Krötz et al., “Membrane-potential-dependent inhibition of platelet adhesion to endothelial cells by epoxyeicosatrienoic acids,” Arterioscler. Thromb. Vasc. Biol., vol. 24, no. 3, pp. 595–600, Mar. 2004, doi: 10.1161/01.ATV.0000116219.09040.8c.
[57] K. Murotomi, A. Umeno, M. Shichiri, M. Tanito, and Y. Yoshida, “Significance of Singlet Oxygen Molecule in Pathologies,” Int. J. Mol. Sci., vol. 24, no. 3, Art. no. 3, Jan. 2023, doi: 10.3390/ijms24032739.
[58] C. Nathan and A. Cunningham-Bussel, “Beyond oxidative stress: an immunologist’s guide to reactive oxygen species,” Nat. Rev. Immunol., vol. 13, no. 5, pp. 349–361, May 2013, doi: 10.1038/nri3423.
[59] L. A. Pham-Huy, H. He, and C. Pham-Huy, “Free Radicals, Antioxidants in Disease and Health,” Int. J. Biomed. Sci. IJBS, vol. 4, no. 2, pp. 89–96, Jun. 2008.
[60] B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Fifth Edition, Fifth Edition. Oxford, New York: Oxford University Press, 2015.
[61] J. M. Gutteridge and B. Halliwell, “Free radicals and antioxidants in the year 2000. A historical look to the future,” Ann. N. Y. Acad. Sci., vol. 899, pp. 136–147, 2000, doi: 10.1111/j.1749-6632.2000.tb06182.x.
[62] P. Pospíšil, A. Prasad, and M. Rác, “Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species,” Biomolecules, vol. 9, no. 7, p. 258, Jul. 2019, doi: 10.3390/biom9070258.
[63] R. Domínguez, M. Pateiro, M. Gagaoua, F. J. Barba, W. Zhang, and J. M. Lorenzo, “A Comprehensive Review on Lipid Oxidation in Meat and Meat Products,” Antioxidants, vol. 8, no. 10, Art. no. 10, Oct. 2019, doi: 10.3390/antiox8100429.
[64] P. W. Harlina et al., “Exploring oxylipins in processed foods: Understanding mechanisms, analytical perspectives, and enhancing quality with lipidomics,” Heliyon, vol. 10, no. 16, p. e35917, Aug. 2024, doi: 10.1016/j.heliyon.2024.e35917.
[65] E. Choe and D. B. Min, “Mechanisms and Factors for Edible Oil Oxidation,” Compr. Rev. Food Sci. Food Saf., vol. 5, no. 4, pp. 169–186, 2006, doi: 10.1111/j.1541-4337.2006.00009.x.
[66] Marcel Müller, Fabrice Stefanetti and Ulrich K. Krieger, “Oxidation pathways of linoleic acid revisited with electrodynamic balance–mass spectrometry,” Environ. Sci.: Atmos, no. 3, p. 85, 2023.
[67] D. B. Min and J. M. Boff, “Lipid oxidation of edible oil.,” Food Lipids Chem. Nutr. Biotechnol., no. Ed.2, pp. 335–363, 2002.
[68] S. J. J. Madhavi S. S. Nimbalkar, A. D. Kulkarni, D. L., “Lipid Oxidation in Biological and Food Systems,” in Food Antioxidants, CRC Press, 1996.
[69] R. R. Hiatt, T. Mill, and F. R. Mayo, “Homolytic decompositions of hydroperoxides. I. Summary and implications for autoxidation,” J. Org. Chem., vol. 33, no. 4, pp. 1416–1420, Apr. 1968, doi: 10.1021/jo01268a022.
[70] E. A. Decker, “Antioxidant Mechanisms,” in Food Lipids, 2nd ed., CRC Press, 2002.
[71] G. R. Buettner, “The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate,” Arch. Biochem. Biophys., vol. 300, no. 2, pp. 535–543, Feb. 1993, doi: 10.1006/abbi.1993.1074.
[72] E. E. Farmer and M. J. Mueller, “ROS-Mediated Lipid Peroxidation and RES-Activated Signaling,” Annu. Rev. Plant Biol., vol. 64, no. Volume 64, 2013, pp. 429–450, Apr. 2013, doi: 10.1146/annurev-arplant-050312-120132.
[73] H. R. Rawls and P. J. Van Santen, “A possible role for singlet oxygen in the initiation of fatty acid autoxidation,” J. Am. Oil Chem. Soc., vol. 47, no. 4, pp. 121–125, 1970, doi: 10.1007/BF02640400.
[74] E. N. Frankel, “Chapter 3 - Photooxidation of unsaturated fats,” in Lipid Oxidation (Second Edition), E. N. Frankel, Ed., in Oily Press Lipid Library Series. , Woodhead Publishing, 2012, pp. 51–66. doi: 10.1533/9780857097927.51.
[75] Y. Chen, S. Xu, L. Li, M. Zhang, J. Shen, and T. Shen, “Active oxygen generation and photo-oxygenation involving temporfin (m-THPC),” Dyes Pigments, vol. 51, no. 2–3, pp. 63–69, Nov. 2001, doi: 10.1016/S0143-7208(01)00071-7.
[76] S. H. Lee and D. B. Min, “Effects, quenching mechanisms, and kinetics of nickel chelates in singlet oxygen oxidation of soybean oil,” J. Agric. Food Chem., vol. 39, no. 4, pp. 642–646, Apr. 1991, doi: 10.1021/jf00004a002.
[77] E. W. Kellogg and I. Fridovich, “Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system,” J. Biol. Chem., vol. 250, no. 22, pp. 8812–8817, Nov. 1975.
[78] E. c. Lee and D. B. Min, “Quenching Mechanism of β-Carotene on the Chlorophyll Sensitized Photooxidation of Soybean Oil,” J. Food Sci., vol. 53, no. 6, pp. 1894–1895, 1988, doi: 10.1111/j.1365-2621.1988.tb07868.x.
[79] I. E. Kochevar and R. W. Redmond, “[2] Photosensitized production of singlet oxygen,” in Methods in Enzymology, vol. 319, in Singlet Oxygen, UV-A, and Ozone, vol. 319. , Academic Press, 2000, pp. 20–28. doi: 10.1016/S0076-6879(00)19004-4.
[80] C. S. Foote, “Definition of type I and type II photosensitized oxidation,” Photochem. Photobiol., vol. 54, no. 5, p. 659, Nov. 1991, doi: 10.1111/j.1751-1097.1991.tb02071.x.
[81] E. Duffy, G. Albero, and A. Morrin, “Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Analysis of Scent Profiles from Human Skin,” Cosmetics, vol. 5, no. 4, Art. no. 4, Dec. 2018, doi: 10.3390/cosmetics5040062.
[82] W. T. Fothergill, “Gas chromatography. Technique,” Proc. R. Soc. Med., vol. 61, no. 5, pp. 525–528, May 1968.
[83] M. J. Mueller, L. Mène-Saffrané, C. Grun, K. Karg, and E. E. Farmer, “Oxylipin analysis methods,” Plant J., vol. 45, no. 4, pp. 472–489, 2006, doi: 10.1111/j.1365-313X.2005.02614.x.
[84] Oh S.F., Vickery T.W., Serhan C.N., “Chiral lipidomics of E-series resolvins: Aspirin and the biosynthesis of novel mediators. Biochim. Biophys. Acta Mol. Cell Biol. Lipids.,” Biochim. Biophys. Acta Mol. Cell Biol. Lipids., vol. 1811, pp. 737–747, 2011, doi: doi: 10.1016/j.bbalip.2011.06.007.
