Quezada Novoa, Victor Felipe (2025) Rare-Earth Metal–Organic Frameworks with a Pyrene-Based Linker for the Photooxidation of a Sulfur Mustard Simulant. PhD thesis, Concordia University.
Preview |
Text (application/pdf)
46MBQuezadaNovoa_PhD_F2025.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
Metal–organic frameworks (MOFs) have been extensively studied in the last few decades for their potential application in gas adsorption, water capture, catalysis, and others. Metals from the d-block on the periodic table are often applied in MOF synthesis, however, rare-earth (RE) metals, which include scandium, yttrium and the series of fifteen lanthanoids, have also been explored due to the intricate structures and specific properties that RE-MOFs can feature. The chemical warfare agent, sulfur mustard (HD), still exists in stockpiles in different countries and can be easily synthesized by nations under armed conflict. RE-MOFs are promising to study for the sustainable detoxification of HD.
This work exposes the synthesis and characterization of four isostructural series of RE-MOFs obtained using a tetratopic pyrene linker (H4TBAPy) and named RE-CU-04, RE-CU-05, RE-CU-06, and RE-CU-10 (RE = Sc(III), Y(III), La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Yb(III), Tm(III), or Lu(III); CU = Concordia University). The structure of RE-CU-04 and RE-CU-05 are explored by total X-ray scattering, followed by pair distribution function (PDF) analysis to resolve the local structure of the RE node. Electron diffraction data collected from RE-CU-06 microcrystals indicate a structure with rhombohedral channels and RE chains with frl topology. Single crystal X-ray diffraction (SCXRD) of RE-CU-10 reveals a structure comprised of 12-connected RE9-cluster SBUs, with shp topology, featuring 1D triangular channels.
The accessible surface area of these new MOFs and the ability to generate singlet oxygen using the pyrene-based linker under ultra-violet (UV) irradiation, makes RE-CU-04, RE-CU-05, RE-CU-06, and RE-CU-10 good candidates for the selective photooxidation of HD, where the simulant 2-chloroethyl ethyl sulfide (2-CEES) is oxidized to its less toxic sulfoxide, 2-CEESO. RE-CU-10 shows one of the best photooxidation performances for 2-CEES to 2-CEESO among all pyrene-based MOFs reported, achieving 100% conversion within 15 min. RE-CU-05 and RE-CU-06 feature a slower performance, reaching full conversion at 20 min and 30 min, respectively, while the RE-CU-05 series shows a higher chemical stability than RE-CU-06 under the photooxidation conditions. The synthesis, characterization, photophysical properties, chemical stability, and photooxidation performance of these new RE-MOFs will be discussed.
| Divisions: | Concordia University > Faculty of Arts and Science > Chemistry and Biochemistry |
|---|---|
| Item Type: | Thesis (PhD) |
| Authors: | Quezada Novoa, Victor Felipe |
| Institution: | Concordia University |
| Degree Name: | Ph. D. |
| Program: | Chemistry |
| Date: | 21 May 2025 |
| Thesis Supervisor(s): | Howarth, Ashlee J. |
| ID Code: | 995754 |
| Deposited By: | Victor Quezada |
| Deposited On: | 04 Nov 2025 15:23 |
| Last Modified: | 04 Nov 2025 15:23 |
References:
1. First Usage of Poison Gas. National WWI Museum and Memorial. https://www.theworldwar.org/learn/about-wwi/spotlight-first-usage-poison-gas, Accessed: 16 May 2025.2. Labaška, M.; Gál, M.; Mackuľak, T.; Švorec, J.; Kučera, J.; Helenin, J.; Svitková, V.; Ryba, J., Neutralizing the threat: A comprehensive review of chemical warfare agent decontamination strategies. J. Environ. Chem. Eng. 2024, 12, 114243–114290.
3. Chemical Weapons – UNODA. https://disarmament.unoda.org/wmd/chemical/, Accessed: 1 March 2025,.
4. Tu, A. T., Overview of Sarin Terrorist Attacks in Japan. in Natural and Selected Synthetic Toxins. American Chemical Society, 1999, vol. 745, 304–317.
5. Okumura, T.; Takasu, N.; Ishimatsu, S.; Miyanoki, S.; Mitsuhashi, A.; Kumada, K.; Tanaka, K.; Hinohara, S., Report on 640 Victims of the Tokyo Subway Sarin Attack. Ann. Emerg. Med. 1996, 28, 129–135.
6. Kim, K.; Tsay, O. G.; Atwood, D. A.; Churchill, D. G., Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2011, 111, 5345–5403.
7. Rose, S. P. R.; Pavett, D., CBW: Chemical and Biological Warfare. Beacon Press, 1969,.
8. Kilani, M.; Mao, G., Nanomaterials-Enabled Sensors for Detecting and Monitoring Chemical Warfare Agents. Small. 21, 2409984–241022.
9. Balali-Mood, M.; Hefazi, M., The pharmacology, toxicology, and medical treatment of sulphur mustard poisoning. Fundam. Clin. Pharmacol. 2005, 19, 297–315.
10. Rowell, M.; Kehe, K.; Balszuweit, F.; Thiermann, H., The chronic effects of sulfur mustard exposure. Toxicology. 2009, 263, 9–11.
11. Ruiz, P.; Begluitti, G.; Tincher, T.; Wheeler, J.; Mumtaz, M., Prediction of Acute Mammalian Toxicity Using QSAR Methods: A Case Study of Sulfur Mustard and Its Breakdown Products. Molecules. 2012, 17, 8982–9001.
12. Rowell, M.; Kehe, K.; Balszuweit, F.; Thiermann, H., The chronic effects of sulfur mustard exposure. Toxicology. 2009, 263, 9–11.
13. van der Schans, G. P.; Mars-Groenendijk, R.; de Jong, L. P. A.; Benschop, H. P.; Noort, D., Standard Operating Procedure for Immunuslotblot Assay for Analysis of DNA/Sulfur Mustard Adducts in Human Blood and Skin. J. Anal. Toxicol. 2004, 28, 316–319.
14. Mahaling, B.; Sinha, N. R.; Sokupa, S.; Addi, U. R.; Mohan, R. R.; Chaurasia, S. S., Mustard gas exposure instigates retinal Müller cell gliosis. Experimental Eye Research. 2023, 230, 109461.
15. Fuchs, A.; Giuliano, E. A.; Sinha, N. R.; Mohan, R. R., Ocular toxicity of mustard gas: A concise review. Toxicol. Lett. 2021, 343, 21–27.
16. Wheeler, G. P., Studies related to the mechanisms of action of cytotoxic alkylating agents: a review. Cancer Res. 1962, 22, 651–688.
17. Ball, C. R.; Roberts, J. J., Estimation of interstrand DNA cross-linking resulting from mustard gas alkylation of HeLa cells. Chem. Biol. Interact. 1972, 4, 297–303.
18. Article IV – Chemical Weapons. OPCW. https://www.opcw.org/chemical-weapons-convention/articles/article-iv-chemical-weapons, Accessed: 14 January 2025.
19. OPCW by the Numbers. OPCW. https://www.opcw.org/media-centre/opcw-numbers, Accessed: 14 January 2025.
20. Niemann, A., Ueber die Einwirkung des braunen Chlorschwefels auf Elaylgas. Justus Liebigs Ann. Chem. 1860, 113, 288–292.
21. Guthrie, F., XIII.—On some derivatives from the olefines. Q. J. Chem. Soc. 1860, 12, 109–126.
22. Nawała, J.; Jóźwik, P.; Popiel, S., Thermal and catalytic methods used for destruction of chemical warfare agents. Int. J. Environ. Sci. Technol. 2019, 16, 3899–3912.
23. Bizzigotti, G. O.; Castelly, H.; Hafez, A. M.; Smith, W. H. B.; Whitmire, M. T., Parameters for Evaluation of the Fate, Transport, and Environmental Impacts of Chemical Agents in Marine Environments. Chem. Rev. 2009, 109, 236–256.
24. Wang, Q.-Y.; Liu, J.; Cao, M.; Hu, J.-H.; Pang, R.; Wang, S.; Asad, M.; Wei, Y.-L.; Zang, S.-Q., Aminal-Linked Porphyrinic Covalent Organic Framework for Rapid Photocatalytic Decontamination of Mustard-Gas Simulant. Angew. Chem. Int. Ed. 2022, 61, e202207130.
25. Zhang, L.; Sun, C.; Xiao, S.-J.; Tan, Q.-G.; Yang, G.-P.; Fan, J.-Q.; Luo, Y.-T.; Liang, R.-P.; Qiu, J.-D., Deposition of Silver Nanostructures on Covalent Organic Frameworks for Photocatalytic Degradation of Sulfur Mustard Simulants. ACS Appl. Nano Mater. 2023, 6, 17083–17091.
26. Li, S.; Dai, L.; Li, L.; Dong, A.; Li, J.; Meng, X.; Wang, B.; Li, P., Post-oxidation of a fully conjugated benzotrithiophene-based COF for photocatalytic detoxification of a sulfur mustard simulant. J. Mater. Chem. A. 2022, 10, 13325–13332.
27. Huang, T.; Kou, J.; Yuan, H.; Guo, H.; Yuan, K.; Li, H.; Wang, F.; Dong, Z., Linker Modulation of Covalent Organic Frameworks at Atomic Level for Enhanced and Selective Photocatalytic Oxidation of Thioether. Adv. Funct. Mater. 2025, 35, 2413943.
28. Zhu, Q.; An, H.; Wei, Y.; Sun, H.; Fu, J.; Xu, T.-Q., Confining polyoxometalates in porphyrin-based porous cationic polymer toward boosting visible-light-driven synthesis of sulfoxides and detoxification of mustard gas simulants. J. Catal. 2024, 436, 115627.
29. Li, M.-H.; Lv, S.-L.; You, M.-H.; Lin, M.-J., Construction of Novel Polyoxometalate/Perylenediimide Hybrid Heterostructures for Enhanced Photocatalytic Oxidation of Mustard Gas Simulants. Cryst. Grow. Des. 2021, 21, 4738–4745.
30. Zhu, Q.; An, H.; Xu, T.-Q.; Chen, Y.; Wei, Y.; Sun, H., Polyoxometalates Embedded into Covalent Triazine Frameworks Regulating Charge Transfer for Visible-Light-Driven Synthesis of Functionalized Sulfoxides and Detoxification of Mustard Gas Simulants. ACS Sustainable Chem. Eng. 2024, 12, 1655–1665.
31. Zhu, Q.; An, H.; Xu, T.; Chang, S.; Chen, Y.; Luo, H.; Huang, Y., PW12-M@COFs as efficient photocatalysts for visible-light-driven oxidation of various sulfides and degradation of chemical warfare agent simulant. Appl. Catal. A Gen. 2023, 662, 119283.
32. Ma, K.; Li, P.; Xin, J. H.; Chen, Y.; Chen, Z.; Goswami, S.; Liu, X.; Kato, S.; Chen, H.; Zhang, X.; Bai, J.; Wasson, M. C.; Maldonado, R. R.; Snurr, R. Q.; Farha, O. K., Ultrastable Mesoporous Hydrogen-Bonded Organic Framework-Based Fiber Composites toward Mustard Gas Detoxification. Cell Rep. Phys. Sci. 2020, 1, 100024.
33. Wang, Y. T.; Chen, G. H.; Wang, Q.; Zang, H.; Wang, Q.; Li, Y. F.; Zou, H. Y.; Zhan, L.; Xie, J. W.; Huang, C. Z.; Zhen, S. J., Ultra-Fast Degradation of Mustard Gas Simulant by Titanium Dioxide-Phosphomolybdic Acid Sub-1 nm Nanobelts. Small. 2025, 21, 2407980.
34. Giannakoudakis, D. A.; Pearsall, F.; Florent, M.; Lombardi, J.; O’Brien, S.; Bandosz, T. J., Barium titanate perovskite nanoparticles as a photoreactive medium for chemical warfare agent detoxification. Journal of Colloid and Interface Science. 2018, 531, 233–244.
35. Panayotov, D.; Kondratyuk, P.; Yates, J. T., Photooxidation of a Mustard Gas Simulant over TiO2−SiO2 Mixed-Oxide Photocatalyst: Site Poisoning by Oxidation Products and Reactivation. Langmuir. 2004, 20, 3674–3678.
36. Panayotov, D. A.; Paul, D. K.; Yates, J. T., Photocatalytic Oxidation of 2-Chloroethyl Ethyl Sulfide on TiO2−SiO2 Powders. J. Phys. Chem. B. 2003, 107, 10571–10575.
37. Islamoglu, T.; Chen, Z.; Wasson, M. C.; Buru, C. T.; Kirlikovali, K. O.; Afrin, U.; Mian, M. R.; Farha, O. K., Metal–Organic Frameworks against Toxic Chemicals. Chem. Rev. 2020, 120, 8130–8160.
38. Bobbitt, N. S.; Mendonca, M. L.; Howarth, A. J.; Islamoglu, T.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q., Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 2017, 46, 3357–3385.
39. 12 Principles of Green Chemistry. American Chemical Society. https://www.acs.org/green-chemistry-sustainability/principles/12-principles-of-green-chemistry.html, Accessed: 8 May 2025.
40. Munro, N. B.; Talmage, S. S.; Griffin, G. D.; Waters, L. C.; Watson, A. P.; King, J. F.; Hauschild, V., The sources, fate, and toxicity of chemical warfare agent degradation products. Environ. Health Perspect. 1999, 107, 933–974.
41. Bisio, C.; Carniato, F.; Palumbo, C.; Safronyuk, S. L.; Starodub, M. F.; Katsev, A. M.; Marchese, L.; Guidotti, M., Nanosized inorganic metal oxides as heterogeneous catalysts for the degradation of chemical warfare agents. Catal. Today. 2016, 277, 192–199.
42. Praveen Kumar, J.; Prasad, G. K.; Allen, J. A.; Ramacharyulu, P. V. R. K.; Kadirvelu, K.; Singh, B., Synthesis of mesoporous metal aluminate nanoparticles and studies on the decontamination of sulfur mustard. J. Alloys Compd. 2016, 662, 44–53.
43. Prasad, G. K.; Singh, B.; Ganesan, K.; Batra, A.; Kumeria, T.; Gutch, P. K.; Vijayaraghavan, R., Modified titania nanotubes for decontamination of sulphur mustard. J. Hazard. Mater. 2009, 167, 1192–1197.
44. Prasad, G. K.; Mahato, T. H.; Pandey, P.; Singh, B.; Suryanarayana, M. V. S.; Saxena, A.; Shekhar, K., Reactive sorbent based on manganese oxide nanotubes and nanosheets for the decontamination of 2-chloro-ethyl ethyl sulphide. Micropor. Mesopor. Mat. 2007, 106, 256–261.
45. Sadeghi, M.; Ghaedi, H.; Yekta, S.; Babanezhad, E., Decontamination of toxic chemical warfare sulfur mustard and nerve agent simulants by NiO NPs/Ag-clinoptilolite zeolite composite adsorbent. J. Environ. Chem. Eng. 2016, 4, 2990–3000.
46. Costenaro, D.; Bisio ,Chiara; Carniato ,Fabio; Katsev ,Andrey M.; Safronyuk ,Sergey L.; Starodub ,Nickolaj; Tiozzo ,Cristina; and Guidotti, M., Tungsten oxide: a catalyst worth studying for the abatement and decontamination of chemical warfare agents. Global Security: Health, Science and Policy. 2017, 2, 62–75.
47. Wagner, G. W.; Procell, L. R.; O’Connor, R. J.; Munavalli, S.; Carnes, C. L.; Kapoor, P. N.; Klabunde, K. J., Reactions of VX, GB, GD, and HD with Nanosize Al2O3. Formation of Aluminophosphonates. J. Am. Chem. Soc. 2001, 123, 1636–1644.
48. Štengl, V.; Maříková, M.; Bakardjieva, S.; Šubrt, J.; Opluštil, F.; Olšanská, M., Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO2 and ferrihydrite. J. Chem. Technol. Biotechnol. 2005, 80, 754–758.
49. Saxena, A.; Srivastava, A. K.; Singh, B.; Goyal, A., Removal of sulphur mustard, sarin and simulants on impregnated silica nanoparticles. J . Hazard. Mater. 2012, 211–212, 226–232.
50. Wagner, G. W.; Bartram, P. W.; Koper, O.; Klabunde, K. J., Reactions of VX, GD, and HD with Nanosize MgO. J. Phys. Chem. B. 1999, 103, 3225–3228.
51. Martin, M. E.; Narske, R. M.; Klabunde, K. J., Mesoporous metal oxides formed by aggregation of nanocrystals. Behavior of aluminum oxide and mixtures with magnesium oxide in destructive adsorption of the chemical warfare surrogate 2-chloroethylethyl sulfide. Micropor. Mesopor. Mat. 2005, 83, 47–50.
52. Štengl, V.; Grygar, T. M.; Opluštil, F.; Němec, T., Sulphur mustard degradation on zirconium doped Ti–Fe oxides. J. Hazard. Mater. 2011, 192, 1491–1504.