[85] A. K. Pedersen, M. L. Watson, and G. A. FitzGerald, “Inhibition of thromboxane biosynthesis in serum: limitations of the measurement of immunoreactive 6-keto-PGF1 alpha,” Thromb. Res., vol. 33, no. 1, pp. 99–103, Jan. 1984, doi: 10.1016/0049-3848(84)90159-2.
[86] Y. Wang, A. Armando, O. Quehenberger, C. Yan, and E. A. Dennis, “Comprehensive Ultra Performance Liquid Chromatographic Separation and Mass Spectrometric Analysis of Eicosanoid Metabolites Suitable for Human Materials,” J. Chromatogr. A, vol. 1359, pp. 60–69, Sep. 2014, doi: 10.1016/j.chroma.2014.07.006.
[87] D. Tsikas and M.-T. Suchy, “Assessment of urinary F(2)-isoprostanes in experimental and clinical studies: mass spectrometry versus ELISA,” Hypertens. Dallas Tex 1979, vol. 60, no. 2, pp. e14; author reply e15, Aug. 2012, doi: 10.1161/HYPERTENSIONAHA.112.199315.
[88] M. Aslan, I. Aslan, F. Özcan, R. Eryılmaz, C. O. Ensari, and T. Bilecik, “A pilot study investigating early postoperative changes of plasma polyunsaturated fatty acids after laparoscopic sleeve gastrectomy,” Lipids Health Dis., vol. 13, p. 62, Apr. 2014, doi: 10.1186/1476-511X-13-62.
[89] J. Y. Jeremy et al., “Oocyte maturity and human follicular fluid prostanoids, gonadotropins, and prolactin after administration of clomiphene and pergonal,” J. Clin. Endocrinol. Metab., vol. 65, no. 3, pp. 402–406, Sep. 1987, doi: 10.1210/jcem-65-3-402.
[90] A. S. Gandhi, D. Budac, T. Khayrullina, R. Staal, and G. Chandrasena, “Quantitative analysis of lipids: a higher-throughput LC-MS/MS-based method and its comparison to ELISA,” Future Sci. OA, vol. 3, no. 1, p. FSO157, Mar. 2017, doi: 10.4155/fsoa-2016-0067.
[91] D. K. Miller et al., “Development of enzyme-linked immunosorbent assays for measurement of leukotrienes and prostaglandins,” J. Immunol. Methods, vol. 81, no. 2, pp. 169–185, Aug. 1985, doi: 10.1016/0022-1759(85)90202-9.
[92] M. VanRollins and V. A. VanderNoot, “Simultaneous resolution of underivatized regioisomers and stereoisomers of arachidonate epoxides by capillary electrophoresis,” Anal. Biochem., vol. 313, no. 1, pp. 106–116, Feb. 2003, doi: 10.1016/s0003-2697(02)00503-1.
[93] N. Chiang, E. A. Bermudez, P. M. Ridker, S. Hurwitz, and C. N. Serhan, “Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial,” Proc. Natl. Acad. Sci. U. S. A., vol. 101, no. 42, pp. 15178–15183, Oct. 2004, doi: 10.1073/pnas.0405445101.
[94] Z.-R. Tan et al., “Sensitive bioassay for the simultaneous determination of pseudoephedrine and cetirizine in human plasma by liquid-chromatography-ion trap spectrometry,” J. Pharm. Biomed. Anal., vol. 42, no. 2, pp. 207–212, Sep. 2006, doi: 10.1016/j.jpba.2006.02.057.
[95] Y. Satomi, M. Hirayama, and H. Kobayashi, “One-step lipid extraction for plasma lipidomics analysis by liquid chromatography mass spectrometry,” J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., vol. 1063, pp. 93–100, Sep. 2017, doi: 10.1016/j.jchromb.2017.08.020.
[96] I. Willenberg, A. I. Ostermann, and N. H. Schebb, “Targeted metabolomics of the arachidonic acid cascade: current state and challenges of LC-MS analysis of oxylipins,” Anal. Bioanal. Chem., vol. 407, no. 10, pp. 2675–2683, Apr. 2015, doi: 10.1007/s00216-014-8369-4.
[97] Y. H. Lee, L. Cui, J. Fang, B. S. M. Chern, H. H. Tan, and J. K. Y. Chan, “Limited value of pro-inflammatory oxylipins and cytokines as circulating biomarkers in endometriosis - a targeted ’omics study,” Sci. Rep., vol. 6, p. 26117, May 2016, doi: 10.1038/srep26117.
[98] M. Chocholoušková, R. Jirásko, D. Vrána, J. Gatěk, B. Melichar, and M. Holčapek, “Reversed phase UHPLC/ESI-MS determination of oxylipins in human plasma: a case study of female breast cancer,” Anal. Bioanal. Chem., vol. 411, no. 6, pp. 1239–1251, Feb. 2019, doi: 10.1007/s00216-018-1556-y.
[99] W. Wang, S. Qin, L. Li, X. Chen, Q. Wang, and J. Wei, “An Optimized High Throughput Clean-Up Method Using Mixed-Mode SPE Plate for the Analysis of Free Arachidonic Acid in Plasma by LC-MS/MS,” Int. J. Anal. Chem., vol. 2015, p. 374819, 2015, doi: 10.1155/2015/374819.
[100] D. French, “Chapter Five - Advances in Clinical Mass Spectrometry,” in Advances in Clinical Chemistry, vol. 79, G. S. Makowski, Ed., Elsevier, 2017, pp. 153–198. doi: 10.1016/bs.acc.2016.09.003.
[101] J. Aldana, A. Romero-Otero, and M. P. Cala, “Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis,” Metabolites, vol. 10, no. 6, p. 231, Jun. 2020, doi: 10.3390/metabo10060231.
[102] G. Astarita, A. C. Kendall, E. A. Dennis, and A. Nicolaou, “Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids,” Biochim. Biophys. Acta, vol. 1851, no. 4, pp. 456–468, Apr. 2015, doi: 10.1016/j.bbalip.2014.11.012.
[103] S. Tumanov and J. J. Kamphorst, “Recent advances in expanding the coverage of the lipidome,” Curr. Opin. Biotechnol., vol. 43, pp. 127–133, Feb. 2017, doi: 10.1016/j.copbio.2016.11.008.
[104] J. Sostare et al., “Comparison of modified Matyash method to conventional solvent systems for polar metabolite and lipid extractions,” Anal. Chim. Acta, vol. 1037, pp. 301–315, Dec. 2018, doi: 10.1016/j.aca.2018.03.019.
[105] M. Puppolo, D. Varma, and S. A. Jansen, “A review of analytical methods for eicosanoids in brain tissue,” J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., vol. 964, pp. 50–64, Aug. 2014, doi: 10.1016/j.jchromb.2014.03.007.
[106] Z.-X. Yuan, S. Majchrzak-Hong, G. S. Keyes, M. J. Iadarola, A. J. Mannes, and C. E. Ramsden, “Lipidomic profiling of targeted oxylipins with ultra-performance liquid chromatography-tandem mass spectrometry,” Anal. Bioanal. Chem., vol. 410, no. 23, pp. 6009–6029, Sep. 2018, doi: 10.1007/s00216-018-1222-4.
[107] M. Jelińska, A. Białek, H. Mojska, I. Gielecińska, and A. Tokarz, “Effect of conjugated linoleic acid mixture supplemented daily after carcinogen application on linoleic and arachidonic acid metabolites in rat serum and induced tumours,” Biochim. Biophys. Acta, vol. 1842, no. 11, pp. 2230–2236, Nov. 2014, doi: 10.1016/j.bbadis.2014.08.013.