53. Verma, M.; Chandra, R.; Gupta, V. K., Synthesis of magnetron sputtered WO3 nanoparticles-degradation of 2-chloroethyl ethyl sulfide and dimethyl methyl phosphonate. J. Colloid Interface Sci. 2015, 453, 60–68.
54. Zhu, X.; Zheng, Y.-C.; Chen, L.-K.; Wu, J.-N.; Li, S.-S.; Xin, Y.; Su, M.-J.; Cui, Y., Degradation of chemical warfare agents by nickel doped titanium dioxide powders: Enhanced surface activity. Arab. J. Chem. 2022, 15, 103678.
55. Kozon, K.; Nawała, J.; Sura, P.; Popiel, S., Study on the Reaction Kinetics of Sulfur Mustard, Nitrogen Mustard and Their Chosen Analogues with Sodium Ethoxide. Molecules. 2025, 30, 780.
56. Helfrich, O. B.; Reid, E. E., Reactions and derivatives of β,β’-duchloro-ethyl sulfide. J. Am. Chem. Soc. 1920, 42, 1208–1232.
57. Yang, Y. C.; Baker, J. A.; Ward, J. R., Decontamination of chemical warfare agents. Chem. Rev. 1992, 92, 1729–1743.
58. Wagner, G. W.; Koper, O. B.; Lucas, E.; Decker, S.; Klabunde, K. J., Reactions of VX, GD, and HD with Nanosize CaO: Autocatalytic Dehydrohalogenation of HD. J. Phys. Chem. B. 2000, 104, 5118–5123.
59. Huang, C.; Yang, Y.; Hu, X.; Wang, Q.; Fu, H.; Wang, P.; Zhou, Y.; Zhang, L.; Zhong, Y., Synergistic effect of Lewis acid-base sites in Zr4+-doped layered double hydroxides promotes rapid decontamination of nerve and blister agents under ambient conditions. J. Hazard. Mater. 2025, 482, 136565.
60. Singh, B.; Saxena, A.; Nigam, A. K.; Ganesan, K.; Pandey, P., Impregnated silica nanoparticles for the reactive removal of sulphur mustard from solutions. J. Hazard. Mater. 2009, 161, 933–940.
61. Sharma, A.; Singh, B.; Saxena, A., Polyoxometalate impregnated carbon systems for the in situ degradation of sulphur mustard. Carbon. 2009, 47, 1911–1915.
62. Giannakoudakis, D. A.; Mitchell, J. K.; Bandosz, T. J., Reactive adsorption of mustard gas surrogate on zirconium (hydr)oxide/graphite oxide composites: the role of surface and chemical features. J. Mater. Chem. A. 2016, 4, 1008–1019.
63. Florent, M.; Giannakoudakis, D. A.; Bandosz, T. J., Mustard Gas Surrogate Interactions with Modified Porous Carbon Fabrics: Effect of Oxidative Treatment. Langmuir. 2017, 33, 11475–11483.
64. Giannakoudakis, D. A.; Pauletto, P. S.; Florent, M.; Bandosz, T. J., Impact of humidity on the adsorption and decomposition of mustard gas simulant on heteroatom-modified nanoporous carbon textiles. J. Hazard. Mater. 2025, 487, 137155.
65. Giannakoudakis, D. A.; Arcibar-Orozco, J. A.; Bandosz, T. J., Key role of terminal hydroxyl groups and visible light in the reactive adsorption/catalytic conversion of mustard gas surrogate on zinc (hydr)oxides. Appl. Catal. B-Environ. Energy. 2015, 174–175, 96–104.
66. Giannakoudakis, D. A.; Seredych, M.; Rodríguez-Castellón, E.; Bandosz, T. J., Mesoporous Graphitic Carbon Nitride-Based Nanospheres as Visible-Light Active Chemical Warfare Agents Decontaminant. ChemNanoMat. 2016, 2, 268–272.
67. Giannakoudakis, D. A.; Arcibar-Orozco, J. A.; Bandosz, T. J., Effect of GO phase in Zn(OH)2/GO composite on the extent of photocatalytic reactive adsorption of mustard gas surrogate. Appl. Catal. B-Environ. 2016, 183, 37–46.
68. Giannakoudakis, D. A.; Pearsall, F.; Florent, M.; Lombardi, J.; O’Brien, S.; Bandosz, T. J., Barium titanate perovskite nanoparticles as a photoreactive medium for chemical warfare agent detoxification. J. Colloid Interface Sci. 2018, 531, 233–244.
69. Popiel, S.; Witkiewicz, Z.; Szewczuk, A., The GC/AED studies on the reactions of sulfur mustard with oxidants. J. Hazard. Mater. 2005, 123, 94–111.
70. Smolkin, B.; Levi, N.; Karton-Lifshin, N.; Yehezkel, L.; Zafrani, Y.; Columbus, I., Oxidative Detoxification of Sulfur-Containing Chemical Warfare Agents by Electrophilic Iodine. J. Org. Chem. 2018, 83, 13949–13955.
71. Richardson, D. E.; Yao, H.; Frank, K. M.; Bennett, D. A., Equilibria, Kinetics, and Mechanism in the Bicarbonate Activation of Hydrogen Peroxide: Oxidation of Sulfides by Peroxymonocarbonate. J. Am. Chem. Soc. 2000, 122, 1729–1739.
72. Wagner, G. W.; Yang, Y.-C., Rapid Nucleophilic/Oxidative Decontamination of Chemical Warfare Agents. Ind. Eng. Chem. Res. 2002, 41, 1925–1928.
73. Wagner, G. W.; Procell, L. R.; Yang, Y.-C.; Bunton, C. A., Molybdate/Peroxide Oxidation of Mustard in Microemulsions. Langmuir. 2001, 17, 4809–4811.
74. Zhao, S.; Zhu, Y.; Xi, H.; Han, M.; Li, D.; Li, Y.; Zhao, H., Detoxification of mustard gas, nerve agents and simulants by peroxomolybdate in aqueous H2O2 solution: Reactive oxygen species and mechanisms. J. Environ. Chem. Eng. 2020, 8, 104221.
75. Zhao, S.; Xi, H.; Zuo, Y.; Han, S.; Zhu, Y.; Li, Z.; Yuan, L.; Wang, Z.; Liu, C., Rapid activation of basic hydrogen peroxide by borate and efficient destruction of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs). J. Hazard. Mater. 2019, 367, 91–98.
76. Bisio, C.; Carniato, F.; Palumbo, C.; Safronyuk, S. L.; Starodub, M. F.; Katsev, A. M.; Marchese, L.; Guidotti, M., Nanosized inorganic metal oxides as heterogeneous catalysts for the degradation of chemical warfare agents. Catal. Today. 2016, 277, 192–199.
77. Sun, X.; Dong, J.; Li, Z.; Liu, H.; Jing, X.; Chi, Y.; Hu, C., Mono-transition-metal-substituted polyoxometalate intercalated layered double hydroxides for the catalytic decontamination of sulfur mustard simulant. Dalton Trans. 2019, 48, 5285–5291.
78. Wang, X.; Brunson, K.; Xie, H.; Colliard, I.; Wasson, M. C.; Gong, X.; Ma, K.; Wu, Y.; Son, F. A.; Idrees, K. B.; Zhang, X.; Notestein, J. M.; Nyman, M.; Farha, O. K., Heterometallic Ce(IV)/V(V) Oxo Clusters with Adjustable Catalytic Reactivities. J. Am. Chem. Soc. 2021, 143, 21056–21065.
79. Wang, X.; Syed, Z. H.; Chen, Z.; Bazak, J. D.; Gong, X.; Wasson, M. C.; Washton, N. M.; Chapman, K. W.; Notestein, J. M.; Farha, O. K., Enhanced Catalytic Performance of a Ce/V Oxo Cluster through Confinement in Mesoporous SBA-15. ACS Appl. Mater. Interfaces. 2022, 14, 52886–52893.
80. Lawson, W. E.; Reid, E. E., Reactions of β,β’-dichloro-ethyl sulfide with amino compounds. J. Am. Chem. Soc. 1925, 47, 2821–2836.
81. Raber, E.; McGuire, R., Oxidative decontamination of chemical and biological warfare agents using L-Gel. J. Hazard. Mater. 2002, 93, 339–352.
82. Feijoo, S.; Yu, X.; Kamali, M.; Appels, L.; Dewil, R., Generation of oxidative radicals by advanced oxidation processes (AOPs) in wastewater treatment: a mechanistic, environmental and economic review. Rev Environ Sci Biotechnol. 2023, 22, 205–248.
83. Ramakrishna, C.; Krishna, R.; Saini, B.; Gopi, T.; Swetha, G.; Chandra Shekar, S., A simple and controlled oxidative decontamination of sulfur mustard and its simulants using ozone gas. Phosphorus, Sulfur, Silicon Relat. Elem. 2016, 191, 965–970.
84. Popiel, S.; Nalepa, T.; Dzierżak, D.; Stankiewicz, R.; Witkiewicz, Z., Rate of dibutylsulfide decomposition by ozonation and the O3/H2O2 advanced oxidation process. J. Hazard. Mater. 2009, 164, 1364–1371.
85. Wang, L. Y.; Ma, M. M.; Hu, X. C.; Zuo, G. M.; Zhu, H. Y.; Tang, H. R.; Cheng, Z. X.; Zhao, H. H., Oxidation of Chemical Warfare Agents in Supercritical Water. Adv. Mater. Res. 2012, 356–360, 2610–2615.
86. Veriansyah, B.; Kim, J.-D.; Lee, J.-C., A double wall reactor for supercritical water oxidation: Experimental results on corrosive sulfur mustard simulant oxidation. J. Ind. Eng. Chem. 2009, 15, 153–156.
87. Walling, C., Fenton’s reagent revisited. Acc. Chem. Res. 1975, 8, 125–131.
88. Zboril, R.; Andrle, M.; Oplustil, F.; Machala, L.; Tucek, J.; Filip, J.; Marusak, Z.; Sharma, V. K., Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite. J. Hazard. Mater. 2012, 211–212, 126–130.
89. Snelson, A.; Taylor, K.; O’Neill, H. J., Reaction of CW agents simulants on surfaces in the presence of O3 , UV AND O3 + UV. J. Environ. Sci. Health A Environ. Sci. Eng. 1984, 19, 775–790.
90. Popiel, S.; Witkiewicz, Z.; Chrzanowski, M., Sulfur mustard destruction using ozone, UV, hydrogen peroxide and their combination. J. Hazard. Mater. 2008, 153, 37–43.
91. Giannakoudakis, D. A.; Farahmand, N.; Łomot, D.; Sobczak, K.; Bandosz, T. J.; Colmenares, J. C., Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors. Chem. Eng. J. 2020, 395, 125099–125112.
92. Martyanov, I. N.; Klabunde, K. J., Photocatalytic Oxidation of Gaseous 2-Chloroethyl Ethyl Sulfide over TiO2. Environ. Sci. Technol. 2003, 37, 3448–3453.
93. Ramacharyulu, P. V. R. K.; Prasad, G. K.; Ganesan, K.; Singh, B., Photocatalytic decontamination of sulfur mustard using titania nanomaterials. J. Mol. Catal. A Chem. 2012, 353–354, 132–137.
94. Šťastný, M.; Štengl, V.; Henych, J.; Tolasz, J.; Kormunda, M.; Ederer, J.; Issa, G.; Janoš, P., Synthesis and characterization of TiO2/Mg(OH)2 composites for catalytic degradation of CWA surrogates. RSC Adv. 2020, 10, 19542–19552.
95. Han, S.; Zhang, G.; Xi, H.; Xu, D.; Fu, X.; Wang, X., Sulfated TiO2 Decontaminate 2-CEES and DMMP in Vapor Phase. Catal Lett. 2008, 122, 106–110.
96. Zuo, G.-M.; Cheng, Z.-X.; Li, G.-W.; Shi, W.-P.; Miao, T., Study on photolytic and photocatalytic decontamination of air polluted by chemical warfare agents (CWAs). Chem. Eng. J. 2007, 128, 135–140.
97. Ci, Y.; Wang, S.; Zhang, X.; Fang, Z.; Ma, A.; Huang, Z., Chemical warfare agents’ degradation on Fe–Cu codoped TiO2 nanoparticles. Appl. Phys. A. 2018, 124, 786.
98. Neaţu, Ş.; I. Pârvulescu, V.; Epure, G.; Preda, E.; Şomoghi, V.; Damin, A.; Bordiga, S.; Zecchina, A., Photo-degradation of yperite over V, Fe and Mn-doped titania– silica photocatalysts. PCCP. 2008, 10, 6562–6570.
99. Ramacharyulu, P. V. R. K.; Praveen Kumar, J.; Prasad, G. K.; Singh, B.; Sreedhar, B.; Dwivedi, K., Sunlight assisted photocatalytic detoxification of sulfur mustard on vanadium ion doped titania nanocatalysts. J. Mol. Catal. A Chem. 2014, 387, 38–44.
100. Ramacharyulu, P. V. R. K.; Praveen Kumar, J.; Prasad, G. K.; Sreedhar, B., Sulphur doped nano TiO2: Synthesis, characterization and photocatalytic degradation of a toxic chemical in presence of sunlight. Mater. Chem. Phys. 2014, 148, 692–698.
101. Shen, Z.; Zhong, J.-Y.; Yang, J.-C.; Cui, Y.; Zheng, H.; Wang, L.-Y.; Wang, J.-L., Decontamination of Chemical Warfare Agents by Zn2+ and Ge4+ co-doped TiO2 nanocrystals at sub-zero temperatures: A solid-state NMR and GC study. Chem. Phys. Lett. 2018, 707, 31–39.
102. Mattsson, A.; Lejon, C.; Štengl, V.; Bakardjieva, S.; Opluštil, F.; Andersson, P. O.; Österlund, L., Photodegradation of DMMP and CEES on zirconium doped titania nanoparticles. Appl. Catal. B-Environ. 2009, 92, 401–410.
103. Prasad, G. K.; Ramacharyulu, P. V. R. K.; Singh, B.; Batra, K.; Srivastava, A. R.; Ganesan, K.; Vijayaraghavan, R., Sun light assisted photocatalytic decontamination of sulfur mustard using ZnO nanoparticles. J. Mol. Catal. A Chem. 2011, 349, 55–62.
104. Florent, M.; Giannakoudakis, D. A.; Bandosz, T. J., Detoxification of mustard gas surrogate on ZnO2/g-C3N4 composites: Effect of surface features’ synergy and day-night photocatalysis. Appl. Catal. B-Environ. 2020, 272, 119038.
105. Mitchell, J. K.; Arcibar-Orozco, J. A.; Bandosz, T. J., Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide. Appl. Sur. Sci. 2016, 390, 735–743.
106. Kalita, P.; Paul, R.; Boruah, A.; Dao, D. Q.; Bhaumik, A.; Mondal, J., A critical review on emerging photoactive porous materials for sulfide oxidation and sulfur mustard decontamination. Green Chem. 2023, 25, 5789–5812.
107. Emmanuel, N.; Bianchi, P.; Legros, J.; Monbaliu, J.-C. M., A safe and compact flow platform for the neutralization of a mustard gas simulant with air and light. Green Chem. 2020, 22, 4105–4115.
108. Wang, J.-M.; Li, J.-Y.; Shi, X.-H.; Wang, Z.-G.; Zeng, L.; Pang, D.-W.; Huang, L.; Liu, S.-L., Dual Pathways of Photorelease Carbon Monoxide via Photosensitization for Tumor Treatment. J. Am. Chem. Soc. 2025, 147, 5459–5471.
109. Garci, A.; Weber, J. A.; Young, R. M.; Kazem-Rostami, M.; Ovalle, M.; Beldjoudi, Y.; Atilgan, A.; Bae, Y. J.; Liu, W.; Jones, L. O.; Stern, C. L.; Schatz, G. C.; Farha, O. K.; Wasielewski, M. R.; Fraser Stoddart, J., Mechanically interlocked pyrene-based photocatalysts. Nat Catal. 2022, 5, 524–533.
110. Li, X.; Zheng, B.-D.; Peng, X.-H.; Li, S.-Z.; Ying, J.-W.; Zhao, Y.; Huang, J.-D.; Yoon, J., Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coord. Chem. Rev. 2019, 379, 147–160.
111. Filatov, M. A.; Mikulchyk, T.; Hodée, M.; Dvoracek, M.; Mamillapalli, V. N. K.; Sheehan, A.; Newman, C.; Borisov, S. M.; Escudero, D.; Naydenova, I., Enhancement of intersystem crossing in asymmetrically substituted BODIPY photosensitizers. J. Mater. Chem. C. 2025, 13, 6993–7003.
112. Mariya Tedy, A.; Manna, A. K., Theoretical Understanding of Photoluminescence and Singlet Oxygen Quantum Yields in a Few Halogenated Fluorescein Dyes. Chem. Asian J. 2025, 20, e202401065.