[108] J. Dalli and C. N. Serhan, “Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators,” Blood, vol. 120, no. 15, pp. e60–e72, Oct. 2012, doi: 10.1182/blood-2012-04-423525.
[109] A. F. Galvão et al., “Plasma eicosanoid profiles determined by high-performance liquid chromatography coupled with tandem mass spectrometry in stimulated peripheral blood from healthy individuals and sickle cell anemia patients in treatment,” Anal. Bioanal. Chem., vol. 408, no. 13, pp. 3613–3623, May 2016, doi: 10.1007/s00216-016-9445-8.
[110] M. Y. Golovko and E. J. Murphy, “An improved LC-MS/MS procedure for brain prostanoid analysis using brain fixation with head-focused microwave irradiation and liquid-liquid extraction,” J. Lipid Res., vol. 49, no. 4, pp. 893–902, Apr. 2008, doi: 10.1194/jlr.D700030-JLR200.
[111] T. Petta, L. A. B. Moraes, and L. H. Faccioli, “Versatility of tandem mass spectrometry for focused analysis of oxylipids,” J. Mass Spectrom. JMS, vol. 50, no. 7, pp. 879–890, Jul. 2015, doi: 10.1002/jms.3595.
[112] D. D. Shinde et al., “LC-MS/MS for the simultaneous analysis of arachidonic acid and 32 related metabolites in human plasma: Basal plasma concentrations and aspirin-induced changes of eicosanoids,” J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., vol. 911, pp. 113–121, Dec. 2012, doi: 10.1016/j.jchromb.2012.11.004.
[113] K. M. Rund et al., “Development of an LC-ESI(-)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3- and n6-PUFAs,” Anal. Chim. Acta, vol. 1037, pp. 63–74, Dec. 2018, doi: 10.1016/j.aca.2017.11.002.
[114] M. Hennebelle et al., “Altered soluble epoxide hydrolase-derived oxylipins in patients with seasonal major depression: An exploratory study,” Psychiatry Res., vol. 252, pp. 94–101, Jun. 2017, doi: 10.1016/j.psychres.2017.02.056.
[115] G.-Y. Chen and Q. Zhang, “Comprehensive analysis of oxylipins in human plasma using reversed-phase liquid chromatography-triple quadrupole mass spectrometry with heatmap-assisted selection of transitions,” Anal. Bioanal. Chem., vol. 411, no. 2, pp. 367–385, Jan. 2019, doi: 10.1007/s00216-018-1446-3.
[116] S. Medina et al., “A ultra-pressure liquid chromatography/triple quadrupole tandem mass spectrometry method for the analysis of 13 eicosanoids in human urine and quantitative 24 hour values in healthy volunteers in a controlled constant diet,” Rapid Commun. Mass Spectrom. RCM, vol. 26, no. 10, pp. 1249–1257, May 2012, doi: 10.1002/rcm.6224.
[117] Yue H., Strauss K.I., Borenstein M.R., Barbe M.F., Rossi L.J., Jansen S.A, “Determination of bioactive eicosanoids in brain tissue by a sensitive reversed-phase liquid chromatographic method with fluorescence detection,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci, no. 803, pp. 267–277, 2004, doi: doi: 10.1016/j.jchromb.2003.12.027.
[118] B. Bojko, “Solid-phase microextraction: a fit-for-purpose technique in biomedical analysis,” Anal. Bioanal. Chem., vol. 414, no. 24, pp. 7005–7013, Oct. 2022, doi: 10.1007/s00216-022-04138-9.
[119] C. L. Arthur and Janusz. Pawliszyn, “Solid phase microextraction with thermal desorption using fused silica optical fibers,” Anal. Chem., vol. 62, no. 19, pp. 2145–2148, Oct. 1990, doi: 10.1021/ac00218a019.
[120] Q. Zhang, L. Zhou, H. Chen, C.-Z. Wang, Z. Xia, and C.-S. Yuan, “Solid-phase microextraction technology for in vitro and in vivo metabolite analysis,” Trends Anal. Chem. TRAC, vol. 80, pp. 57–65, Jun. 2016, doi: 10.1016/j.trac.2016.02.017.
[121] G. Ouyang, D. Vuckovic, and J. Pawliszyn, “Nondestructive sampling of living systems using in vivo solid-phase microextraction,” Chem. Rev., vol. 111, no. 4, pp. 2784–2814, Apr. 2011, doi: 10.1021/cr100203t.
[122] G. Vas and K. Vékey, “Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis,” J. Mass Spectrom. JMS, vol. 39, no. 3, pp. 233–254, Mar. 2004, doi: 10.1002/jms.606.
[123] A. Napylov et al., “In Vivo Solid-Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats,” Angew. Chem. Int. Ed Engl., vol. 59, no. 6, pp. 2392–2398, Feb. 2020, doi: 10.1002/anie.201909430.
[124] G. Ouyang and J. Pawliszyn, “A critical review in calibration methods for solid-phase microextraction,” Anal. Chim. Acta, vol. 627, no. 2, pp. 184–197, Oct. 2008, doi: 10.1016/j.aca.2008.08.015.
[125] H. Sereshti, O. Duman, S. Tunç, N. Nouri, and P. Khorram, “Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples,” Microchim. Acta, vol. 187, no. 9, p. 541, Sep. 2020, doi: 10.1007/s00604-020-04527-w.
[126] R. W. Jiang, L. M. Marin, K. Jaroch, W. Zhou, W. L. Siqueira, and J. Pawliszyn, “Proteomic Analysis of Human Saliva via Solid-Phase Microextraction Coupled with Liquid Chromatography–Mass Spectrometry,” Anal. Chem., vol. 96, no. 14, pp. 5363–5367, Apr. 2024, doi: 10.1021/acs.analchem.4c00307.
[127] D. Vuckovic et al., “In vivo solid-phase microextraction for single rodent pharmacokinetics studies of carbamazepine and carbamazepine-10,11-epoxide in mice,” J. Chromatogr. A, vol. 1218, no. 21, pp. 3367–3375, May 2011, doi: 10.1016/j.chroma.2010.07.060.
[128] H. Vereb, A. M. Dietrich, B. Alfeeli, and M. Agah, “The Possibilities Will Take Your Breath Away: Breath Analysis for Assessing Environmental Exposure,” Environ. Sci. Technol., vol. 45, no. 19, pp. 8167–8175, Oct. 2011, doi: 10.1021/es202041j.
[129] B. Bojko et al., “Untargeted metabolomics profiling of skeletal muscle samples from malignant hyperthermia susceptible patients,” Can. J. Anaesth. J. Can. Anesth., vol. 68, no. 6, pp. 761–772, Jun. 2021, doi: 10.1007/s12630-020-01895-y.
[130] S. Liu, Y. Huang, J. Liu, C. Chen, and G. Ouyang, “In Vivo Contaminant Monitoring and Metabolomic Profiling in Plants Exposed to Carbamates via a Novel Microextraction Fiber,” Environ. Sci. Technol., vol. 55, no. 18, pp. 12449–12458, Sep. 2021, doi: 10.1021/acs.est.1c04368.
[131] J. Qiu et al., “In vivo tracing of organochloride and organophosphorus pesticides in different organs of hydroponically grown malabar spinach (Basella alba L.),” J. Hazard. Mater., vol. 316, pp. 52–59, Oct. 2016, doi: 10.1016/j.jhazmat.2016.05.024.