113. Howarth, A. J.; Buru, C. T.; Liu, Y.; Ploskonka, A. M.; Hartlieb, K. J.; McEntee, M.; Mahle, J. J.; Buchanan, J. H.; Durke, E. M.; Al-Juaid, S. S.; Stoddart, J. F.; DeCoste, J. B.; Hupp, J. T.; Farha, O. K., Postsynthetic Incorporation of a Singlet Oxygen Photosensitizer in a Metal–Organic Framework for Fast and Selective Oxidative Detoxification of Sulfur Mustard. Chem. Eur. J. 2017, 23, 214–218.
114. Yao, M.-C.; Huang, Q.; Xie, H.-X.; Zhang, X.; Sheng, G.-P., Unrecognized role of photosynthetic bacteria in aquaculture water purification: Producing singlet oxygen to degrade residual pharmaceuticals. Water Res. 2025, 276, 123288–123297.
115. Diniz, A. M.; Crucho, C. I. C.; Ruedas-Rama, M. J.; Orte, A.; Dias, C. J.; Outis, M.; Pinto, S. N.; Faustino, M. A. F.; Berberan-Santos, M. N.; Avó, J., TADF-Emitting Nanoparticles for Application as Probes in Time-Resolved Imaging and 1O2 Photosensitizers. Adv. Opt. Mater. 2025, 13, 2402063–2402076.
116. Dueñas-Parro, K.; Gulias, O.; Agut, M.; de la Cruz-Martínez, F.; Lara-Sánchez, A.; Castro-Osma, J. A.; García-Reyes, J. F.; Sánchez-Ruiz, A.; Martín, C.; Nonell, S.; Bresolí-Obach, R., Cluster and Kill: the Use of Clustering-Triggered Emission Materials for Singlet Oxygen Photosensitization in Antimicrobial Photodynamic Therapy. Adv. Opt. Mater. 2025, 13, 2402179–2402188.
117. Yoshida, K.; Suzuki, T.; Biju, V.; Takano, Y., Adaptable Blueprint for Non-metal Near-Infrared Organic Photocatalysts by Aromatic Sulfones. ACS Appl. Mater. Interfaces. 2025, 17, 4813–4820.
118. Nestoros, E.; de Moliner, F.; Nadal-Bufi, F.; Seah, D.; Ortega-Liebana, M. C.; Cheng, Z.; Benson, S.; Adam, C.; Maierhofer, L.; Kozoriz, K.; Lee, J.-S.; Unciti-Broceta, A.; Vendrell, M., Tuning singlet oxygen generation with caged organic photosensitizers. Nat Commun. 2024, 15, 7689.
119. Foote, C. S., Definition of type I and type II photosensitized oxidation. J. Photochem. Photobiol. 1991, 54, 659–659.
120. DeRosa, M. C.; Crutchley, R. J., Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002, 233–234, 351–371.
121. Kearns, D. R., Physical and chemical properties of singlet molecular oxygen. Chem. Rev. 1971, 71, 395–427.
122. Xie, Z.-H.; He, C.-S.; Pei, D.-N.; Dong, Y.; Yang, S.-R.; Xiong, Z.; Zhou, P.; Pan, Z.-C.; Yao, G.; Lai, B., Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs). Chem. Eng. J. 2023, 468, 143778.
123. Schweitzer, C.; Schmidt, R., Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. Chem. Rev. 2003, 103, 1685–1758.
124. Clennan, E. L.; Pace, A., Advances in singlet oxygen chemistry. Tetrahedron. 2005, 61, 6665–6691.
125. Socha, K.; Gusev, I.; Mroczko, P.; Blacha-Grzechnik, A., Light-activated antimicrobial coatings: the great potential of organic photosensitizers. RSC Adv. 2025, 15, 7905–7925.
126. Thorning, F.; Henke, P.; Ogilby, P. R., Perturbed and Activated Decay: The Lifetime of Singlet Oxygen in Liquid Organic Solvents. J. Am. Chem. Soc. 2022, 144, 10902–10911.
127. Gu, Y.-H.; Xu, X.; Yuan, S., Protonation of Nitrogen-Containing Covalent Organic Frameworks for Enhanced Catalysis. Chem. Eur. J. 2025, 31, e202500062.
128. Li, G.-L.; Niu, K.-K.; Yang, X.-Z.; Liu, H.; Yu, S.; Xing, L.-B., A Hydrogen-Bonded Organic Framework Based on Triphenylamine for Photocatalytic Silane Hydroxylation. Inorg. Chem. 2024, 63, 16533–16540.
129. Hynek, J.; Chahal, M. K.; Payne, D. T.; Labuta, J.; Hill, J. P., Porous framework materials for singlet oxygen generation. Coord. Chem. Rev. 2020, 425, 213541.
130. Quon, A. S.; Manriquez, D.; Nguyen, A.; Papazyan, E. K.; Wijeratne, P.; An, L.; Qi, L.; Tang, M. J.; Ready, A. D.; Farha, O. K.; Liu, Y., Metalloporphyrinic metal–organic frameworks for enhanced photocatalytic degradation of a mustard gas simulant. Chem. Commun. 2024, 61, 77–80.
131. Son, F. A.; Bukowski, B. C.; Islamoglu, T.; Snurr, R. Q.; Farha, O. K., Rapid Quantification of Mass Transfer Barriers in Metal–Organic Framework Crystals. Chem. Mater. 2021, 33, 9093–9100.
132. Bukowski, B. C.; Son, F. A.; Chen, Y.; Robison, L.; Islamoglu, T.; Snurr, R. Q.; Farha, O. K., Insights into Mass Transfer Barriers in Metal–Organic Frameworks. Chem. Mater. 2022, 34, 4134–4141.
133. Platero-Prats, A. E.; Mavrandonakis, A.; Liu, J.; Chen, Z.; Chen, Z.; Li, Z.; Yakovenko, A. A.; Gallington, L. C.; Hupp, J. T.; Farha, O. K.; Cramer, C. J.; Chapman, K. W., The Molecular Path Approaching the Active Site in Catalytic Metal–Organic Frameworks. J. Am. Chem. Soc. 2021, 143, 20090–20094.
134. Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999, 402, 276–279.
135. Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D., A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science. 1999, 283, 1148–1150.
136. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science. 2008, 319, 939–943.
137. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.
138. Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T., Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 2012, 134, 15016–15021.
139. Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T., Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework. J. Am. Chem. Soc. 2013, 135, 10294–10297.
140. Wang, T. C.; Bury, W.; Gómez-Gualdrón, D. A.; Vermeulen, N. A.; Mondloch, J. E.; Deria, P.; Zhang, K.; Moghadam, P. Z.; Sarjeant, A. A.; Snurr, R. Q.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K., Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. J. Am. Chem. Soc. 2015, 137, 3585–3591.
141. Winarta, J.; Shan, B.; Mcintyre, S. M.; Ye, L.; Wang, C.; Liu, J.; Mu, B., A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Cryst. Grow. Des. 2020, 20, 1347–1362.
142. Tomic, E. A., Thermal stability of coordination polymers. J. Appl. Polym. Sci. 1965, 9, 3745–3752.
143. Hoskins, B. F.; Robson, R., Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111, 5962–5964.
144. Kinoshita, Y.; Matsubara, I.; Saito, Y., The Crystal Structure of Bis(succinonitrilo)copper(I) Nitrate. Bull. Chem. Soc. Jpn. 1959, 32, 741–747.
145. Lin, J.-B.; Nguyen, T. T. T.; Vaidhyanathan, R.; Burner, J.; Taylor, J. M.; Durekova, H.; Akhtar, F.; Mah, R. K.; Ghaffari-Nik, O.; Marx, S.; Fylstra, N.; Iremonger, S. S.; Dawson, K. W.; Sarkar, P.; Hovington, P.; Rajendran, A.; Woo, T. K.; Shimizu, G. K. H., A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science. 2021, 374, 1464–1469.
146. Shi, L.; Kirlikovali, K. O.; Chen, Z.; Farha, O. K., Metal-organic frameworks for water vapor adsorption. Chem. 2024, 10, 484–503.
147. Herm, Z. R.; Wiers, B. M.; Mason, J. A.; van Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J. R., Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels. Science. 2013, 340, 960–964.
148. Rojas, S.; Hidalgo, T.; Luo, Z.; Ávila, D.; Laromaine, A.; Horcajada, P., Pushing the Limits on the Intestinal Crossing of Metal–Organic Frameworks: An Ex Vivo and In Vivo Detailed Study. ACS Nano. 2022, 16, 5830–5838.
149. Jin, Y.; Liu, H.; Feng, M.; Ma, Q.; Wang, B., Metal-Organic Frameworks for Air Pollution Purification and Detection. Adv. Funct. Mater. 2024, 34, 2304773.
150. Rojas, S.; Horcajada, P., Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem. Rev. 2020, 120, 8378–8415.
151. Lu, G.; Chu, F.; Huang, X.; Li, Y.; Liang, K.; Wang, G., Recent advances in Metal–Organic Frameworks-based materials for photocatalytic selective oxidation. Coord. Chem. Rev. 2022, 450, 214240, 1–41.
152. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in Metal–Organic Frameworks. Chem. Rev. 2012, 112, 782–835.
153. Mason, J. A.; Veenstra, M.; Long, J. R., Evaluating metal–organic frameworks for natural gas storage. Chem. Sci. 2013, 5, 32–51.
154. Abánades Lázaro, I.; Chen, X.; Ding, M.; Eskandari, A.; Fairen-Jimenez, D.; Giménez-Marqués, M.; Gref, R.; Lin, W.; Luo, T.; Forgan, R. S., Metal–organic frameworks for biological applications. Nat Rev Methods Primers. 2024, 4, 1–20.
155. Thakur, S.; Bharti, S., Unlocking the Potential of Metal–Organic Frameworks: A Review on Synthesis, Characterization, and Multifaceted Applications. J Inorg Organomet Polym. 2024, 34, 4477–4508.
156. Abdelkareem, M. A.; Abbas, Q.; Sayed, E. T.; Shehata, N.; Parambath, J. B. M.; Alami, A. H.; Olabi, A. G., Recent advances on metal-organic frameworks (MOFs) and their applications in energy conversion devices: Comprehensive review. Energy. 2024, 299, 131127.
157. Hanikel, N.; Prévot, M. S.; Fathieh, F.; Kapustin, E. A.; Lyu, H.; Wang, H.; Diercks, N. J.; Glover, T. G.; Yaghi, O. M., Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester. ACS Cent. Sci. 2019, 5, 1699–1706.
158. Cheetham, A. K.; Rao, C. N. R.; Feller, R. K., Structural diversity and chemical trends in hybrid inorganic–organic framework materials. Chem. Commun. 2006, 4780–4795.
159. Iv, J. J. P.; Perman, J. A.; Zaworotko, M. J., Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 2009, 38, 1400–1417.
160. Carlucci, L.; Ciani, G.; Proserpio, D. M.; Mitina, T. G.; Blatov, V. A., Entangled Two-Dimensional Coordination Networks: A General Survey. Chem. Rev. 2014, 114, 7557–7580.
161. Robson, R., Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs): a personal view. Dalton Trans. 2008, 5113–5131.
162. Kitagawa, S.; Kitaura, R.; Noro, S., Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.
163. Kawano, M.; Kawamichi, T.; Haneda, T.; Kojima, T.; Fujita, M., The Modular Synthesis of Functional Porous Coordination Networks. J. Am. Chem. Soc. 2007, 129, 15418–15419.
164. Janiak, C.; Vieth, J. K., MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366–2388.
165. Caskey, S. R.; Matzger, A. J., Selective Metal Substitution for the Preparation of Heterobimetallic Microporous Coordination Polymers. Inorg. Chem. 2008, 47, 7942–7944.
166. Tseng, T.-C.; Lin, C.; Shi, X.; Tait, S. L.; Liu, X.; Starke, U.; Lin, N.; Zhang, R.; Minot, C.; Van Hove, M. A.; Cerdá, J. I.; Kern, K., Two-dimensional metal-organic coordination networks of Mn-7,7,8,8-tetracyanoquinodimethane assembled on Cu(100): Structural, electronic, and magnetic properties. Phys. Rev. B. 2009, 80, 155458.
167. Schüller, L.; Haapasilta, V.; Kuhn, S.; Pinto, H.; Bechstein, R.; Foster, A. S.; Kühnle, A., Deposition Order Controls the First Stages of a Metal–Organic Coordination Network on an Insulator Surface. J. Phys. Chem. C. 2016, 120, 14730–14735.
168. Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M. P.; Reedijk, J., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry. 2013, 85, 1715–1724.
169. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature. 1995, 378, 703–706.
170. Yaghi, O. M.; Li, H., Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117, 10401–10402.
171. Kitagawa, S.; Munakata, M.; Tanimura, T., Synthesis of the novel infinite-sheet and -chain copper(I) complex polymers {[Cu(C4H4N2)3/2(CH3CN)](PF)6).cntdot.0.5C3H6O}.infin. and {[Cu2(C8H12N2)3](ClO4)2}.infin. and their x-ray crystal structures. Inorg. Chem. 1992, 31, 1714–1717.
172. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4’,4’’,4’’’-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc. 1990, 112, 1546–1554.
173. MacGillivray, L. R.; Groeneman, R. H.; Atwood, J. L., Design and Self-Assembly of Cavity-Containing Rectangular Grids. J. Am. Chem. Soc. 1998, 120, 2676–2677.
174. Ye, G.; Chen, C.; Lin, J.; Peng, X.; Kumar, A.; Liu, D.; Liu, J., Alkali /alkaline earth-based metal–organic frameworks for biomedical applications. Dalton Trans. 2021, 50, 17438–17454.
175. Yang, L.-M.; Ravindran, P.; Vajeeston, P.; Tilset, M., Properties of IRMOF-14 and its analogues M-IRMOF-14 (M = Cd, alkaline earth metals): electronic structure, structural stability, chemical bonding, and optical properties. Phys. Chem. Chem. Phys. 2012, 14, 4713–4723.
176. de Carvalho, J. G. M.; Geißer, K.; Weishäupl, S. J.; Fischer, R. A.; Pöthig, A., Alkaline Earth Metal–Organic Frameworks Based on Tetratopic Anthraquinone-Based Linkers: Synthesis, Characterization, and Photochemical Applications. Inorg. Chem. 2022, 61, 15831–15840.
177. Huang, Y.-L.; Gong, Y.-N.; Jiang, L.; Lu, T.-B., A unique magnesium-based 3D MOF with nanoscale cages and temperature dependent selective gas sorption properties. Chem. Commun. 2013, 49, 1753–1755.
178. Sun, Z.; Sun, B.; Xue, J.; He, J.; Zhao, R.; Chen, Z.; Sun, Z.; Liu, H. K.; Dou, S. X., ZIF-67/ZIF-8 and its Derivatives for Lithium Sulfur Batteries. Adv. Funct. Mater. 2025, 35, 2414671.
179. Yang, H.; Liu, Y.; Wang, M.; Zhang, Z.; Zheng, Y.-C.; Li, X.-B.; Wu, L.-Z.; Feng, X.; Wang, H., Two-Dimensional Conjugated Metal–Organic Frameworks for Photochemical Transformations. Angew. Chem. Int. Ed. 2025, 64, e202422382.
180. Check, B.; Bairley, K.; Santarelli, J.; Pham, H. T. B.; Park, J., Applications of Electrically Conductive Metal–Organic Frameworks: From Design to Fabrication. ACS Materials Lett. 2025, 7, 465–488.
181. Chen, X.; Zhang, X.; Zhao, Y., Metal–organic framework-based hybrids with photon upconversion. Chem. Soc. Rev. 2025, 54, 152–177.
182. Zheng, Z.; Nguyen, H. L.; Hanikel, N.; Li, K. K.-Y.; Zhou, Z.; Ma, T.; Yaghi, O. M., High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat Protoc. 2023, 18, 136–156.
183. Alabdulhadi, R. A.; Khan, S.; Khan, A.; Alfuhaid, L. T.; Khan, M. Y.; Usman, M.; Maity, N.; Helal, A., Potential Use of Reticular Materials (MOFs, ZIFs, and COFs) for Hydrogen Storage. ACS Appl. Energy Mater. 2025, 8, 1397–1413.
184. Yang, J.; Yang, Y.-W., Metal–Organic Frameworks for Biomedical Applications. Small. 2020, 16, 1906846.
185. Saraci, F.; Quezada-Novoa, V.; Donnarumma, P. R.; Howarth, A. J., Rare-earth metal–organic frameworks: from structure to applications. Chem. Soc. Rev. 2020, 49, 7949–7977.
186. Bicalho, H. A.; Copeman, C.; Barbosa, H. P.; Rafael Donnarumma, P.; Davis, Z.; Quezada-Novoa, V.; Velazquez-Garcia, J. de J.; Liu, N.; Hemmer, E.; Howarth, A. J., Synthesis, Characterization and Photophysical Properties of a New Family of Rare-Earth Cluster-Based Metal-Organic Frameworks. Chem. Eur. J. 2024, 30, e202402363.