[132] S. De Grazia, E. Gionfriddo, and J. Pawliszyn, “A new and efficient Solid Phase Microextraction approach for analysis of high fat content food samples using a matrix-compatible coating,” Talanta, vol. 167, pp. 754–760, May 2017, doi: 10.1016/j.talanta.2017.01.064.
[133] N. Reyes-Garcés et al., “In Vivo Brain Sampling Using a Microextraction Probe Reveals Metabolic Changes in Rodents after Deep Brain Stimulation,” Anal. Chem., vol. 91, no. 15, pp. 9875–9884, Aug. 2019, doi: 10.1021/acs.analchem.9b01540.
[134] A. Roszkowska et al., “In vivo solid-phase microextraction sampling combined with metabolomics and toxicological studies for the non-lethal monitoring of the exposome in fish tissue,” Environ. Pollut., vol. 249, pp. 109–115, Jun. 2019, doi: 10.1016/j.envpol.2019.03.024.
[135] E. Sánchez-Palomo, M. C. Díaz-Maroto, and M. S. Pérez-Coello, “Rapid determination of volatile compounds in grapes by HS-SPME coupled with GC–MS,” Talanta, vol. 66, no. 5, pp. 1152–1157, Jun. 2005, doi: 10.1016/j.talanta.2005.01.015.
[136] E. Cudjoe, B. Bojko, I. de Lannoy, V. Saldivia, and J. Pawliszyn, “Solid-phase microextraction: a complementary in vivo sampling method to microdialysis,” Angew. Chem. Int. Ed Engl., vol. 52, no. 46, pp. 12124–12126, Nov. 2013, doi: 10.1002/anie.201304538.
[137] O. Coskun, “Separation techniques: Chromatography,” North. Clin. Istanb., vol. 3, no. 2, pp. 156–160, Nov. 2016, doi: 10.14744/nci.2016.32757.
[138] I. Liakh, A. Pakiet, T. Sledzinski, and A. Mika, “Methods of the Analysis of Oxylipins in Biological Samples,” Molecules, vol. 25, no. 2, p. 349, Jan. 2020, doi: 10.3390/molecules25020349.
[139] W. Qu et al., “Cytochrome P450 CYP2J9, a new mouse arachidonic acid omega-1 hydroxylase predominantly expressed in brain,” J. Biol. Chem., vol. 276, no. 27, pp. 25467–25479, Jul. 2001, doi: 10.1074/jbc.M100545200.
[140] Kiran Karhale, Nitin B. Kohale,Suraj B. Rathod,Rahul V. jadhav, “Overview an Nano Liquid Chromatography,” Int. J. Humanit. Soc. Sci. Manag. IJHSSM, vol. 3, no. 2, pp. 401–409, Apr. 2023.
[141] K. L. Sanders and J. L. Edwards, “Nano-Liquid Chromatography-Mass Spectrometry and Recent Applications in Omics Investigations,” Anal. Methods Adv. Methods Appl., vol. 12, no. 36, pp. 4404–4417, Sep. 2020, doi: 10.1039/d0ay01194k.
[142] A. Andries, J. Rozenski, P. Vermeersch, D. Mekahli, and A. Van Schepdael, “Recent progress in the LC–MS/MS analysis of oxidative stress biomarkers,” ELECTROPHORESIS, vol. 42, no. 4, pp. 402–428, 2021, doi: 10.1002/elps.202000208.
[143] K. Sterz, G. Scherer, and J. Ecker, “A simple and robust UPLC-SRM/MS method to quantify urinary eicosanoids,” J. Lipid Res., vol. 53, no. 5, pp. 1026–1036, May 2012, doi: 10.1194/jlr.D023739.
[144] L. Kutzner et al., “Development of an Optimized LC-MS Method for the Detection of Specialized Pro-Resolving Mediators in Biological Samples,” Front. Pharmacol., vol. 10, p. 169, 2019, doi: 10.3389/fphar.2019.00169.
[145] D. Fuchs, M. Hamberg, C. M. Sköld, Å. M. Wheelock, and C. E. Wheelock, “An LC-MS/MS workflow to characterize 16 regio- and stereoisomeric trihydroxyoctadecenoic acids,” J. Lipid Res., vol. 59, no. 10, pp. 2025–2033, Oct. 2018, doi: 10.1194/jlr.D087429.
[146] A. P. Neilson et al., “Effect of fish oil on levels of R- and S-enantiomers of 5-, 12-, and 15-hydroxyeicosatetraenoic acids in mouse colonic mucosa,” Nutr. Cancer, vol. 64, no. 1, pp. 163–172, 2012, doi: 10.1080/01635581.2012.630168.
[147] R. Berkecz, M. Lísa, and M. Holčapek, “Analysis of oxylipins in human plasma: Comparison of ultrahigh-performance liquid chromatography and ultrahigh-performance supercritical fluid chromatography coupled to mass spectrometry,” J. Chromatogr. A, vol. 1511, pp. 107–121, Aug. 2017, doi: 10.1016/j.chroma.2017.06.070.
[148] L. Kortz, J. Dorow, S. Becker, J. Thiery, and U. Ceglarek, “Fast liquid chromatography-quadrupole linear ion trap-mass spectrometry analysis of polyunsaturated fatty acids and eicosanoids in human plasma,” J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., vol. 927, pp. 209–213, May 2013, doi: 10.1016/j.jchromb.2013.03.012.
[149] C. Monnin, P. Ramrup, C. Daigle-Young, and D. Vuckovic, “Improving negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis of human plasma using acetic acid as a mobile-phase additive,” Rapid Commun. Mass Spectrom. RCM, vol. 32, no. 3, pp. 201–211, Feb. 2018, doi: 10.1002/rcm.8024.
[150] D. S. Dumlao, M. W. Buczynski, P. C. Norris, R. Harkewicz, and E. A. Dennis, “High-throughput lipidomic analysis of fatty acid derived eicosanoids and N-acylethanolamines,” Biochim. Biophys. Acta, vol. 1811, no. 11, pp. 724–736, Nov. 2011, doi: 10.1016/j.bbalip.2011.06.005.
[151] R. Thakare et al., “Simultaneous LC-MS/MS analysis of eicosanoids and related metabolites in human serum, sputum and BALF,” Biomed. Chromatogr. BMC, vol. 32, no. 3, Mar. 2018, doi: 10.1002/bmc.4102.
[152] X. Fu et al., “High Sensitivity and Wide Linearity LC-MS/MS Method for Oxylipin Quantification in Multiple Biological Samples,” J. Lipid Res., vol. 63, no. 12, p. 100302, Dec. 2022, doi: 10.1016/j.jlr.2022.100302.
[153] Napylov A, “Ultra-high performance liquid chromatography-high resolution mass spectrometry method for detection and quantitation of oxylipin in plasma “MSc thesis. Department of Chemistry and Biochemtry, Concordia University Montreal ,Quebec, Feb. 2019.
[154] M. Király, B. Dalmadiné Kiss, K. Vékey, I. Antal, and K. Ludányi, “[Mass spectrometry: past and present],” Acta Pharm. Hung., vol. 86, no. 1, pp. 3–11, 2016.
[155] G. Zhang, R. S. Annan, S. A. Carr, and T. A. Neubert, “Overview of peptide and protein analysis by mass spectrometry,” Curr. Protoc. Protein Sci., vol. Chapter 16, p. Unit16.1, Nov. 2010, doi: 10.1002/0471140864.ps1601s62.