187. Ajoyan, Z.; Mandl, G. A.; Donnarumma, P. R.; Quezada-Novoa, V.; Bicalho, H. A.; Titi, H. M.; Capobianco, J. A.; Howarth, A. J., Modulating Photo- and Radioluminescence in Tb(III) Cluster-Based Metal–Organic Frameworks. ACS Materials Lett. 2022, 4, 1025–1031.
188. Donnarumma, P. R.; Frojmovic, S.; Marino, P.; Bicalho, H. A.; Titi, H. M.; Howarth, A. J., Synthetic approaches for accessing rare-earth analogues of UiO-66. Chem. Commun. 2021, 57, 6121–6124.
189. Canales Gálvez, X. A.; Richezzi, M.; Bicalho, H. A.; Labadie, N.; Pellegrinet, S. C.; Titi, H. M.; Howarth, A. J., Photoluminescent Properties of Tb-UiO-66 Metal–Organic Framework Analogues. Inorg. Chem. 2025, 64, 1853–1859.
190. Djanffar, E.; Bicalho, H. A.; Ajoyan, Z.; Howarth, A. J.; Serier-Brault, H., Rare-earth UiO-66 for temperature sensing near room temperature. J. Mater. Chem. C. 2024, 12, 8024–8029.
191. Richezzi, M.; Donnarumma, P. R.; Copeman, C.; Howarth, A. J., Rare-earth acetates as alternative precursors for rare-earth cluster-based metal–organic frameworks. Chem. Commun. 2024, 60, 5173–5176.
192. Fordham, S.; Wang, X.; Bosch, M.; Zhou, H.-C., Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications. in Lanthanide Metal-Organic Frameworks. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, (ed. Cheng, P.) vol. 163, 1–27.
193. Ebrahim, F. M.; Nguyen, T. N.; Shyshkanov, S.; Gładysiak, A.; Favre, P.; Zacharia, A.; Itskos, G.; Dyson, P. J.; Stylianou, K. C., Selective, Fast-Response, and Regenerable Metal–Organic Framework for Sampling Excess Fluoride Levels in Drinking Water. J. Am. Chem. Soc. 2019, 141, 3052–3058.
194. Black, C. A.; Costa, J. S.; Fu, W. T.; Massera, C.; Roubeau, O.; Teat, S. J.; Aromí, G.; Gamez, P.; Reedijk, J., 3-D Lanthanide Metal-Organic Frameworks: Structure, Photoluminescence, and Magnetism. Inorg. Chem. 2009, 48, 1062–1068.
195. Chen, Z.; Li, P.; Zhang, X.; Li, P.; Wasson, M. C.; Islamoglu, T.; Stoddart, J. F.; Farha, O. K., Reticular Access to Highly Porous acs-MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. J. Am. Chem. Soc. 2019, 141, 2900–2905.
196. Angeli, G. K.; Sartsidou, C.; Vlachaki, S.; Spanopoulos, I.; Tsangarakis, C.; Kourtellaris, A.; Klontzas, E.; Froudakis, G. E.; Tasiopoulos, A.; Trikalitis, P. N., Reticular Chemistry and the Discovery of a New Family of Rare Earth (4, 8)-Connected Metal-Organic Frameworks with csq Topology Based on RE4(μ3-O)2(COO)8 Clusters. ACS Appl. Mater. Interfaces. 2017, 9, 44560–44566.
197. Mu, B.; Li, F.; Huang, Y.; Walton, K. S., Breathing effects of CO2 adsorption on a flexible 3D lanthanide metal–organic framework. J. Mater. Chem. 2012, 22, 10172–10178.
198. Millange, F.; Serre, C.; Marrot, J.; Gardant, N.; Pellé, F.; Férey, G., Synthesis, structure and properties of a three-dimensional porous rare-earth carboxylate MIL-83(Eu): Eu2(O2C-C10H14-CO2)3. J. Mater. Chem. 2004, 14, 642–645.
199. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O. M., Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. J. Am. Chem. Soc. 2005, 127, 1504–1518.
200. Gándara, F.; Gutiérrez-Puebla, E.; Iglesias, M.; Snejko, N.; Monge, M. Á., Isolated Hexanuclear Hydroxo Lanthanide Secondary Building Units in a Rare-Earth Polymeric Framework Based on p-Sulfonatocalix[4]arene. Cryst. Growth Des. 2010, 10, 128–134.
201. Xue, D.-X.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y.; Alkordi, M. H.; Eddaoudi, M., Tunable Rare-Earth fcu-MOFs: A Platform for Systematic Enhancement of CO2 Adsorption Energetics and Uptake. J. Am. Chem. Soc. 2013, 135, 7660–7667.
202. Xue, D.-X.; Belmabkhout, Y.; Shekhah, O.; Jiang, H.; Adil, K.; Cairns, A. J.; Eddaoudi, M., Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. J. Am. Chem. Soc. 2015, 137, 5034–5040.
203. Assen, A. H.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Xue, D.-X.; Jiang, H.; Eddaoudi, M., Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins. Angew. Chem. Int. Ed. 2015, 54, 14353–14358.
204. Yassine, O.; Shekhah, O.; Assen, A. H.; Belmabkhout, Y.; Salama, K. N.; Eddaoudi, M., H2S Sensors: Fumarate-Based fcu-MOF Thin Film Grown on a Capacitive Interdigitated Electrode. Angew. Chem. Int. Ed. 2016, 128, 16111–16115.
205. Luebke, R.; Belmabkhout, Y.; Weseliński, Ł. J.; Cairns, A. J.; Alkordi, M.; Norton, G.; Wojtas, Ł.; Adil, K.; Eddaoudi, M., Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw-MOFs. Chem. Sci. 2015, 6, 4095–4102.
206. Alezi, D.; Peedikakkal, A. M. P.; Weseliński, Ł. J.; Guillerm, V.; Belmabkhout, Y.; Cairns, A. J.; Chen, Z.; Wojtas, Ł.; Eddaoudi, M., Quest for Highly Connected Metal–Organic Framework Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs. J. Am. Chem. Soc. 2015, 137, 5421–5430.
207. Chen, Z.; Weseliński, Ł. J.; Adil, K.; Belmabkhout, Y.; Shkurenko, A.; Jiang, H.; Bhatt, P. M.; Guillerm, V.; Dauzon, E.; Xue, D.-X.; O’Keeffe, M.; Eddaoudi, M., Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. J. Am. Chem. Soc. 2017, 139, 3265–3274.
208. Jiang, H.-L.; Tsumori, N.; Xu, Q., A Series of (6,6)-Connected Porous Lanthanide−Organic Framework Enantiomers with High Thermostability and Exposed Metal Sites: Scalable Syntheses, Structures, and Sorption Properties. Inorg. Chem. 2010, 49, 10001–10006.
209. Zacher, D.; Liu, J.; Huber, K.; Fischer, R. A., Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study. Chem. Commun. 2009, 1031–1033.
210. Marino, P.; Donnarumma, P. R.; Bicalho, H. A.; Quezada-Novoa, V.; Titi, H. M.; Howarth, A. J., A Step toward Change: A Green Alternative for the Synthesis of Metal–Organic Frameworks. ACS Sustainable Chem. Eng. 2021, 9, 16356–16362.
211. Biemmi, E.; Christian, S.; Stock, N.; Bein, T., High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Micropor. Mesopor. Mat. 2009, 117, 111–117.
212. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P., Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystals. Chem. Eur. J. 2011, 17, 6643–6651.
213. Marshall, R. J.; Hobday, C. L.; Murphie, C. F.; Griffin, S. L.; Morrison, C. A.; Moggach, S. A.; Forgan, R. S., Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal–organic frameworks. J. Mater. Chem. A. 2016, 4, 6955–6963.
214. Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P., Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chem. Mater. 2016, 28, 3749–3761.
215. Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S., Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation. J. Am. Chem. Soc. 2011, 133, 15506–15513.
216. Sakata, Y.; Furukawa, S.; Kondo, M.; Hirai, K.; Horike, N.; Takashima, Y.; Uehara, H.; Louvain, N.; Meilikhov, M.; Tsuruoka, T.; Isoda, S.; Kosaka, W.; Sakata, O.; Kitagawa, S., Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing. Science. 2013, 339, 193–196.
217. Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K., A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 2013, 49, 9449–9451.
218. Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V.; Kirschhock, C.; De Vos, D. E., Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). J. Am. Chem. Soc. 2013, 135, 11465–11468.
219. Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S., Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth. Angew. Chem. Int. Ed. 2009, 48, 4739–4743.
220. Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S., Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes. Chem. Mater. 2010, 22, 4531–4538.
221. Buru, C. T.; Majewski, M. B.; Howarth, A. J.; Lavroff, R. H.; Kung, C.-W.; Peters, A. W.; Goswami, S.; Farha, O. K., Improving the Efficiency of Mustard Gas Simulant Detoxification by Tuning the Singlet Oxygen Quantum Yield in Metal–Organic Frameworks and Their Corresponding Thin Films. ACS Appl. Mater. Interfaces. 2018, 10, 23802–23806.
222. Sholl, D. S.; Lively, R. P., Defects in Metal–Organic Frameworks: Challenge or Opportunity? J. Phys. Chem. Lett. 2015, 6, 3437–3444.
223. Cheetham, A. K.; Bennett, T. D.; Coudert, F.-X.; Goodwin, A. L., Defects and disorder in metal organic frameworks. Dalton Trans. 2016, 45, 4113–4126.
224. Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W., Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. J. Am. Chem. Soc. 2013, 135, 10525–10532.
225. Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C., A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology. J. Am. Chem. Soc. 2014, 136, 17714–17717.
226. Lal, S.; Singh, P.; Singhal, A.; Kumar, S.; Gahlot, A. P. S.; Gandhi, N.; Kumari, P., Advances in metal–organic frameworks for water remediation applications. RSC Adv. 2024, 14, 3413–3446.
227. DeCoste, J. B.; Peterson, G. W., Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chem. Rev. 2014, 114, 5695–5727.
228. Matito-Martos, I.; Moghadam, P. Z.; Li, A.; Colombo, V.; Navarro, J. A. R.; Calero, S.; Fairen-Jimenez, D., Discovery of an Optimal Porous Crystalline Material for the Capture of Chemical Warfare Agents. Chem. Mater. 2018, 30, 4571–4579.
229. Gao, M.; Yang, J.; Zhang, Y.; Gao, M.; Zhang, M.; Wang, X.; Xu, L.; Wang, Z.; Shen, B., Adsorption of chemical warfare agents and their simulants by metal-organic frameworks: GCMC and DFT studies. J. Environ. Chem. Eng. 2025, 13, 116628.
230. Colombo, V.; Galli, S.; Choi, H. J.; Han, G. D.; Maspero, A.; Palmisano, G.; Masciocchi, N.; Long, J. R., High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chem. Sci. 2011, 2, 1311–1319.
231. Son, F. A.; Wasson, M. C.; Islamoglu, T.; Chen, Z.; Gong, X.; Hanna, S. L.; Lyu, J.; Wang, X.; Idrees, K. B.; Mahle, J. J.; Peterson, G. W.; Farha, O. K., Uncovering the Role of Metal–Organic Framework Topology on the Capture and Reactivity of Chemical Warfare Agents. Chem. Mater. 2020, 32, 4609–4617.
232. Giannakoudakis, D. A.; Bandosz, T. J., Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors. ACS Appl. Mater. Interfaces. 2020, 12, 14678–14689.
233. Wang, H.; Mahle, J. J.; Tovar, T. M.; Peterson, G. W.; Hall, M. G.; DeCoste, J. B.; Buchanan, J. H.; Karwacki, C. J., Solid-Phase Detoxification of Chemical Warfare Agents using Zirconium-Based Metal Organic Frameworks and the Moisture Effects: Analyze via Digestion. ACS Appl. Mater. Interfaces. 2019, 11, 21109–21116.
234. Garibay, S. J.; Farha, O. K.; DeCoste, J. B., Single-component frameworks for heterogeneous catalytic hydrolysis of organophosphorous compounds in pure water. Chem. Commun. 2019, 55, 7005–7008.
235. Zong, Y.; Ma, S.; Gao, J.; Xu, M.; Xue, J.; Wang, M., Synthesis of Porphyrin Zr-MOFs for the Adsorption and Photodegradation of Antibiotics under Visible Light. ACS Omega. 2021, 6, 17228–17238.
236. El Asmar, R.; Baalbaki, A.; Abou Khalil, Z.; Naim, S.; Bejjani, A.; Ghauch, A., Iron-based metal organic framework MIL-88-A for the degradation of naproxen in water through persulfate activation. Chem. Eng. J. 2021, 405, 126701–126719.
237. de Koning, M. C.; Dadon, L.; Rozing, L. C. M.; van Grol, M.; Bross, R., High Capacity Adsorption and Degradation of a Nerve Agent Simulant and a Pesticide by a Nickel Pyrazolate Metal–Organic Framework. ACS Appl. Mater. Interfaces. 2023, 15, 55877–55884.
238. Liao, Y.; Sheridan, T. R.; Liu, J.; Lu, Z.; Ma, K.; Yang, H.; Farha, O. K.; Hupp, J. T., Probing the Mechanism of Hydrolytic Degradation of Nerve Agent Simulant with Zirconium-Based Metal–Organic Frameworks. ACS Catal. 2024, 14, 437–448.
239. Tao, F.; Yu, J.; Zhang, L.; Zhou, Y.; Zhong, Y.; Huang, C.; Wang, Y., Integrating Two Highly Active Components into One for Decontaminating Sulfur Mustard and Sarin. Ind. Eng. Chem. Res. 2021, 60, 14193–14202.
240. Prasad, R. R. R.; Boyadjieva, S. S.; Zhou, G.; Tan, J.; Firth, F. C. N.; Ling, S.; Huang, Z.; Cliffe, M. J.; Foster, J. A.; Forgan, R. S., Modulated Self-Assembly of Catalytically Active Metal–Organic Nanosheets Containing Zr6 Clusters and Dicarboxylate Ligands. ACS Appl. Mater. Interfaces. 2024, 16, 17812–17820.
241. Tang, J.; Li, P.; Islamoglu, T.; Li, S.; Zhang, X.; Son, F. A.; Chen, Z.; Mian, M. R.; Lee, S.-J.; Wu, J.; Farha, O. K., Micropore environment regulation of zirconium MOFs for instantaneous hydrolysis of an organophosphorus chemical. Cell Rep. Phys. Sci. 2021, 2, 100612.
242. Gibbons, B.; Bartlett, E. C.; Cai, M.; Yang, X.; Johnson, E. M.; Morris, A. J., Defect Level and Particle Size Effects on the Hydrolysis of a Chemical Warfare Agent Simulant by UiO-66. Inorg. Chem. 2021, 60, 16378–16387.
243. Wu, T.; Qiu, F.; Xu, R.; Zhao, Q.; Guo, L.; Chen, D.; Li, C.; Jiao, X., Dual-Function Detoxifying Nanofabrics against Nerve Agent and Blistering Agent Simulants. ACS Appl. Mater. Interfaces. 2023, 15, 1265–1275.
244. Gil-San-Millan, R.; López-Maya, E.; Hall, M.; Padial, N. M.; Peterson, G. W.; DeCoste, J. B.; Rodríguez-Albelo, L. M.; Oltra, J. E.; Barea, E.; Navarro, J. A. R., Chemical Warfare Agents Detoxification Properties of Zirconium Metal–Organic Frameworks by Synergistic Incorporation of Nucleophilic and Basic Sites. ACS Appl. Mater. Interfaces. 2017, 9, 23967–23973.
245. Ko, Y.; Bae, E. J.; Chitale, S. K.; Soares, C. V.; Leitão, A. A.; Kim, M.-K.; Chang, J.-S.; Maurin, G.; Ryu, S. G.; Lee, U.-H., Washable and Reusable Zr-Metal–Organic Framework Nanostructure/Polyacrylonitrile Fibrous Mats for Catalytic Degradation of Real Chemical Warfare Agents. ACS Appl. Nano Mater. 2022, 5, 9657–9665.
246. Yang, J.; Gao, M.; Zhang, M.; Zhang, Y.; Gao, M.; Wang, Z.; Xu, L.; Wang, X.; Shen, B., Advances in the adsorption and degradation of chemical warfare agents and simulants by Metal-organic frameworks. Coord. Chem. Rev. 2023, 493, 215289.
247. Wu, Q.; Siddique, M. S.; Guo, Y.; Wu, M.; Yang, Y.; Yang, H., Low-crystalline bimetallic metal-organic frameworks as an excellent platform for photo-Fenton degradation of organic contaminants: Intensified synergism between hetero-metal nodes. Appl. Catal. B. 2021, 286, 119950–119963.
248. Liu, J.; Yu, H.; Wang, L., Toward efficient removal of organic pollutants in water: A tremella-like iron containing metal-organic framework in Fenton oxidation. Environ. Technol. 2021, 43, 2785–2795.
249. Li, S.; Zhu, X.; Yu, H.; Wang, X.; Liu, X.; Yang, H.; Li, F.; Zhou, Q., Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes. Environ. Res. 2021, 197, 111054–111066.