[156] I. Finoulst, M. Pinkse, W. Van Dongen, and P. Verhaert, “Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices,” J. Biomed. Biotechnol., vol. 2011, p. 245291, 2011, doi: 10.1155/2011/245291.
[157] M. Vilbaste, E. Tammekivi, and I. Leito, “Uncertainty contribution of derivatization in gas chromatography/mass spectrometric analysis,” Rapid Commun. Mass Spectrom. RCM, vol. 34, no. 16, p. e8704, Aug. 2020, doi: 10.1002/rcm.8704.
[158] A. M. Haag, “Mass Analyzers and Mass Spectrometers,” Adv. Exp. Med. Biol., vol. 919, pp. 157–169, 2016, doi: 10.1007/978-3-319-41448-5_7.
[159] M. Commisso, A. Anesi, S. Dal Santo, and F. Guzzo, “Performance comparison of electrospray ionization and atmospheric pressure chemical ionization in untargeted and targeted liquid chromatography/mass spectrometry based metabolomics analysis of grapeberry metabolites,” Rapid Commun. Mass Spectrom. RCM, vol. 31, no. 3, pp. 292–300, Feb. 2017, doi: 10.1002/rcm.7789.
[160] E. V. S. Maciel, N. G. Pereira Dos Santos, D. A. Vargas Medina, and F. M. Lanças, “Electron ionization mass spectrometry: Quo vadis?,” Electrophoresis, vol. 43, no. 15, pp. 1587–1600, Aug. 2022, doi: 10.1002/elps.202100392.
[161] C. Ho et al., “Electrospray Ionisation Mass Spectrometry: Principles and Clinical Applications,” Clin. Biochem. Rev., vol. 24, no. 1, pp. 3–12, Feb. 2003.
[162] A. Criscuolo et al., “Analytical and computational workflow for in-depth analysis of oxidized complex lipids in blood plasma,” Nat. Commun., vol. 13, no. 1, Art. no. 1, Nov. 2022, doi: 10.1038/s41467-022-33225-9.
[163] S. Hellhake et al., “Non-targeted and targeted analysis of oxylipins in combination with charge-switch derivatization by ion mobility high-resolution mass spectrometry,” Anal. Bioanal. Chem., vol. 412, no. 23, p. 5743, 2020, doi: 10.1007/s00216-020-02795-2.
[164] P. L. Urban, “Quantitative mass spectrometry: an overview,” Philos. Transact. A Math. Phys. Eng. Sci., vol. 374, no. 2079, p. 20150382, Oct. 2016, doi: 10.1098/rsta.2015.0382.
[165] M. Mann and N. L. Kelleher, “Precision proteomics: the case for high resolution and high mass accuracy,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 47, pp. 18132–18138, Nov. 2008, doi: 10.1073/pnas.0800788105.
[166] D. J. Douglas, “Mechanism of the collision-induced dissociation of polyatomic ions studied by triple quadrupole mass spectrometry,” J. Phys. Chem., vol. 86, no. 2, pp. 185–191, Jan. 1982, doi: 10.1021/j100391a011.
[167] H. Khan and J. Ali, “UHPLC/Q-TOF-MS Technique: Introduction and Applications,” Lett. Org. Chem., vol. 12, no. 6, pp. 371–378, Jul. 2015.
[168] M. Tanner and D. Günther, “Short transient signals, a challenge for inductively coupled plasma mass spectrometry, a review,” Anal. Chim. Acta, vol. 633, no. 1, pp. 19–28, Feb. 2009, doi: 10.1016/j.aca.2008.11.041.
[169] M. F. L’annunziata, “11 - SOLID SCINTILLATION ANALYSIS,” in Handbook of Radioactivity Analysis (Second Edition), M. F. L’Annunziata, Ed., San Diego: Academic Press, 2003, pp. 845–987. doi: 10.1016/B978-012436603-9/50016-8.
[170] J. Ding and Y.-Q. Feng, “Mass spectrometry-based metabolomics for clinical study: Recent progresses and applications,” TrAC Trends Anal. Chem., vol. 158, p. 116896, Jan. 2023, doi: 10.1016/j.trac.2022.116896.
[171] S. Heiles, “Advanced tandem mass spectrometry in metabolomics and lipidomics—methods and applications,” Anal. Bioanal. Chem., vol. 413, no. 24, pp. 5927–5948, Oct. 2021, doi: 10.1007/s00216-021-03425-1.
[172] Y. Qi and D. A. Volmer, “Structural analysis of small to medium-sized molecules by mass spectrometry after electron-ion fragmentation (ExD) reactions,” Analyst, vol. 141, no. 3, pp. 794–806, Jan. 2016, doi: 10.1039/C5AN02171E.
[173] T. Baba, J. L. Campbell, J. C. Y. Le Blanc, and P. R. S. Baker, “Structural Identification of Eicosanoids with Ring Structures Using Differential Mobility Spectrometry-Electron Impact Excitation of Ions from Organics Mass Spectrometry,” J. Am. Soc. Mass Spectrom., vol. 34, no. 1, pp. 75–81, Jan. 2023, doi: 10.1021/jasms.2c00256.
[174] D. Balgoma et al., “Quantification of lipid mediator metabolites in human urine from asthma patients by electrospray ionization mass spectrometry: controlling matrix effects,” Anal. Chem., vol. 85, no. 16, pp. 7866–7874, Aug. 2013, doi: 10.1021/ac401461b.
[175] A. Sens et al., “Pre-analytical sample handling standardization for reliable measurement of metabolites and lipids in LC-MS-based clinical research,” J. Mass Spectrom. Adv. Clin. Lab, vol. 28, pp. 35–46, Apr. 2023, doi: 10.1016/j.jmsacl.2023.02.002.
[176] T. Martínez-Sena et al., “Monitoring of system conditioning after blank injections in untargeted UPLC-MS metabolomic analysis,” Sci. Rep., vol. 9, p. 9822, Jul. 2019, doi: 10.1038/s41598-019-46371-w.
[177] A. K. Hewavitharana, N. S. Abu Kassim, and P. N. Shaw, “Standard addition with internal standardisation as an alternative to using stable isotope labelled internal standards to correct for matrix effects—Comparison and validation using liquid chromatography-tandem mass spectrometric assay of vitamin D,” J. Chromatogr. A, vol. 1553, pp. 101–107, Jun. 2018, doi: 10.1016/j.chroma.2018.04.026.
[178] P. Kościelniak, “Calibration methods in qualitative analysis,” TrAC Trends Anal. Chem., vol. 150, p. 116587, May 2022, doi: 10.1016/j.trac.2022.116587.
[179] S. M. Sheik and W. D. S. Cr, “Quality control in clinical biochemistry laboratory: a glimpse,” Int. J. Clin. Diagn. Res., vol. 5, no. 5, Art. no. 5, Oct. 2017, doi: 10.12691/ijcdr-5-5-2.
[180] J. Yang, K. Schmelzer, K. Georgi, and B. D. Hammock, “Quantitative Profiling Method for Oxylipin Metabolome by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry,” Anal. Chem., vol. 81, no. 19, pp. 8085–8093, Oct. 2009, doi: 10.1021/ac901282n.
[181] K. M. Rund et al., “Clinical blood sampling for oxylipin analysis – effect of storage and pneumatic tube transport of blood on free and total oxylipin profile in human plasma and serum,” Analyst, vol. 145, no. 6, pp. 2378–2388, Mar. 2020, doi: 10.1039/C9AN01880H.
[182] E. Koch et al., “Stability of oxylipins during plasma generation and long-term storage,” Talanta, vol. 217, p. 121074, Sep. 2020, doi: 10.1016/j.talanta.2020.121074.
[183] K. J. Polinski et al., “Collection and Storage of Human Plasma for Measurement of Oxylipins,” Metabolites, vol. 11, no. 3, p. 137, Feb. 2021, doi: 10.3390/metabo11030137.
[184] J. Dorow, S. Becker, L. Kortz, J. Thiery, S. Hauschildt, and U. Ceglarek, “Preanalytical Investigation of Polyunsaturated Fatty Acids and Eicosanoids in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry,” Biopreservation Biobanking, vol. 14, no. 2, pp. 107–113, Apr. 2016, doi: 10.1089/bio.2015.0005.
[185] C. E. Ramsden et al., “Temperature and time-dependent effects of delayed blood processing on oxylipin concentrations in human plasma,” Prostaglandins Leukot. Essent. Fatty Acids, vol. 150, pp. 31–37, Nov. 2019, doi: 10.1016/j.plefa.2019.09.001.
[186] H. S. Jonasdottir, H. Brouwers, R. E. M. Toes, A. Ioan-Facsinay, and M. Giera, “Effects of anticoagulants and storage conditions on clinical oxylipid levels in human plasma,” Biochim. Biophys. Acta Mol. Cell Biol. Lipids, vol. 1863, no. 12, pp. 1511–1522, Dec. 2018, doi: 10.1016/j.bbalip.2018.10.003.
[187] E. Hewawasam, G. Liu, D. W. Jeffery, B. S. Muhlhausler, and R. A. Gibson, “A stable method for routine analysis of oxylipins from dried blood spots using ultra-high performance liquid chromatography–tandem mass spectrometry,” Prostaglandins Leukot. Essent. Fatty Acids, vol. 137, pp. 12–18, Oct. 2018, doi: 10.1016/j.plefa.2018.08.001.
[188] M. G. J. Balvers et al., “Fish oil and inflammatory status alter the n-3 to n-6 balance of the endocannabinoid and oxylipin metabolomes in mouse plasma and tissues,” Metabolomics Off. J. Metabolomic Soc., vol. 8, no. 6, pp. 1130–1147, Dec. 2012, doi: 10.1007/s11306-012-0421-9.
[189] C. Gladine, A. I. Ostermann, J. W. Newman, and N. H. Schebb, “MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities,” Free Radic. Biol. Med., vol. 144, pp. 72–89, Nov. 2019, doi: 10.1016/j.freeradbiomed.2019.05.012.
[190] M. Moran-Garrido, S. M. Camunas-Alberca, J. Sáiz, A. Gradillas, A. Y. Taha, and C. Barbas, “Deeper insights into the stability of oxylipins in human plasma across multiple freeze-thaw cycles and storage conditions,” J. Pharm. Biomed. Anal., vol. 255, p. 116587, Mar. 2025, doi: 10.1016/j.jpba.2024.116587.
[191] R. A. Colas, M. Shinohara, J. Dalli, N. Chiang, and C. N. Serhan, “Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue,” Am. J. Physiol. Cell Physiol., vol. 307, no. 1, pp. C39-54, Jul. 2014, doi: 10.1152/ajpcell.00024.2014.
[192] A. Hanif, M. L. Edin, D. C. Zeldin, C. Morisseau, and M. A. Nayeem, “Effect of Soluble Epoxide Hydrolase on the Modulation of Coronary Reactive Hyperemia: Role of Oxylipins and PPARγ,” PLoS ONE, vol. 11, no. 9, p. e0162147, Sep. 2016, doi: 10.1371/journal.pone.0162147.
[193] A. Ferdouse, S. Leng, T. Winter, and H. M. Aukema, “The Brain Oxylipin Profile Is Resistant to Modulation by Dietary n-6 and n-3 Polyunsaturated Fatty Acids in Male and Female Rats,” Lipids, vol. 54, no. 1, pp. 67–80, Jan. 2019, doi: 10.1002/lipd.12122.
[194] M. Hennebelle et al., “Brain oxylipin concentrations following hypercapnia/ischemia: effects of brain dissection and dissection time,” J. Lipid Res., vol. 60, no. 3, pp. 671–682, Mar. 2019, doi: 10.1194/jlr.D084228.
[195] J. Musakhanian, J.-D. Rodier, and M. Dave, “Oxidative Stability in Lipid Formulations: a Review of the Mechanisms, Drivers, and Inhibitors of Oxidation,” AAPS PharmSciTech, vol. 23, no. 5, p. 151, May 2022, doi: 10.1208/s12249-022-02282-0.
[196] I. Pinchuk, H. Shoval, Y. Dotan, and D. Lichtenberg, “Evaluation of antioxidants: scope, limitations and relevance of assays,” Chem. Phys. Lipids, vol. 165, no. 6, pp. 638–647, Sep. 2012, doi: 10.1016/j.chemphyslip.2012.05.003.
[197] V. Jannin, J.-D. Rodier, and J. Musakhanian, “Polyoxylglycerides and glycerides: Effects of manufacturing parameters on API stability, excipient functionality and processing,” Int. J. Pharm., vol. 466, no. 1, pp. 109–121, May 2014, doi: 10.1016/j.ijpharm.2014.03.007.
[198] M. van Aardt, S. E. Duncan, T. E. Long, S. F. O’Keefe, J. E. Marcy, and S. R. Sims, “Effect of antioxidants on oxidative stability of edible fats and oils: thermogravimetric analysis,” J. Agric. Food Chem., vol. 52, no. 3, pp. 587–591, Feb. 2004, doi: 10.1021/jf030304f.
[199] N. A. Santos et al., “Commercial antioxidants and thermal stability evaluations,” Fuel, vol. 97, pp. 638–643, Jul. 2012, doi: 10.1016/j.fuel.2012.01.074.
[200] F. Shahidi and Y. Zhong, “Lipid oxidation and improving the oxidative stability,” Chem. Soc. Rev., vol. 39, no. 11, pp. 4067–4079, Nov. 2010, doi: 10.1039/b922183m.
[201] R. Vani et al., “Prospects of Vitamin C as an Additive in Plasma of Stored Blood,” Adv. Hematol., vol. 2015, p. 961049, 2015, doi: 10.1155/2015/961049.
[202] M. J. James, R. A. Gibson, and L. G. Cleland, “Dietary polyunsaturated fatty acids and inflammatory mediator production,” Am. J. Clin. Nutr., vol. 71, no. 1 Suppl, pp. 343S–8S, Jan. 2000, doi: 10.1093/ajcn/71.1.343s.
[203] D. R. Johnson and E. A. Decker, “The Role of Oxygen in Lipid Oxidation Reactions: A Review,” Annu. Rev. Food Sci. Technol., vol. 6, no. 1, pp. 171–190, 2015, doi: 10.1146/annurev-food-022814-015532.
[204] G. L. Milne, H. Yin, and J. D. Morrow, “Human biochemistry of the isoprostane pathway,” J. Biol. Chem., vol. 283, no. 23, pp. 15533–15537, Jun. 2008, doi: 10.1074/jbc.R700047200.
[205] D. Praticò and J.-M. Dogné, “Vascular biology of eicosanoids and atherogenesis,” Expert Rev. Cardiovasc. Ther., vol. 7, no. 9, pp. 1079–1089, Sep. 2009, doi: 10.1586/erc.09.91.