250. He, Z.; Liu, Y.; Wang, J.; Lv, Y.; Xu, Y.; Jia, S., Enhanced degradation of old landfill leachate in heterogeneous electro–Fenton catalyzed using Fe3O4 nano–particles encapsulated by metal organic frameworks. J. Clean. Prod. 2021, 321, 128947.
251. Ren, T.; Yu, Z.; Yu, H.; Deng, K.; Wang, Z.; Li, X.; Wang, H.; Wang, L.; Xu, Y., Sustainable Ammonia Electrosynthesis from Nitrate Wastewater Coupled to Electrocatalytic Upcycling of Polyethylene Terephthalate Plastic Waste. ACS Nano. 2023, 17, 12422–12432.
252. Wang, Z.; Li, Q.; Su, R.; Lv, G.; Wang, Z.; Gao, B.; Zhou, W., Enhanced degradation of bisphenol F in a porphyrin-MOF based visible-light system under high salinity conditions. Chem. Eng. J. 2022, 428, 132106–132116.
253. Hao, L.; Stoian, S. A.; Weddle, L. R.; Zhang, Q., Zr-Based MOFs for oxidative desulfurization: what matters? Green Chem. 2020, 22, 6351–6356.
254. Barghi, B.; Mõistlik, T.; Raag, A.; Volokhova, M.; Reile, I.; Seinberg, L.; Mikli, V.; Niidu, A., Deep Oxidative Desulfurization of Planar Compounds Over Functionalized Metal–Organic Framework UiO-66(Zr): An Optimization Study. ACS Omega. 2024, 9, 23329–23338.
255. Ye, G.; Yang, Z.; Wan, L.; Shi, G.; Chang, Y.; Zhang, Q., Insights into the sacrificial structure–activity relationship of a Ti-based metal–organic framework in an oxidative desulfurization reaction. Dalton Trans. 2023, 52, 15968–15973.
256. Tian, H.-R.; Zhang, Z.; Liu, S.-M.; Dang, T.-Y.; Li, X.-H.; Lu, Y.; Liu, S.-X., A novel polyoxovanadate-based Co-MOF: highly efficient and selective oxidation of a mustard gas simulant by two-site synergetic catalysis. J. Mater. Chem. A. 2020, 8, 12398–12405.
257. Buru, C. T.; Li, P.; Mehdi, B. L.; Dohnalkova, A.; Platero-Prats, A. E.; Browning, N. D.; Chapman, K. W.; Hupp, J. T.; Farha, O. K., Adsorption of a Catalytically Accessible Polyoxometalate in a Mesoporous Channel-type Metal–Organic Framework. Chem. Mater. 2017, 29, 5174–5181.
258. Buru, C. T.; Wasson, M. C.; Farha, O. K., H5PV2Mo10O40 Polyoxometalate Encapsulated in NU-1000 Metal–Organic Framework for Aerobic Oxidation of a Mustard Gas Simulant. ACS Appl. Nano Mater. 2020, 3, 658–664.
259. Buru, C. T.; Lyu, J.; Liu, J.; Farha, O. K., Restricting Polyoxometalate Movement Within Metal-Organic Frameworks to Assess the Role of Residual Water in Catalytic Thioether Oxidation Using These Dynamic Composites. Front. Mater. 2019, 6, 152.
260. Buru, C. T.; Platero-Prats, A. E.; Chica, D. G.; Kanatzidis, M. G.; Chapman, K. W.; Farha, O. K., Thermally induced migration of a polyoxometalate within a metal–organic framework and its catalytic effects. J. Mater. Chem. A. 2018, 6, 7389–7394.
261. Hao, Y.; Papazyan, E. K.; Ba, Y.; Liu, Y., Mechanism-Guided Design of Metal–Organic Framework Composites for Selective Photooxidation of a Mustard Gas Simulant under Solvent-Free Conditions. ACS Catal. 2022, 12, 363–371.
262. Wei, C.; Lu, M.; Li, J.-J.; Diao, Z.-J.; Liu, G.; Liu, X.-Q.; Sun, L.-B., A doubly interpenetrated perylene diimide-based zirconium metal–organic framework for selective oxidation of sulfides powered by blue light. J. Mater. Chem. A. 2024, 12, 33142–33149.
263. Liu, Y.; Howarth, A. J.; Hupp, J. T.; Farha, O. K., Selective Photooxidation of a Mustard-Gas Simulant Catalyzed by a Porphyrinic Metal–Organic Framework. Angew. Chem. Int. Ed. 2015, 54, 9001–9005.
264. Liu, Y.; Moon, S.-Y.; Hupp, J. T.; Farha, O. K., Dual-Function Metal–Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants. ACS Nano. 2015, 9, 12358–12364.
265. Lee, D. T.; Jamir, J. D.; Peterson, G. W.; Parsons, G. N., Protective Fabrics: Metal-Organic Framework Textiles for Rapid Photocatalytic Sulfur Mustard Simulant Detoxification. Matter. 2020, 2, 404–415.
266. Long, Z.-H.; Luo, D.; Wu, K.; Chen, Z.-Y.; Wu, M.-M.; Zhou, X.-P.; Li, D., Superoxide Ion and Singlet Oxygen Photogenerated by Metalloporphyrin-Based Metal–Organic Frameworks for Highly Efficient and Selective Photooxidation of a Sulfur Mustard Simulant. ACS Appl. Mater. Interfaces. 2021, 13, 37102–37110.
267. Liu, Y.; Buru, C. T.; Howarth, A. J.; Mahle, J. J.; Buchanan, J. H.; DeCoste, J. B.; Hupp, J. T.; Farha, O. K., Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal–organic framework. J. Mater. Chem. A. 2016, 4, 13809–13813.
268. Kulisiewicz, A. M.; Garibay, S. J.; Pozza, G. R.; Browe, M. A.; Sparr, O.; Singh, S.; Kelly, L. A.; DeCoste, J. B., Tunable Photocatalytic Singlet Oxygen Generation by Metal–Organic Frameworks via Functionalization of Pyrene-Containing Linkers. ACS Appl. Mater. Interfaces. 2023, 15, 40727–40734.
269. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M., Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science. 2002, 295, 469–472.
270. Stylianou, K. C.; Heck, R.; Chong, S. Y.; Bacsa, J.; Jones, J. T. A.; Khimyak, Y. Z.; Bradshaw, D.; Rosseinsky, M. J., A Guest-Responsive Fluorescent 3D Microporous Metal−Organic Framework Derived from a Long-Lifetime Pyrene Core. J. Am. Chem. Soc. 2010, 132, 4119–4130.
271. Gong, W.; Xie, Y.; Yamano, A.; Ito, S.; Tang, X.; Reinheimer, E. W.; Malliakas, C. D.; Dong, J.; Cui, Y.; Farha, O. K., Modulator-Dependent Dynamics Synergistically Enabled Record SO2 Uptake in Zr(IV) Metal–Organic Frameworks Based on Pyrene-Cored Molecular Quadripod Ligand. J. Am. Chem. Soc. 2023, 145, 26890–26899.
272. Zeng, X.-Y.; Liu, R.; Liu, D.-D.; Liu, Q.-Y.; Wang, Y.-L., Cadmium-1,3,6,8-tetrakis(4-carboxylphenyl)pyrene Framework as a Thermometer for Fluorescence Sensing of Temperature. Z. fur Anorg. Allg. Chem. 2019, 645, 1379–1383.
273. Gładysiak, A.; Nguyen, T. N.; Bounds, R.; Zacharia, A.; Itskos, G.; Reimer, J. A.; Stylianou, K. C., Temperature-dependent interchromophoric interaction in a fluorescent pyrene-based metal–organic framework. Chem. Sci. 2019, 10, 6140–6148.
274. Lin, Z.-J.; Zheng, H.-Q.; Zheng, H.-Y.; Lin, L.-P.; Xin, Q.; Cao, R., Efficient Capture and Effective Sensing of Cr2O72- from Water Using a Zirconium Metal–Organic Framework. Inorg. Chem. 2017, 56, 14178–14188.
275. Guo, L.; Wang, M.; Cao, D., A Novel Zr-MOF as Fluorescence Turn-On Probe for Real-Time Detecting H2S Gas and Fingerprint Identification. Small. 2018, 14, 1703822.
276. Bajpai, A.; Mukhopadhyay, A.; Krishna, M. S.; Govardhan, S.; Moorthy, J. N., A fluorescent paramagnetic Mn metal–organic framework based on semi-rigid pyrene tetracarboxylic acid: sensing of solvent polarity and explosive nitroaromatics. IUCrJ. 2015, 2, 552–562.
277. Ning, D.; Liu, Q.; Wang, Q.; Du, X.-M.; Li, Y.; Ruan, W.-J., Pyrene-based MOFs as fluorescent sensors for PAHs: an energetic pathway of the backbone structure effect on response. Dalton Trans. 2019, 48, 5705–5712.
278. Kinik, F. P.; Ortega-Guerrero, A.; Ongari, D.; Ireland, C. P.; Smit, B., Pyrene-based metal organic frameworks: from synthesis to applications. Chem. Soc. Rev. 2021, 50, 3143–3177.
279. Gutov, O. V.; Bury, W.; Gomez-Gualdron, D. A.; Krungleviciute, V.; Fairen-Jimenez, D.; Mondloch, J. E.; Sarjeant, A. A.; Al-Juaid, S. S.; Snurr, R. Q.; Hupp, J. T.; Yildirim, T.; Farha, O. K., Water-Stable Zirconium-Based Metal–Organic Framework Material with High-Surface Area and Gas-Storage Capacities. Chem. Eur. J. 2014, 20, 12389–12393.
280. Garibay, S. J.; Iordanov, I.; Islamoglu, T.; DeCoste, J. B.; Farha, O. K., Synthesis and functionalization of phase-pure NU-901 for enhanced CO2 adsorption: the influence of a zirconium salt and modulator on the topology and phase purity. CrystEngComm. 2018, 20, 7066–7070.
281. Ayoub, G.; Arhangelskis, M.; Zhang, X.; Son, F.; Islamoglu, T.; Friščić, T.; Farha, O. K., Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst. Beilstein J. Nanotechnol. 2019, 10, 2422–2427.
282. Lu, Z.; Wang, R.; Liao, Y.; Farha, O. K.; Bi, W.; Sheridan, T. R.; Zhang, K.; Duan, J.; Liu, J.; Hupp, J. T., Isomer of linker for NU-1000 yields a new she-type, catalytic, and hierarchically porous, Zr-based metal–organic framework. Chem. Commun. 2021, 57, 3571–3574.
283. Maldonado, R. R.; Zhang, X.; Hanna, S.; Gong, X.; Gianneschi, N. C.; Hupp, J. T.; Farha, O. K., Squeezing the box: isoreticular contraction of pyrene-based linker in a Zr-based metal–organic framework for Xe/Kr separation. Dalton Trans. 2020, 49, 6553–6556.
284. Klet, R. C.; Wang, T. C.; Fernandez, L. E.; Truhlar, D. G.; Hupp, J. T.; Farha, O. K., Synthetic Access to Atomically Dispersed Metals in Metal–Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach. Chem. Mater. 2016, 28, 1213–1219.
285. Li, Z.; Peters, A. W.; Bernales, V.; Ortuño, M. A.; Schweitzer, N. M.; DeStefano, M. R.; Gallington, L. C.; Platero-Prats, A. E.; Chapman, K. W.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K., Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. ACS Cent. Sci. 2017, 3, 31–38.
286. Deria, P.; Mondloch, J. E.; Tylianakis, E.; Ghosh, P.; Bury, W.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K., Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies. J. Am. Chem. Soc. 2013, 135, 16801–16804.
287. Chiu, N. C.; Gładysiak, A.; Yadav, A. K.; Abreu-Jaureguí, C.; Manjón-Sanz, A.; Li, C.; Huang, H.; Silvestre-Albero, J.; Stylianou, K. C., Gas Adsorption Snapshots in Metal–Organic Frameworks Unveil the Impact of Pore Geometry on Hydrogen Storage. ACS Materials Lett. 2024, 6, 4098–4105.
288. Pougin, M. J.; Domingues, N. P.; Uran, F. P.; Ortega-Guerrero, A.; Ireland, C. P.; Espín, J.; Lee Queen, W.; Smit, B., Adsorption in Pyrene-Based Metal–Organic Frameworks: The Role of Pore Structure and Topology. ACS Appl. Mater. Interfaces. 2024, 16, 36586–36598.
289. Alawisi, H.; Li, B.; He, Y.; Arman, H. D.; Asiri, A. M.; Wang, H.; Chen, B., A Microporous Metal–Organic Framework Constructed from a New Tetracarboxylic Acid for Selective Gas Separation. Cryst. Growth Des. 2014, 14, 2522–2526.
290. Kung, C.-W.; Mondloch, J. E.; Wang, T. C.; Bury, W.; Hoffeditz, W.; Klahr, B. M.; Klet, R. C.; Pellin, M. J.; Farha, O. K.; Hupp, J. T., Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation. ACS Appl. Mater. Interfaces. 2015, 7, 28223–28230.
291. Peters, A. W.; Li, Z.; Farha, O. K.; Hupp, J. T., Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal–Organic Framework via Atomic Layer Deposition. ACS Nano. 2015, 9, 8484–8490.
292. Hurley, T.; Remcho, V. T.; Stylianou, K. C., Recovery of Berry Natural Products Using Pyrene-Based MOF Solid Phase Extraction. Chem. Eur. J. 2024, 30, e202402221.
293. Yang, Z.; Tang, J.; Chen, B.; Qu, X.; Fu, H., Nanoporous Pyrene-Based Metal–Organic Frameworks for Fluorescence Screening and Discrimination of Sulfonamide Antibiotics. ACS Appl. Nano Mater. 2023, 6, 23245–23253.
294. Rajasree, S. S.; Fry, H. C.; Gosztola, D. J.; Saha, B.; Krishnan, R.; Deria, P., Symmetry-Breaking Charge Transfer in Metal–Organic Frameworks. J. Am. Chem. Soc. 2024, 146, 5543–5549.
295. Gong, W.; Geng, Y.; Gao, P.; Zhang, J.; Zhou, K.; Dong, J.; Farha, O. K.; Cui, Y., Leveraging Isoreticular Principle to Elucidate the Key Role of Inherent Hydrogen-Bonding Anchoring Sites in Enhancing Water Sorption Cyclability of Zr(IV) Metal–Organic Frameworks. J. Am. Chem. Soc. 2024, 146, 21806–21814.
296. Xie, S.; Wang, H.; Liu, Z.; Dai, R.; Huang, L., Fluorescent metal–organic framework based on pyrene chromophore for sensing of nitrobenzene. RSC Adv. 2014, 5, 7121–7124.
297. Huang, Y.-L.; Qiu, P.-L.; Bai, J.-P.; Luo, D.; Lu, W.; Li, D., Exclusive Recognition of Acetone in a Luminescent BioMOF through Multiple Hydrogen-Bonding Interactions. Inorg. Chem. 2019, 58, 7667–7671.
298. Wu, M.-M.; Su, J.; Luo, D.; Cai, B.-C.; Zheng, Z.-L.; Bin, D.-S.; Li, Y. Y.; Zhou, X.-P., Ultrafast Photocatalytic Detoxification of Mustard Gas Simulants by a Mesoporous Metal–Organic Framework with Dangling Porphyrin Molecules. Small. 2023, 19, 2301050.
299. Lin, H.; Yang, Y.; Diamond, B. G.; Yan, T.-H.; Bakhmutov, V. I.; Festus, K. W.; Cai, P.; Xiao, Z.; Leng, M.; Afolabi, I.; Day, G. S.; Fang, L.; Hendon, C. H.; Zhou, H.-C., Integrating Photoactive Ligands into Crystalline Ultrathin 2D Metal–Organic Framework Nanosheets for Efficient Photoinduced Energy Transfer. J. Am. Chem. Soc. 2024, 146, 1491–1500.
300. Wang, X.; Ma, K.; Goh, T.; Mian, M. R.; Xie, H.; Mao, H.; Duan, J.; Kirlikovali, K. O.; Stone, A. E. B. S.; Ray, D.; Wasielewski, M. R.; Gagliardi, L.; Farha, O. K., Photocatalytic Biocidal Coatings Featuring Zr6Ti4-Based Metal–Organic Frameworks. J. Am. Chem. Soc. 2022, 144, 12192–12201.
301. Park, K. C.; Seo, C.; Gupta, G.; Kim, J.; Lee, C. Y., Efficient Energy Transfer (EnT) in Pyrene- and Porphyrin-Based Mixed-Ligand Metal–Organic Frameworks. ACS Appl. Mater. Interfaces. 2017, 9, 38670–38677.
302. Pereira, C. F.; Liu, Y.; Howarth, A.; Figueira, F.; Rocha, J.; Hupp, J. T.; Farha, O. K.; Tomé, J. P. C.; Almeida Paz, F. A., Detoxification of a Mustard-Gas Simulant by Nanosized Porphyrin-Based Metal–Organic Frameworks. ACS Appl. Nano Mater. 2019, 2, 465–469.