[206] Y. Urade and O. Hayaishi, “Prostaglandin D2 and sleep regulation,” Biochim. Biophys. Acta, vol. 1436, no. 3, pp. 606–615, Jan. 1999, doi: 10.1016/s0005-2760(98)00163-5.
[207] T. Hattori et al., “G2A Plays Proinflammatory Roles in Human Keratinocytes under Oxidative Stress as a Receptor for 9-Hydroxyoctadecadienoic Acid,” J. Invest. Dermatol., vol. 128, no. 5, pp. 1123–1133, May 2008, doi: 10.1038/sj.jid.5701172.
[208] G. C. Shearer and R. E. Walker, “An overview of the biologic effects of omega-6 oxylipins in humans,” Prostaglandins Leukot. Essent. Fatty Acids, vol. 137, pp. 26–38, Oct. 2018, doi: 10.1016/j.plefa.2018.06.005.
[209] E. Ricciotti and G. A. FitzGerald, “Prostaglandins and inflammation,” Arterioscler. Thromb. Vasc. Biol., vol. 31, no. 5, pp. 986–1000, May 2011, doi: 10.1161/ATVBAHA.110.207449.
[210] O. Quehenberger, A. M. Armando, and E. A. Dennis, “High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry,” Biochim. Biophys. Acta, vol. 1811, no. 11, pp. 648–656, Nov. 2011, doi: 10.1016/j.bbalip.2011.07.006.
[211] N. G. Bazan, V. Colangelo, and W. J. Lukiw, “Prostaglandins and other lipid mediators in Alzheimer’s disease,” Prostaglandins Other Lipid Mediat., vol. 68–69, pp. 197–210, Aug. 2002, doi: 10.1016/s0090-6980(02)00031-x.
[212] “JASP - A Fresh Way to Do Statistics.” Accessed: Jun. 28, 2022. [Online]. Available: https://jasp-stats.org/
[213] “MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation | Nucleic Acids Research | Oxford Academic.” [Online]. Available: https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae253/7642060
[214] N. Psychogios et al., “The human serum metabolome,” PloS One, vol. 6, no. 2, p. e16957, Feb. 2011, doi: 10.1371/journal.pone.0016957.
[215] S. Wang, A. Ma, S. Song, Q. Quan, X. Zhao, and X. Zheng, “Fasting serum free fatty acid composition, waist/hip ratio and insulin activity in essential hypertensive patients,” Hypertens. Res. Off. J. Jpn. Soc. Hypertens., vol. 31, no. 4, pp. 623–632, Apr. 2008, doi: 10.1291/hypres.31.623.
[216] O. Quehenberger et al., “Lipidomics reveals a remarkable diversity of lipids in human plasma,” J. Lipid Res., vol. 51, no. 11, pp. 3299–3305, Nov. 2010, doi: 10.1194/jlr.M009449.
[217] K. A. Massey and A. Nicolaou, “Lipidomics of oxidized polyunsaturated fatty acids,” Free Radic. Biol. Med., vol. 59, no. 100, pp. 45–55, Jun. 2013, doi: 10.1016/j.freeradbiomed.2012.08.565.
[218] A. A. Askari, S. Thomson, M. L. Edin, F. B. Lih, D. C. Zeldin, and D. Bishop-Bailey, “Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells,” Biochem. Biophys. Res. Commun., vol. 446, no. 2, pp. 633–637, Apr. 2014, doi: 10.1016/j.bbrc.2014.03.020.
[219] E. D. Thuresson, K. M. Lakkides, and W. L. Smith, “Different catalytically competent arrangements of arachidonic acid within the cyclooxygenase active site of prostaglandin endoperoxide H synthase-1 lead to the formation of different oxygenated products,” J. Biol. Chem., vol. 275, no. 12, pp. 8501–8507, Mar. 2000, doi: 10.1074/jbc.275.12.8501.
[220] S. Viswanathan, B. D. Hammock, J. W. Newman, P. Meerarani, M. Toborek, and B. Hennig, “Involvement of CYP 2C9 in Mediating the Proinflammatory Effects of Linoleic Acid in Vascular Endothelial Cells,” J. Am. Coll. Nutr., vol. 22, no. 6, pp. 502–510, Dec. 2003, doi: 10.1080/07315724.2003.10719328.
[221] J. Seubert et al., “Enhanced Postischemic Functional Recovery in CYP2J2 Transgenic Hearts Involves Mitochondrial ATP-Sensitive K+ Channels and p42/p44 MAPK Pathway,” Circ. Res., vol. 95, no. 5, pp. 506–514, Sep. 2004, doi: 10.1161/01.RES.0000139436.89654.c8.
[222] J. G. Still and F. C. Greiss, “The effect of prostaglandins and other vasoactive substances on uterine blood flow and myometrial activity,” Am. J. Obstet. Gynecol., vol. 130, no. 1, pp. 1–8, Jan. 1978, doi: 10.1016/0002-9378(78)90430-1.
[223] A. Konkel and W.-H. Schunck, “Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids,” Biochim. Biophys. Acta, vol. 1814, no. 1, pp. 210–222, Jan. 2011, doi: 10.1016/j.bbapap.2010.09.009.
[224] N. Brossard, M. Croset, C. Pachiaudi, J. P. Riou, J. L. Tayot, and M. Lagarde, “Retroconversion and metabolism of [13C]22:6n-3 in humans and rats after intake of a single dose of [13C]22:6n-3-triacylglycerols,” Am. J. Clin. Nutr., vol. 64, no. 4, pp. 577–586, Oct. 1996, doi: 10.1093/ajcn/64.4.577.
[225] J. Suttnar, L. Mášová, and J. E. Dyr, “Influence of citrate and EDTA anticoagulants on plasma malondialdehyde concentrations estimated by high-performance liquid chromatography,” J. Chromatogr. B. Biomed. Sci. App., vol. 751, no. 1, pp. 193–197, Feb. 2001, doi: 10.1016/S0378-4347(00)00453-9.
[226] E. Borras, L. Schrumpf, N. Stephens, B. C. Weimer, C. E. Davis, and E. S. Schelegle, “Novel LC-MS-TOF method to detect and quantify ascorbic and uric acid simultaneously in different biological matrices,” J. Chromatogr. B, vol. 1168, p. 122588, Apr. 2021, doi: 10.1016/j.jchromb.2021.122588.
[227] M.-O. Trépanier, M. Eiden, D. Morin-Rivron, R. P. Bazinet, and M. Masoodi, “High-resolution lipidomics coupled with rapid fixation reveals novel ischemia-induced signaling in the rat neurolipidome,” J. Neurochem., vol. 140, no. 5, pp. 766–775, 2017, doi: 10.1111/jnc.13934.
[228] D. A. Sylvestre, Y. Otoki, A. H. Metherel, R. P. Bazinet, C. M. Slupsky, and A. Y. Taha, “Effects of hypercapnia / ischemia and dissection on the rat brain metabolome,” Neurochem. Int., vol. 156, p. 105294, Jun. 2022, doi: 10.1016/j.neuint.2022.105294.
[229] Y. Otoki et al., “Acute Hypercapnia/Ischemia Alters the Esterification of Arachidonic Acid and Docosahexaenoic Acid Epoxide Metabolites in Rat Brain Neutral Lipids,” Lipids, vol. 55, no. 1, pp. 7–22, Jan. 2020, doi: 10.1002/lipd.12197.
[230] O. Ousji and L. Sleno, “Identification of In Vitro Metabolites of Synthetic Phenolic Antioxidants BHT, BHA, and TBHQ by LC-HRMS/MS,” Int. J. Mol. Sci., vol. 21, no. 24, p. 9525, Dec. 2020, doi: 10.3390/ijms21249525.
[231] M. A. Nayeem, “Role of oxylipins in cardiovascular diseases,” Acta Pharmacol. Sin., vol. 39, no. 7, pp. 1142–1154, Jul. 2018, doi: 10.1038/aps.2018.24.
[232] L. Ferré-González, C. Peña-Bautista, M. Baquero, and C. Cháfer-Pericás, “Assessment of Lipid Peroxidation in Alzheimer’s Disease Differential Diagnosis and Prognosis,” Antioxidants, vol. 11, no. 3, p. 551, Mar. 2022, doi: 10.3390/antiox11030551.
[233] T. d. Parker, D. a. Adams, K. Zhou, M. Harris, and L. Yu, “Fatty Acid Composition and Oxidative Stability of Cold-pressed Edible Seed Oils,” J. Food Sci., vol. 68, no. 4, pp. 1240–1243, 2003, doi: 10.1111/j.1365-2621.2003.tb09632.x.
[234] I. Aidos, S. Lourenclo, A. Van Der Padt, J. b. Luten, and R. m. Boom, “Stability of Crude Herring Oil Produced from Fresh Byproducts: Influence of Temperature during Storage,” J. Food Sci., vol. 67, no. 9, pp. 3314–3320, 2002, doi: 10.1111/j.1365-2621.2002.tb09585.x.
[235] E. Koç and B. Karayiğit, “Lipoxygenase activity and antioxidant capacity in pepper (Capsicum annum) exposed to high concentration of copper sulphate,” Environ. Exp. Biol., vol. 19, no. 2, Art. no. 2, Oct. 2021, doi: 10.22364/eeb.19.07.
[236] F. Visioli, R. Bordone, C. Perugini, M. Bagnati, C. Cau, and G. Bellomo, “The Kinetics of Copper-Induced LDL Oxidation Depend upon Its Lipid Composition and Antioxidant Content,” Biochem. Biophys. Res. Commun., vol. 268, no. 3, pp. 818–822, Feb. 2000, doi: 10.1006/bbrc.2000.2212.
[237] M. Kuzuya et al., “Oxidation of low-density lipoprotein by copper and iron in phosphate buffer,” Biochim. Biophys. Acta, vol. 1084, no. 2, pp. 198–201, Jul. 1991.
[238] A. Surendran, H. Zhang, T. Winter, A. Edel, H. Aukema, and A. Ravandi, “Oxylipin profile of human low-density lipoprotein is dependent on its extent of oxidation,” Atherosclerosis, vol. 288, pp. 101–111, Sep. 2019, doi: 10.1016/j.atherosclerosis.2019.07.018.
[239] H. Yin, J. D. Brooks, L. Gao, N. A. Porter, and J. D. Morrow, “Identification of novel autoxidation products of the omega-3 fatty acid eicosapentaenoic acid in vitro and in vivo,” J. Biol. Chem., vol. 282, no. 41, pp. 29890–29901, Oct. 2007, doi: 10.1074/jbc.M703108200.
[240] P. B. M. C. Derogis et al., “The Development of a Specific and Sensitive LC-MS-Based Method for the Detection and Quantification of Hydroperoxy- and Hydroxydocosahexaenoic Acids as a Tool for Lipidomic Analysis,” PLOS ONE, vol. 8, no. 10, p. e77561, Oct. 2013, doi: 10.1371/journal.pone.0077561.
[241] I. Kusumoto, S. Kato, and K. Nakagawa, “Analysis of docosahexaenoic acid hydroperoxide isomers in mackerel using liquid chromatography-mass spectrometry,” Sci. Rep., vol. 13, no. 1, p. 1325, Jan. 2023, doi: 10.1038/s41598-023-28514-2.
[242] L. J. Roberts et al., “Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid,” J. Biol. Chem., vol. 273, no. 22, pp. 13605–13612, May 1998, doi: 10.1074/jbc.273.22.13605.
[243] S. Miyamoto, G. R. Martinez, D. Rettori, O. Augusto, M. H. G. Medeiros, and P. Di Mascio, “Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen,” Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 2, pp. 293–298, Jan. 2006, doi: 10.1073/pnas.0508170103.
[244] S. Miyamoto et al., “Biological hydroperoxides and singlet molecular oxygen generation,” IUBMB Life, vol. 59, no. 4–5, pp. 322–331, 2007, doi: 10.1080/15216540701242508.
[245] S. Miyamoto, G. R. Martinez, M. H. G. Medeiros, and P. Di Mascio, “Singlet molecular oxygen generated from lipid hydroperoxides by the russell mechanism: studies using 18(O)-labeled linoleic acid hydroperoxide and monomol light emission measurements,” J. Am. Chem. Soc., vol. 125, no. 20, pp. 6172–6179, May 2003, doi: 10.1021/ja029115o.
[246] S. Miyamoto, G. R. Martinez, A. P. B. Martins, M. H. G. Medeiros, and P. Di Mascio, “Direct evidence of singlet molecular oxygen [O2(1Deltag)] production in the reaction of linoleic acid hydroperoxide with peroxynitrite,” J. Am. Chem. Soc., vol. 125, no. 15, pp. 4510–4517, Apr. 2003, doi: 10.1021/ja029262m.
[247] H. Esterbauer, R. J. Schaur, and H. Zollner, “Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes,” Free Radic. Biol. Med., vol. 11, no. 1, pp. 81–128, 1991, doi: 10.1016/0891-5849(91)90192-6.
[248] J. A. Weiny, W. E. Boeglin, M. W. Calcutt, D. F. Stec, and A. R. Brash, “Monolayer autoxidation of arachidonic acid to epoxyeicosatrienoic acids as a model of their potential formation in cell membranes,” J. Lipid Res., vol. 63, no. 1, p. 100159, Jan. 2022, doi: 10.1016/j.jlr.2021.100159.
[249] M. Hennebelle. et al, “Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission,” Sci Rep, vol. 7, no. 4342, 2017, doi: doi.org/10.1038/s41598-017-02914-7.
[250] R. Chaleckis, I. Meister, P. Zhang, and C. E. Wheelock, “Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics,” Curr. Opin. Biotechnol., vol. 55, pp. 44–50, Feb. 2019, doi: 10.1016/j.copbio.2018.07.010.
[251] A. Martín-Sómer, M. Yáñez, M.-P. Gaigeot, and R. Spezia, “Unimolecular fragmentation induced by low-energy collision: statistically or dynamically driven?,” J. Phys. Chem. A, vol. 118, no. 46, pp. 10882–10893, Nov. 2014, doi: 10.1021/jp5076059.
[252] Y. Qi and D. A. Volmer, “Electron-based fragmentation methods in mass spectrometry: An overview,” Mass Spectrom. Rev., vol. 36, no. 1, pp. 4–15, Jan. 2017, doi: 10.1002/mas.21482.
[253] R. N. Hayes and M. L. Gross, “Collision-induced dissociation,” Methods Enzymol., vol. 193, pp. 237–263, 1990, doi: 10.1016/0076-6879(90)93418-k.
[254] Wang, M., Carver, J., Phelan, V. et al, “Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking,” Nat Biotechnol, vol. 34, no. 828–837, 2016, doi: doi.org/10.1038/nbt.3597.
[255] Lise Cougnaud, “The effect of diet and probiotic administration on lipid dysregulation and gut microbiota dysbiosis during atherosclerosis development,” PhD thesis, Department of Chemistry and Biochemistry, Concordia University 2024.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top