303. Atilgan, A.; Islamoglu, T.; Howarth, A. J.; Hupp, J. T.; Farha, O. K., Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal–Organic Framework. ACS Appl. Mater. Interfaces. 2017, 9, 24555–24560.
304. Wang, X.; Zhang, X.; Pandharkar, R.; Lyu, J.; Ray, D.; Yang, Y.; Kato, S.; Liu, J.; Wasson, M. C.; Islamoglu, T.; Li, Z.; Hupp, J. T.; Cramer, C. J.; Gagliardi, L.; Farha, O. K., Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catal. 2020, 10, 8995–9005.
305. Bennett, T. D.; Yue, Y.; Li, P.; Qiao, A.; Tao, H.; Greaves, N. G.; Richards, T.; Lampronti, G. I.; Redfern, S. A. T.; Blanc, F.; Farha, O. K.; Hupp, J. T.; Cheetham, A. K.; Keen, D. A., Melt-Quenched Glasses of Metal–Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 3484–3492.
306. Zhou, C.; Longley, L.; Krajnc, A.; Smales, G. J.; Qiao, A.; Erucar, I.; Doherty, C. M.; Thornton, A. W.; Hill, A. J.; Ashling, C. W.; Qazvini, O. T.; Lee, S. J.; Chater, P. A.; Terrill, N. J.; Smith, A. J.; Yue, Y.; Mali, G.; Keen, D. A.; Telfer, S. G.; Bennett, T. D., Metal-organic framework glasses with permanent accessible porosity. Nat Commun. 2018, 9, 5042.
307. Fonseca, J.; Gong, T.; Jiao, L.; Jiang, H.-L., Metal–organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A. 2021, 9, 10562–10611.
308. Müller, P., Practical suggestions for better crystal structures. Crystallogr. Rev. 2009, 15, 57–83.
309. Øien-Ødegaard, S.; Shearer, G. C.; Wragg, D. S.; Lillerud, K. P., Pitfalls in metal–organic framework crystallography: towards more accurate crystal structures. Chem. Soc. Rev. 2017, 46, 4867–4876.
310. Gándara, F.; Bennett, T. D., Crystallography of metal–organic frameworks. IUCrJ. 2014, 1, 563–570.
311. Kim, Y.; Haldar, R.; Kim, H.; Koo, J.; Kim, K., The guest-dependent thermal response of the flexible MOF Zn2(BDC)2(DABCO). Dalton Trans. 2016, 45, 4187–4192.
312. Zhang, J.-P.; Liao, P.-Q.; Zhou, H.-L.; Lin, R.-B.; Chen, X.-M., Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem. Soc. Rev. 2014, 43, 5789–5814.
313. Huang, Z.; Grape, E. S.; Li, J.; Inge, A. K.; Zou, X., 3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coordination Chemistry Reviews. 2021, 427, 213583.
314. Yang, T.; Willhammar, T.; Xu, H.; Zou, X.; Huang, Z., Single-crystal structure determination of nanosized metal–organic frameworks by three-dimensional electron diffraction. Nat Protoc. 2022, 17, 2389–2413.
315. Yuan, S.; Qin, J.-S.; Xu, H.-Q.; Su, J.; Rossi, D.; Chen, Y.; Zhang, L.; Lollar, C.; Wang, Q.; Jiang, H.-L.; Son, D. H.; Xu, H.; Huang, Z.; Zou, X.; Zhou, H.-C., [Ti8Zr2O12(COO)16] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Cent. Sci. 2018, 4, 105–111.
316. Yang, L.; Cai, P.; Zhang, L.; Xu, X.; Yakovenko, A. A.; Wang, Q.; Pang, J.; Yuan, S.; Zou, X.; Huang, N.; Huang, Z.; Zhou, H.-C., Ligand-Directed Conformational Control over Porphyrinic Zirconium Metal–Organic Frameworks for Size-Selective Catalysis. J. Am. Chem. Soc. 2021, 143, 12129–12137.
317. Wang, B.; Rhauderwiek, T.; Inge, A. K.; Xu, H.; Yang, T.; Huang, Z.; Stock, N.; Zou, X., A Porous Cobalt Tetraphosphonate Metal–Organic Framework: Accurate Structure and Guest Molecule Location Determined by Continuous-Rotation Electron Diffraction. Chem. Eur. J. 2018, 24, 17429–17433.
318. Martí-Rujas, J., Structural elucidation of microcrystalline MOFs from powder X-ray diffraction. Dalton Trans. 2020, 49, 13897–13916.
319. Garai, B.; Bon, V.; Walenszus, F.; Khadiev, A.; Novikov, D. V.; Kaskel, S., Elucidating the Structural Evolution of a Highly Porous Responsive Metal–Organic Framework (DUT-49(M)) upon Guest Desorption by Time-Resolved in Situ Powder X-ray Diffraction. Cryst. Growth Des. 2021, 21, 270–276.
320. Harris, K. D. M.; Tremayne, M.; Kariuki, B. M., Contemporary Advances in the Use of Powder X-Ray Diffraction for Structure Determination. Angew. Chem. Int. Ed. 2001, 40, 1626–1651.
321. Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K., Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chem. Mater. 2017, 29, 26–39.
322. Harris, K. D. M.; Tremayne, M., Crystal Structure Determination from Powder Diffraction Data. Chem. Mater. 1996, 8, 2554–2570.
323. Rietveld, H. M., A profile refinement method for nuclear and magnetic structures. J Appl Cryst. 1969, 2, 65–71.
324. Toby, B. H., R factors in Rietveld analysis: How good is good enough? Powder Diffr. 2006, 21, 67–70.
325. Mazaj, M.; Kaucic, V.; Logar, N. Z., Chemistry of Metal-organic Frameworks Monitored by Advanced X-ray Diffraction and Scattering Techniques. Acta Chim. Slov. 2016, 63, 440–458.
326. Ishii, Y.; Nishiwaki, Y.; Al-zubaidi, A.; Kawasaki, S., Pore Size Determination in Ordered Mesoporous Materials Using Powder X-ray Diffraction. J. Phys. Chem. C. 2013, 117, 18120–18130.
327. Yakovenko, A. A.; Wei, Z.; Wriedt, M.; Li, J.-R.; Halder, G. J.; Zhou, H.-C., Study of Guest Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density. Cryst. Growth Des. 2014, 14, 5397–5407.
328. Taddei, M.; Casati, N.; Steitz, D. A.; Dümbgen, K. C.; Bokhoven, J. A. van; Ranocchiari, M., In situ high-resolution powder X-ray diffraction study of UiO-66 under synthesis conditions in a continuous-flow microwave reactor. CrystEngComm. 2017, 19, 3206–3214.
329. Lippi, M.; Cametti, M.; Martí-Rujas, J., Ab initio powder X-ray diffraction structural analysis of bispidine based 1D coordination polymers: insights into their guest responsive behaviour. Dalton Trans. 2019, 48, 16756–16763.
330. Terban, M. W.; Billinge, S. J. L., Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chem. Rev. 2022, 122, 1208–1272.
331. Romero-Muñiz, I.; Loukopoulos, E.; Xiong, Y.; Zamora, F.; Platero-Prats, A. E., Exploring porous structures without crystals: advancements with pair distribution function in metal- and covalent organic frameworks. Chem. Soc. Rev. 2024, 53, 11772–11803.
332. Billinge, S.; Jensen, A. P. K., Atomic Pair Distribution Function Analysis: A Primer. Oxford University Press, Oxford, New York, 2024,.
333. Chen, Z.; Mo, S.; Lin, H.; Wu, Z.; Zhao, Y.; Hua, X.; Zhao, P., Understanding porous materials with pair distribution functions. Cell Rep. Phys. Sci. 2023, 4, 101681.
334. Castillo-Blas, C.; Moreno, J. M.; Romero-Muñiz, I.; Platero-Prats, A. E., Applications of pair distribution function analyses to the emerging field of non-ideal metal–organic framework materials. Nanoscale. 2020, 12, 15577–15587.
335. Bechis, I.; Sapnik, A. F.; Tarzia, A.; Wolpert, E. H.; Addicoat, M. A.; Keen, D. A.; Bennett, T. D.; Jelfs, K. E., Modeling the Effect of Defects and Disorder in Amorphous Metal–Organic Frameworks. Chem. Mater. 2022, 34, 9042–9054.
336. Russell, S. E.; Henkelis, S. E.; Vornholt, S. M.; Rainer, D. N.; Chapman, K. W.; Morris, R. E., In situ flow pair distribution function analysis to probe the assembly–disassembly–organisation–reassembly (ADOR) mechanism of zeolite IPC-2 synthesis. Mater. Adv. 2021, 2, 7949–7955.
337. Bennett, T. D.; Cheetham, A. K., Amorphous Metal–Organic Frameworks. Acc. Chem. Res. 2014, 47, 1555–1562.
338. Installation — diffpy.pdfgetx 2.2.1 documentation. https://www.diffpy.org/doc/pdfgetx/2.2.1/install.html, Accessed: 14 May 2025.
339. Farrow, C. L.; Juhas, P.; Liu, J. W.; Bryndin, D.; Božin, E. S.; Bloch, J.; Proffen, T.; Billinge, S. J. L., PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys.: Condens. Matter. 2007, 19, 335219.
340. DiffPy - Atomic Structure Analysis in Python — DiffPy documentation. https://www.diffpy.org/index.html, Accessed: 14 May 2025.
341. Wells, A. F., Three-dimensional nets and polyhedra. Bull. Amer. Math. Soc. 1978, 84, 466–470.
342. Öhrström, L., Let’s Talk about MOFs—Topology and Terminology of Metal-Organic Frameworks and Why We Need Them. Crystals. 2015, 5, 154–162.
343. Bonneau, C.; O’Keeffe, M.; Proserpio, D. M.; Blatov, V. A.; Batten, S. R.; Bourne, S. A.; Lah, M. S.; Eon, J.-G.; Hyde, S. T.; Wiggin, S. B.; Öhrström, L., Deconstruction of Crystalline Networks into Underlying Nets: Relevance for Terminology Guidelines and Crystallographic Databases. Cryst. Growth Des. 2018, 18, 3411–3418.
344. Glasby, L. T.; Cordiner, J. L.; Cole, J. C.; Moghadam, P. Z., Topological Characterization of Metal–Organic Frameworks: A Perspective. Chem. Mater. 2024, 36, 9013–9030.
345. Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature. 2003, 423, 705–714.
346. Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M., Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586.
347. Shevchenko, A. P.; Alexandrov, E. V.; Golov, A. A.; Blatova, O. A.; Duyunova, A. S.; Blatov, V. A., Topology versus porosity: what can reticular chemistry tell us about free space in metal–organic frameworks? Chem. Commun. 2020, 56, 9616–9619.
348. Moghadam, P. Z.; Rogge, S. M. J.; Li, A.; Chow, C.-M.; Wieme, J.; Moharrami, N.; Aragones-Anglada, M.; Conduit, G.; Gomez-Gualdron, D. A.; Van Speybroeck, V.; Fairen-Jimenez, D., Structure-Mechanical Stability Relations of Metal-Organic Frameworks via Machine Learning. Matter. 2019, 1, 219–234.
349. Sing, K. S. W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry. 1985, 57, 603–619.
350. Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403.
351. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319.
352. Xiao, Z.; Jin, S.; Wang, X.; Li, W.; Wang, J.; Liang, C., Preparation, structure and catalytic properties of magnetically separable Cu–Fe catalysts for glycerol hydrogenolysis. J. Mater. Chem. 2012, 22, 16598–16605.
353. Bhambhani, M. R.; Cutting, P. A.; Sing, K. S. W.; Turk, D. H., Analysis of nitrogen adsorption isotherms on porous and nonporous silicas by the BET and αs methods. J. Colloid Interface Sci. 1972, 38, 109–117.
354. Sun, Y.; Webley, P. A., Preparation of Activated Carbons with Large Specific Surface Areas from Biomass Corncob and Their Adsorption Equilibrium for Methane, Carbon Dioxide, Nitrogen, and Hydrogen. Ind. Eng. Chem. Res. 2011, 50, 9286–9294.
355. Chen, C.; Park, D.-W.; Ahn, W.-S., CO2 capture using zeolite 13X prepared from bentonite. Appl. Surf. Sci. 2014, 292, 63–67.
356. Sinha, P.; Datar, A.; Jeong, C.; Deng, X.; Chung, Y. G.; Lin, L.-C., Surface Area Determination of Porous Materials Using the Brunauer–Emmett–Teller (BET) Method: Limitations and Improvements. J. Phys. Chem. C. 2019, 123, 20195–20209.
357. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. 2015, 87, 1051–1069.
358. Rouquerol, J.; Llewellyn, P.; Rouquerol, F., Is the bet equation applicable to microporous adsorbents? in Studies in Surface Science and Catalysis. Elsevier, 2007, (eds. Llewellyn, P. L., Rodriquez-Reinoso, F., Rouqerol, J. & Seaton, N.) vol. 160, 49–56.
359. Tarazona, P., Free-energy density functional for hard spheres. Phys. Rev. A. 1985, 31, 2672–2679.
360. Tarazona, P.; Marconi ,U. Marini Bettolo; and Evans, R., Phase equilibria of fluid interfaces and confined fluids: Non-local versus local density functionals. Mol. Phys. 1987, 60, 573–595.
361. Landers, J.; Gor, G. Yu.; Neimark, A. V., Density functional theory methods for characterization of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 2013, 437, 3–32.
362. Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M., A route to high surface area, porosity and inclusion of large molecules in crystals. Nature. 2004, 427, 523–527.
363. Grünker, R.; Bon, V.; Müller, P.; Stoeck, U.; Krause, S.; Mueller, U.; Senkovska, I.; Kaskel, S., A new metal–organic framework with ultra-high surface area. Chem. Commun. 2014, 50, 3450–3452.
364. Osterrieth, J. W. M.; Rampersad, J.; Madden, D.; Rampal, N.; Skoric, L.; Connolly, B.; Allendorf, M. D.; Stavila, V.; Snider, J. L.; Ameloot, R.; Marreiros, J.; Ania, C.; Azevedo, D.; Vilarrasa-Garcia, E.; Santos, B. F.; Bu, X.-H.; Chang, Z.; Bunzen, H.; Champness, N. R.; Griffin, S. L.; Chen, B.; Lin, R.-B.; Coasne, B.; Cohen, S.; Moreton, J. C.; Colón, Y. J.; Chen, L.; Clowes, R.; Coudert, F.-X.; Cui, Y.; Hou, B.; D’Alessandro, D. M.; Doheny, P. W.; Dincă, M.; Sun, C.; Doonan, C.; Huxley, M. T.; Evans, J. D.; Falcaro, P.; Ricco, R.; Farha, O.; Idrees, K. B.; Islamoglu, T.; Feng, P.; Yang, H.; Forgan, R. S.; Bara, D.; Furukawa, S.; Sanchez, E.; Gascon, J.; Telalović, S.; Ghosh, S. K.; Mukherjee, S.; Hill, M. R.; Sadiq, M. M.; Horcajada, P.; Salcedo-Abraira, P.; Kaneko, K.; Kukobat, R.; Kenvin, J.; Keskin, S.; Kitagawa, S.; Otake, K.; Lively, R. P.; DeWitt, S. J. A.; Llewellyn, P.; Lotsch, B. V.; Emmerling, S. T.; Pütz, A. M.; Martí-Gastaldo, C.; Padial, N. M.; García-Martínez, J.; Linares, N.; Maspoch, D.; Suárez del Pino, J. A.; Moghadam, P.; Oktavian, R.; Morris, R. E.; Wheatley, P. S.; Navarro, J.; Petit, C.; Danaci, D.; Rosseinsky, M. J.; Katsoulidis, A. P.; Schröder, M.; Han, X.; Yang, S.; Serre, C.; Mouchaham, G.; Sholl, D. S.; Thyagarajan, R.; Siderius, D.; Snurr, R. Q.; Goncalves, R. B.; Telfer, S.; Lee, S. J.; Ting, V. P.; Rowlandson, J. L.; Uemura, T.; Iiyuka, T.; et al., How Reproducible are Surface Areas Calculated from the BET Equation? Adv. Mater. 2022, 34, 2201502.
365. Quezada-Novoa, V.; Titi, H. M.; Sarjeant, A. A.; Howarth, A. J., Building a shp: A Rare-Earth Metal–Organic Framework and Its Application in a Catalytic Photooxidation Reaction. Chem. Mater. 2021, 33, 4163–4169.
366. Quezada-Novoa, V.; Titi, H. M.; Villanueva, F. Y.; Wilson, M. W. B.; Howarth, A. J., The Effect of Linker-to-Metal Energy Transfer on the Photooxidation Performance of an Isostructural Series of Pyrene-Based Rare-Earth Metal–Organic Frameworks. Small. 2023, 19, 2302173.
367. Hoskins, B. F.; Robson, R., Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111, 5962–5964.
368. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I., A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science. 2005, 309, 2040–2042.
369. Kondo, M.; Yoshitomi, T.; Matsuzaka, H.; Kitagawa, S.; Seki, K., Three-Dimensional Framework with Channeling Cavities for Small Molecules: [M2(4, 4′-bpy)3(NO3)4]·xH2On (M = Co, Ni, Zn). Angew. Chem. Int. Ed. 1997, 36, 1725–1727.
370. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013, 341, 974.
371. He, H.; Yuan, D.; Ma, H.; Sun, D.; Zhang, G.; Zhou, H.-C., Control over Interpenetration in Lanthanide−Organic Frameworks: Synthetic Strategy and Gas-Adsorption Properties. Inorg. Chem. 2010, 49, 7605–7607.
372. Roy, S.; Chakraborty, A.; Maji, T. K., Lanthanide–organic frameworks for gas storage and as magneto-luminescent materials. Coord. Chem. Rev. 2014, 273–274, 139–164.
373. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.
374. Rimoldi, M.; Howarth, A. J.; DeStefano, M. R.; Lin, L.; Goswami, S.; Li, P.; Hupp, J. T.; Farha, O. K., Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catal. 2017, 7, 997–1014.
375. Wang, Q.; Gao, Q.; Al-Enizi, A. M.; Nafady, A.; Ma, S., Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300–339.
376. Wang, J.-L.; Wang, C.; Lin, W., Metal–Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catal. 2012, 2, 2630–2640.
377. Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D., Influence of Connectivity and Porosity on Ligand-Based Luminescence in Zinc Metal−Organic Frameworks. J. Am. Chem. Soc. 2007, 129, 7136–7144.
378. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112, 1105–1125.
379. Kobielska, P. A.; Howarth, A. J.; Farha, O. K.; Nayak, S., Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 2018, 358, 92–107.
380. J. Howarth, A.; Liu, Y.; T. Hupp, J.; K. Farha, O., Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water. Cryst. Eng. Comm. 2015, 17, 7245–7253.
381. Rojas, S.; Horcajada, P., Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem. Rev. 2020, 120, 8378–8415.
382. Drout, R. J.; Robison, L.; Chen, Z.; Islamoglu, T.; Farha, O. K., Zirconium Metal–Organic Frameworks for Organic Pollutant Adsorption. Trends. Chem. 2019, 1, 304–317.
383. Fordham, S.; Wang, X.; Bosch, M.; Zhou, H.-C., Lanthanide Metal-Organic Frameworks. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2014, vol. 163,.
384. Xue, D.-X.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y.; Alkordi, M. H.; Eddaoudi, M., Tunable Rare-Earth fcu-MOFs: A Platform for Systematic Enhancement of CO2 Adsorption Energetics and Uptake. J. Am. Chem. Soc. 2013, 135, 7660–7667.
385. Luo, J.; Xu, H.; Liu, Y.; Zhao, Y.; Daemen, L. L.; Brown, C.; Timofeeva, T. V.; Ma, S.; Zhou, H.-C., Hydrogen Adsorption in a Highly Stable Porous Rare-Earth Metal-Organic Framework: Sorption Properties and Neutron Diffraction Studies. J. Am. Chem. Soc. 2008, 130, 9626–9627.
386. Zhang, S.-Y.; Shi, W.; Cheng, P.; Zaworotko, M. J., A Mixed-Crystal Lanthanide Zeolite-like Metal–Organic Framework as a Fluorescent Indicator for Lysophosphatidic Acid, a Cancer Biomarker. J. Am. Chem. Soc. 2015, 137, 12203–12206.
387. Quah, H. S.; Ng, L. T.; Donnadieu, B.; Tan, G. K.; Vittal, J. J., Molecular Scissoring: Facile 3D to 2D Conversion of Lanthanide Metal Organic Frameworks Via Solvent Exfoliation. Inorg. Chem. 2016, 55, 10851–10854.
388. Kumar, M.; Wu, L.-H.; Kariem, M.; Franconetti, A.; Sheikh, H. N.; Liu, S.-J.; Sahoo, S. C.; Frontera, A., A Series of Lanthanide-Based Metal–Organic Frameworks Derived from Furan-2,5-dicarboxylate and Glutarate: Structure-Corroborated Density Functional Theory Study, Magnetocaloric Effect, Slow Relaxation of Magnetization, and Luminescent Properties. Inorg. Chem. 2019, 58, 7760–7774.
389. Devic, T.; Serre, C.; Audebrand, N.; Marrot, J.; Férey, G., MIL-103, A 3-D Lanthanide-Based Metal Organic Framework with Large One-Dimensional Tunnels and A High Surface Area. J. Am. Chem. Soc. 2005, 127, 12788–12789.
390. Cui, Y.; Xu, H.; Yue, Y.; Guo, Z.; Yu, J.; Chen, Z.; Gao, J.; Yang, Y.; Qian, G.; Chen, B., A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer. J. Am. Chem. Soc. 2012, 134, 3979–3982.
391. Chen, Z.; Li, P.; Zhang, X.; Li, P.; Wasson, M. C.; Islamoglu, T.; Stoddart, J. F.; Farha, O. K., Reticular Access to Highly Porous acs-MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. J. Am. Chem. Soc. 2019, 141, 2900–2905.
392. Jiang, H.; Jia, J.; Shkurenko, A.; Chen, Z.; Adil, K.; Belmabkhout, Y.; Weselinski, L. J.; Assen, A. H.; Xue, D.-X.; O’Keeffe, M.; Eddaoudi, M., Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal–Organic Framework Platforms. J. Am. Chem. Soc. 2018, 140, 8858–8867.
393. Assen, A. H.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Xue, D.-X.; Jiang, H.; Eddaoudi, M., Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins. Angew. Chem. Int. Ed. 2015, 54, 14353–14358.
394. Luebke, R.; Belmabkhout, Y.; Weseliński, Ł. J.; Cairns, A. J.; Alkordi, M.; Norton, G.; Wojtas, Ł.; Adil, K.; Eddaoudi, M., Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw-MOFs. Chem. Sci. 2015, 6, 4095–4102.
395. Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M., Three-periodic nets and tilings: edge-transitive binodal structures. Acta Cryst A. 2006, 62, 350–355.
396. AbdulHalim, R. G.; Bhatt, P. M.; Belmabkhout, Y.; Shkurenko, A.; Adil, K.; Barbour, L. J.; Eddaoudi, M., A Fine-Tuned Metal–Organic Framework for Autonomous Indoor Moisture Control. J. Am. Chem. Soc. 2017, 139, 10715–10722.
397. Alezi, D.; Peedikakkal, A. M. P.; Weseliński, Ł. J.; Guillerm, V.; Belmabkhout, Y.; Cairns, A. J.; Chen, Z.; Wojtas, Ł.; Eddaoudi, M., Quest for Highly Connected Metal–Organic Framework Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs. J. Am. Chem. Soc. 2015, 137, 5421–5430.
398. Feng, L.; Wang, Y.; Zhang, K.; Wang, K.-Y.; Fan, W.; Wang, X.; Powell, J. A.; Guo, B.; Dai, F.; Zhang, L.; Wang, R.; Sun, D.; Zhou, H.-C., Molecular Pivot-Hinge Installation to Evolve Topology in Rare-Earth Metal–Organic Frameworks. Angew. Chem. 2019, 131, 16835–16843.
399. Angeli, G. K.; Batzavali, D.; Mavronasou, K.; Tsangarakis, C.; Stuerzer, T.; Ott, H.; Trikalitis, P. N., Remarkable Structural Diversity between Zr/Hf and Rare-Earth MOFs via Ligand Functionalization and the Discovery of Unique (4, 8)-c and (4, 12)-connected Frameworks. J. Am. Chem. Soc. 2020, 142, 15986–15994.
400. Kung, C.-W.; Wang, T. C.; Mondloch, J. E.; Fairen-Jimenez, D.; Gardner, D. M.; Bury, W.; Klingsporn, J. M.; Barnes, J. C.; Van Duyne, R.; Stoddart, J. F.; Wasielewski, M. R.; Farha, O. K.; Hupp, J. T., Metal–Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism. Chem. Mater. 2013, 25, 5012–5017.
401. Smolders, S.; Struyf, A.; Reinsch, H.; Bueken, B.; Rhauderwiek, T.; Mintrop, L.; Kurz, P.; Stock, N.; Vos, D. E. D., A precursor method for the synthesis of new Ce(IV) MOFs with reactive tetracarboxylate linkers. Chem. Commun. 2018, 54, 876–879.
402. Wang, T. C.; Vermeulen, N. A.; Kim, I. S.; Martinson, A. B. F.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K., Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nat. Protoc. 2016, 11, 149–162.
403. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta. Cryst. C. 2015, 71, 3–8.
404. Sheldrick, G. M., SHELXT – Integrated space-group and crystal-structure determination. Acta. Cryst. A. 2015, 71, 3–8.
405. Spek, A. L., PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta. Cryst. C. 2015, 71, 9–18.
406. Chen, Z.; Thiam, Z.; Shkurenko, A.; Weselinski, L. J.; Adil, K.; Jiang, H.; Alezi, D.; Assen, A. H.; O’Keeffe, M.; Eddaoudi, M., Enriching the Reticular Chemistry Repertoire with Minimal Edge-Transitive Related Nets: Access to Highly Coordinated Metal–Organic Frameworks Based on Double Six-Membered Rings as Net-Coded Building Units. J. Am. Chem. Soc. 2019, 141, 20480–20489.
407. Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C., A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology. J. Am. Chem. Soc. 2014, 136, 17714–17717.
408. Lyu, J.; Zhang, X.; Otake, K.; Wang, X.; Li, P.; Li, Z.; Chen, Z.; Zhang, Y.; Wasson, M. C.; Yang, Y.; Bai, P.; Guo, X.; Islamoglu, T.; Farha, O. K., Topology and porosity control of metal–organic frameworks through linker functionalization. Chem. Sci. 2019, 10, 1186–1192.
409. Shaikh, S. M.; Usov, P. M.; Zhu, J.; Cai, M.; Alatis, J.; Morris, A. J., Synthesis and Defect Characterization of Phase-Pure Zr-MOFs Based on Meso-tetracarboxyphenylporphyrin. Inorg. Chem. 2019, 58, 5145–5153.
410. Chun, N. Y.; Kim, S.-N.; Choi, Y. S.; Choy, Y. B., PCN-223 as a drug carrier for potential treatment of colorectal cancer. J. Ind. Eng. Chem. 2020, 84, 290–296.
411. Li, P.; Chen, Q.; Wang, T. C.; Vermeulen, N. A.; Mehdi, B. L.; Dohnalkova, A.; Browning, N. D.; Shen, D.; Anderson, R.; Gómez-Gualdrón, D. A.; Cetin, F. M.; Jagiello, J.; Asiri, A. M.; Stoddart, J. F.; Farha, O. K., Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems. Chem. 2018, 4, 1022–1034.
412. United Nations Treaty Collection. https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVI-3&chapter=26&lang=en, Accessed: 27 March 2020,.
413. Kehe, K.; Balszuweit, F.; Steinritz, D.; Thiermann, H., Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology. 2009, 263, 12–19.
414. Ghabili, K.; Agutter, P. S.; Ghanei, M.; Ansarin, K.; Panahi, Y.; Shoja, M. M., Sulfur mustard toxicity: History, chemistry, pharmacokinetics, and pharmacodynamics. Crit. Rev. Toxicol. 2011, 41, 384–403.
415. Buru, C. T.; Majewski, M. B.; Howarth, A. J.; Lavroff, R. H.; Kung, C.-W.; Peters, A. W.; Goswami, S.; Farha, O. K., Improving the Efficiency of Mustard Gas Simulant Detoxification by Tuning the Singlet Oxygen Quantum Yield in Metal–Organic Frameworks and Their Corresponding Thin Films. ACS Appl. Mater. Interfaces. 2018, 10, 23802–23806.
416. Koziar, J. C.; Cowan, D. O., Photochemical heavy-atom effects. Acc. Chem. Res. 1978, 11, 334–341.
417. Zhang, J.; Wu, S.; Lu, X.; Wu, P.; Liu, J., Lanthanide-Boosted Singlet Oxygen from Diverse Photosensitizers along with Potent Photocatalytic Oxidation. ACS Nano. 2019, 13, 14152–14161.
418. González-González, R. B.; Parra-Saldívar, R.; Alsanie, W. F.; Iqbal, H. M. N., Nanohybrid catalysts with porous structures for environmental remediation through photocatalytic degradation of emerging pollutants. Environ. Res. 2022, 214, 113955, 1–13.
419. Shu, F.; Wu, J.; Jiang, G.; Qiao, Y.; Wang, Y.; Wu, D.; Zhong, Y.; Zhang, T.; Song, J.; Jin, Y.; Jiang, B.; Xiao, H., A hierarchically porous and hygroscopic carbon-based catalyst from natural wood for efficient catalytic reduction of industrial high-concentration 4-nitrophenol. Sep. Purif. Technol. 2022, 300, 121823, 1–10.
420. Sun, Y.; Tang, J.; Li, G.; Hua, Y.; Li, H.; Hu, S., Experimental Investigation of Adsorption and CO2/CH4 Separation Properties of 13X and JLOX-500 Zeolites during the Purification of Liquefied Natural Gas. ACS Omega. 2022, 7, 18542–18551.
421. Lutzweiler, G.; Zhang, Y.; Gens, F.; Echalard, A.; Ladam, G.; Hochart, J.; Janicot, T.; Mofaddel, N.; Louis, B., Deciphering the role of faujasite-type zeolites as a cation delivery platform to sustain the functions of MC3T3-E1 pre-osteoblastic cells. Mater. Adv. 2022, 3, 8616–8628.
422. Kumar, M.; Mohajir, A. E.; Berger, F.; Raschetti, M.; Sanchez, J.-B., Dealuminated Zeolite Y/SnO2 Nanoparticle Hybrid Sensors for Detecting Trace Levels of Propanol as a Lung Cancer Biomarker. ACS Appl. Nano Mater. 2022, 5, 9170–9178.
423. Trickett, C. A.; Osborn Popp, T. M.; Su, J.; Yan, C.; Weisberg, J.; Huq, A.; Urban, P.; Jiang, J.; Kalmutzki, M. J.; Liu, Q.; Baek, J.; Head-Gordon, M. P.; Somorjai, G. A.; Reimer, J. A.; Yaghi, O. M., Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst. Nature Chem. 2019, 11, 170–176.
424. Liang, H.-P.; Chen, Q.; Han, B.-H., Cationic Polycarbazole Networks as Visible-Light Heterogeneous Photocatalysts for Oxidative Organic Transformations. ACS Catal. 2018, 8, 5313–5322.
425. Sasmal, H. S.; Bag, S.; Chandra, B.; Majumder, P.; Kuiry, H.; Karak, S.; Sen Gupta, S.; Banerjee, R., Heterogeneous C–H Functionalization in Water via Porous Covalent Organic Framework Nanofilms: A Case of Catalytic Sphere Transmutation. J. Am. Chem. Soc. 2021, 143, 8426–8436.
426. Qiao, G.-Y.; Guan, D.; Yuan, S.; Rao, H.; Chen, X.; Wang, J.-A.; Qin, J.-S.; Xu, J.-J.; Yu, J., Perovskite Quantum Dots Encapsulated in a Mesoporous Metal–Organic Framework as Synergistic Photocathode Materials. J. Am. Chem. Soc. 2021, 143, 14253–14260.
427. Daliran, S.; Oveisi, A. R.; Peng, Y.; López-Magano, A.; Khajeh, M.; Mas-Ballesté, R.; Alemán, J.; Luque, R.; Garcia, H., Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chem. Soc. Rev. 2022, 51, 7810–7882.
428. Ou, J.; Luo, K.; Tan, H.; Li, N.; Hu, B.; Yu, G., Fe3O4@N-doped carbon derived from dye wastewater flocculates as a heterogeneous catalyst for degradation of methylene blue. New J. Chem. 2022, 46, 15882–15890.
429. Wen, Y.; Chen, J.; Gao, X.; Che, H.; Wang, P.; Liu, B.; Ao, Y., Piezo-enhanced photocatalytic performance of ZnO nanorod array for pollutants degradation in dynamic water: Insight into the effect of velocity and inner flow field. Nano Energy. 2022, 101, 107614.
430. Wu, D.; Li, X.; Zhang, Y.; Alfred, M.; Yang, H.; Li, Z.; Huang, F.; Lv, P.; Feng, Q.; Wei, Q., Strong and robust cellulose-based enzymatic membrane with gradient porous structure in dynamically catalytic removal of sulfonamides antibiotics. J. Hazard. Mater. 2022, 439, 129676,.
431. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M., Hydrogen Storage in Microporous Metal–Organic Frameworks. Science. 2003, 300, 1127–1129.
432. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I., A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science. 2005, 309, 2040–2042.
433. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10186–10191.
434. Zhang, X.; Chen, Z.; Liu, X.; Hanna, S. L.; Wang, X.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O. K., A historical overview of the activation and porosity of metal–organic frameworks. Chem. Soc. Rev. 2020, 49, 7406–7427.
435. Gómez-Oliveira, E. P.; Reinares-Fisac, D.; Aguirre-Díaz, L. M.; Esteban-Betegón, F.; Pintado-Sierra, M.; Gutiérrez-Puebla, E.; Iglesias, M.; Ángeles Monge, M.; Gándara, F., Framework Adaptability and Concerted Structural Response in a Bismuth Metal–Organic Framework Catalyst. Angew. Chem. Int. Ed. 2022, 61, e202209335.
436. Zhu, J.; Meng, X.; Liu, W.; Qi, Y.; Jin, S.; Huo, S., Regulated synthesis of Zr-metal–organic frameworks with variable hole size and its influence on the performance of novel MOF-based heterogeneous amino acid–thiourea catalysts. RSC Adv. 2022, 12, 21574–21581.
437. Chen, Y.; Ahn, S.; Mian, M. R.; Wang, X.; Ma, Q.; Son, F. A.; Yang, L.; Ma, K.; Zhang, X.; Notestein, J. M.; Farha, O. K., Modulating Chemical Environments of Metal–Organic Framework-Supported Molybdenum(VI) Catalysts for Insights into the Structure–Activity Relationship in Cyclohexene Epoxidation. J. Am. Chem. Soc. 2022, 144, 3554–3563.
438. Wu, Y.; Wang, X.; Kirlikovali, K. O.; Gong, X.; Atilgan, A.; Ma, K.; Schweitzer, N. M.; Gianneschi, N. C.; Li, Z.; Zhang, X.; Farha, O. K., Catalytic Degradation of Polyethylene Terephthalate Using a Phase-Transitional Zirconium-Based Metal–Organic Framework. Angew. Chem. Int. Ed. 2022, 61, e202117528.
439. Zheng, H.-Q.; He, X.-H.; Zeng, Y.-N.; Qiu, W.-H.; Chen, J.; Cao, G.-J.; Lin, R.-G.; Lin, Z.-J.; Chen, B., Boosting the photoreduction activity of Cr(VI) in metal–organic frameworks by photosensitiser incorporation and framework ionization. J. Mater. Chem. A. 2020, 8, 17219–17228.
440. Feng, Y.; Chen, Q.; Cao, M.; Ling, N.; Yao, J., Defect-Tailoring and Titanium Substitution in Metal–Organic Framework UiO-66-NH2 for the Photocatalytic Degradation of Cr(VI) to Cr(III). ACS Appl. Nano Mater. 2019, 2, 5973–5980.
441. Zhang, T.; Wang, P.; Gao, Z.; An, Y.; He, C.; Duan, C., Pyrene-based metal–organic framework NU-1000 photocatalysed atom-transfer radical addition for iodoperfluoroalkylation and (Z)-selective perfluoroalkylation of olefins by visible-light irradiation. RSC Adv. 2018, 8, 32610–32620.
442. Zhang, D.; Ye, Z.; Wei, L.; Luo, H.; Xiao, L., Cell Membrane-Coated Porphyrin Metal–Organic Frameworks for Cancer Cell Targeting and O2-Evolving Photodynamic Therapy. ACS Appl. Mater. Interfaces. 2019, 11, 39594–39602.
443. He, L.; Ni, Q.; Mu, J.; Fan, W.; Liu, L.; Wang, Z.; Li, L.; Tang, W.; Liu, Y.; Cheng, Y.; Tang, L.; Yang, Z.; Liu, Y.; Zou, J.; Yang, W.; Jacobson, O.; Zhang, F.; Huang, P.; Chen, X., Solvent-Assisted Self-Assembly of a Metal–Organic Framework Based Biocatalyst for Cascade Reaction Driven Photodynamic Therapy. J. Am. Chem. Soc. 2020, 142, 6822–6832.
444. Cai, P.; Xu, M.; Meng, S.-S.; Lin, Z.; Yan, T.; Drake, H. F.; Zhang, P.; Pang, J.; Gu, Z.-Y.; Zhou, H.-C., Precise Spatial-Designed Metal-Organic-Framework Nanosheets for Efficient Energy Transfer and Photocatalysis. Angew. Chem. 2021, 133, 27464–27469.
445. Cadiau, A.; Kolobov, N.; Srinivasan, S.; Goesten, M. G.; Haspel, H.; Bavykina, A. V.; Tchalala, M. R.; Maity, P.; Goryachev, A.; Poryvaev, A. S.; Eddaoudi, M.; Fedin, M. V.; Mohammed, O. F.; Gascon, J., A Titanium Metal–Organic Framework with Visible-Light-Responsive Photocatalytic Activity. Angew. Chem. Int. Ed. 2020, 59, 13468–13472.
446. Kinik, F. P.; Ortega-Guerrero, A.; Ebrahim, F. M.; Ireland, C. P.; Kadioglu, O.; Mace, A.; Asgari, M.; Smit, B., Toward Optimal Photocatalytic Hydrogen Generation from Water Using Pyrene-Based Metal–Organic Frameworks. ACS Appl. Mater. Interfaces. 2021, 13, 57118–57131.
447. Kong, Z.; Lu, L.; Zhu, C.; Xu, J.; Fang, Q.; Liu, R.; Shen, Y., Enhanced adsorption and photocatalytic removal of PFOA from water by F-functionalized MOF with in-situ-growth TiO2: Regulation of electron density and bandgap. Sep. Purif. Technol. 2022, 297, 121449, 1–10.
448. Chen, D.; Guo, Z.; Li, B.; Xing, H., Visible-light-driven photocatalytic CO2 reduction to formate over a zirconium-porphyrin metal–organic framework with shp-a topology. New J. Chem. 2022, 46, 16297–16302.
449. Sun, Z.-X.; Sun, K.; Gao, M.-L.; Metin, Ö.; Jiang, H.-L., Optimizing Pt Electronic States through Formation of a Schottky Junction on Non-reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angew. Chem. Int. Ed. 2022, 61, e202206108.
450. Guo, F.; Yang, M.; Li, R.-X.; He, Z.-Z.; Wang, Y.; Sun, W.-Y., Nanosheet-Engineered NH2-MIL-125 with Highly Active Facets for Enhanced Solar CO2 Reduction. ACS Catal. 2022, 12, 9486–9493.
451. Fu, B.; Sun, H.; Liu, J.; Zhou, T.; Chen, M.; Cai, Z.; Hao, D.; Zhu, X., Construction of MIL-125-NH2@BiVO4 Composites for Efficient Photocatalytic Dye Degradation. ACS Omega. 2022, 7, 26201–26210.
452. Buru, C. T.; Majewski, M. B.; Howarth, A. J.; Lavroff, R. H.; Kung, C.-W.; Peters, A. W.; Goswami, S.; Farha, O. K., Improving the Efficiency of Mustard Gas Simulant Detoxification by Tuning the Singlet Oxygen Quantum Yield in Metal–Organic Frameworks and Their Corresponding Thin Films. ACS Appl. Mater. Interfaces. 2018, 10, 23802–23806.
453. Hao, Y.; Liu, B. M.; Bennett, T. F.; Monsour, C. G.; Selke, M.; Liu, Y., Determination of Singlet Oxygen Quantum Yield of a Porphyrinic Metal–Organic Framework. J. Phys. Chem. C. 2021, 125, 7392–7400.
454. Chen, P.; Guo, Z.; Liu, X.; Lv, H.; Che, Y.; Bai, R.; Chi, Y.; Xing, H., A visible-light-responsive metal–organic framework for highly efficient and selective photocatalytic oxidation of amines and reduction of nitroaromatics. J. Mater. Chem. A. 2019, 7, 27074–27080.
455. Bicalho, H. A.; Quezada-Novoa, V.; Howarth, A. J., Metal–organic frameworks for the generation of reactive oxygen species. Chem. Phys. Rev. 2021, 2, 041301.
456. Gao, J.; Hao, L.; Jiang, R.; Liu, Z.; Tian, L.; Zhao, J.; Ming, W.; Ren, L., Surprisingly fast assembly of the MOF film for synergetic antibacterial phototherapeutics. Green Chem. 2022, 24, 5930–5940.
457. Wei, W.; Zhang, Y.-R.; Yin, X.-B.; Xia, Y., Multifunctional AIEgen-based luminescent metal–organic frameworks with coordination-induced emission for chemical sensing. New J. Chem. 2022, 46, 9641–9649.
458. Lehn, J.-M., Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self-Organization. Angew. Chem. Int. Ed. Engl. 1990, 29, 1304–1319.
459. de Sá, G. F.; Malta, O. L.; de Mello Donegá, C.; Simas, A. M.; Longo, R. L.; Santa-Cruz, P. A.; da Silva, E. F., Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord. Chem. Rev. 2000, 196, 165–195.
460. Moore, E. G.; Samuel, A. P. S.; Raymond, K. N., From Antenna to Assay: Lessons Learned in Lanthanide Luminescence. Acc. Chem. Res. 2009, 42, 542–552.
461. Xu, P.; Yang, H.-W.; Shi, J.-L.; Ding, B.; Zhao, X.-J.; Yang, E.-C., Efficient detection of a biomarker for infant jaundice by a europium(III)-organic framework luminescence sensor. RSC Adv. 2019, 9, 37584–37593.
462. Zheng, H.-Y.; Lian, X.; Qin, S.-J.; Yan, B., Novel “Turn-On” Fluorescent Probe for Highly Selectively Sensing Fluoride in Aqueous Solution Based on Tb3+-Functionalized Metal–Organic Frameworks. ACS Omega. 2018, 3, 12513–12519.
463. Feng, X.; Shang, Y.; Zhang, K.; Hong, M.; Li, J.; Xu, H.; Wang, L.; Li, Z., In situ ligand-induced Ln-MOFs based on a chromophore moiety: white light emission and turn-on detection of trace antibiotics. CrystEngComm. 2022, 24, 4187–4200.
464. Duman, F. D.; Forgan, R. S., Applications of nanoscale metal–organic frameworks as imaging agents in biology and medicine. J. Mater. Chem. B. 2021, 9, 3423–3449.
465. Muldoon, P. F.; Collet, G.; Eliseeva, S. V.; Luo, T.-Y.; Petoud, S.; Rosi, N. L., Ship-in-a-Bottle Preparation of Long Wavelength Molecular Antennae in Lanthanide Metal–Organic Frameworks for Biological Imaging. J. Am. Chem. Soc. 2020, 142, 8776–8781.
466. Xu, H.; Yu, W.; Pan, K.; Wang, G.; Zhu, P., Confinement and antenna effect for ultrasmall Y2O3:Eu3+ nanocrystals supported by MOF with enhanced near-UV light absorption thereby enhanced luminescence and excellently multifunctional applications. Nano Res. 2021, 14, 720–729.
467. Goswami, S.; Yu, J.; Patwardhan, S.; Deria, P.; Hupp, J. T., Light-Harvesting “Antenna” Behavior in NU-1000. ACS Energy Lett. 2021, 6, 848–853.
468. Watkis, A.; Hueting, R.; Sørensen, T. J.; Tropiano, M.; Faulkner, S., Controlling energy transfer in ytterbium complexes: oxygen dependent lanthanide luminescence and singlet oxygen formation. Chem. Commun. 2015, 51, 15633–15636.
469. Hueting, R.; Tropiano, M.; Faulkner, S., Exploring energy transfer between pyrene complexes and europium ions – potential routes to oxygen sensors. RSC Adv. 2014, 4, 44162–44165.
470. George, T. M.; Varughese, S.; Reddy, M. L. P., Near-infrared luminescence of Nd3+ and Yb3+ complexes using a polyfluorinated pyrene-based β-diketonate ligand. RSC Adv. 2016, 6, 69509–69520.
471. Kumar, P.; Soumya, S.; Prasad, E., Enhanced Resonance Energy Transfer and White-Light Emission from Organic Fluorophores and Lanthanides in Dendron-based Hybrid Hydrogel. ACS Appl. Mater. Interfaces. 2016, 8, 8068–8075.
472. Bhattacharjee, S.; Bhattacharya, S., Phthalate mediated hydrogelation of a pyrene based system: a novel scaffold for shape-persistent, self-healing luminescent soft material. J. Mater. Chem. A. 2014, 2, 17889–17898.
473. Pope, S. J. A., Dual-emissive complexes: Visible and near-infrared luminescence from bis-pyrenyl lanthanide(III) complexes. Polyhedron. 2007, 26, 4818–4824.
474. Faulkner, S.; Carrié, M.-C.; Pope, S. J. A.; Squire, J.; Beeby, A.; Sammes, P. G., Pyrene-sensitised near-IR luminescence from ytterbium and neodymium complexes. Dalton Trans. 2004, 1405–1409.
475. Deneff, J. I.; Rohwer, L. E. S.; Butler, K. S.; Valdez, N. R.; Rodriguez, M. A.; Luk, T. S.; Sava Gallis, D. F., Covert MOF-Based Photoluminescent Tags via Tunable Linker Energetics. ACS Appl. Mater. Interfaces. 2022, 14, 3038–3047.
476. Wei, W.-Q.; Guo, X.-A.; Zhang, Z.-H.; Zhang, Y.-F.; Xue, D.-X., Topology-guided synthesis and construction of amide-functionalized rare-earth metal–organic frameworks. Inorg. Chem. Commun. 2021, 133, 108896.
477. Xue, D.-X.; Belmabkhout, Y.; Shekhah, O.; Jiang, H.; Adil, K.; Cairns, A. J.; Eddaoudi, M., Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. J. Am. Chem. Soc. 2015, 137, 5034–5040.
478. F. D’Vries, R.; Álvarez-García, S.; Snejko, N.; E. Bausá, L.; Gutiérrez-Puebla, E.; Andrés, A. de; Ángeles Monge, M., Multimetal rare earth MOFs for lighting and thermometry: tailoring color and optimal temperature range through enhanced disulfobenzoic triplet phosphorescence. J. Mater. Chem. C. 2013, 1, 6316–6324.
479. Sheldrick, G. M., Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry. 2015, 71, 3–8.
480. Sheldrick, G. M., SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations of Crystallography. 2015, 71, 3–8.
481. Henkelis, S. E.; Vogel, D. J.; Metz, P. C.; Valdez, N. R.; Rodriguez, M. A.; Rademacher, D. X.; Purdy, S.; Percival, S. J.; Rimsza, J. M.; Page, K.; Nenoff, T. M., Kinetically Controlled Linker Binding in Rare Earth-2,5-Dihydroxyterepthalic Acid Metal–Organic Frameworks and Its Predicted Effects on Acid Gas Adsorption. ACS Appl. Mater. Interfaces. 2021, 13, 56337–56347.
482. Vizuet, J. P.; Mortensen, M. L.; Lewis, A. L.; Wunch, M. A.; Firouzi, H. R.; McCandless, G. T.; Balkus, K. J., Fluoro-Bridged Clusters in Rare-Earth Metal–Organic Frameworks. J. Am. Chem. Soc. 2021, 143, 17995–18000.
483. Christian, M. S.; Fritzsching, K. J.; Harvey, J. A.; Sava Gallis, D. F.; Nenoff, T. M.; Rimsza, J. M., Dramatic Enhancement of Rare-Earth Metal–Organic Framework Stability Via Metal Cluster Fluorination. JACS Au. 2022, 2, 1889–1898.
484. Deposition Numbers 2218130 (for Gd-CU-10), 2218128 (for Dy-CU-10), 2218126 (for Ho-CU-10), 2218127 (for Er-CU-10), 2218129 (for Tm-CU-10), 2218125 (for Yb-CU-10), and 2218124 (for Lu-CU-10) Contain the Supplementary Crystallographic Data for This Paper. These Data Are Provided Free of Charge by the Joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures Service.
485. Nielsen, L. G.; Junker, A. K. R.; Sørensen, T. J., Composed in the f-block: solution structure and function of kinetically inert lanthanide(III) complexes. Dalton Trans. 2018, 47, 10360–10376.
486. Holder, C. F.; Schaak, R. E., Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano. 2019, 13, 7359–7365.
487. Rao, Y.; Palumbo, C. T.; Venkatesh, A.; Keener, M.; Stevanato, G.; Chauvin, A.-S.; Menzildjian, G.; Kuzin, S.; Yulikov, M.; Jeschke, G.; Lesage, A.; Mazzanti, M.; Emsley, L., Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization. J. Phys. Chem. C. 2022, 126, 11310–11317.
488. Yin, Q.; Zhao, P.; Sa, R.-J.; Chen, G.-C.; Lü, J.; Liu, T.-F.; Cao, R., An Ultra-Robust and Crystalline Redeemable Hydrogen-Bonded Organic Framework for Synergistic Chemo-Photodynamic Therapy. Angew. Chem. Int. Ed. 2018, 57, 7691–7696.
489. Caballero-Mancebo, E.; Cohen, B.; Smolders, S.; De Vos, D. E.; Douhal, A., Unravelling Why and to What Extent the Topology of Similar Ce-Based MOFs Conditions their Photodynamic: Relevance to Photocatalysis and Photonics. Adv. Sci. 2019, 6, 1901020.
490. Runowski, M.; Stopikowska, N.; Lis, S., UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides. Dalton Trans. 2020, 49, 2129–2137.
491. Sousa, J. F.; Alves, R. T.; Rego-Filho, F. G.; Gouveia-Neto, A. S., Erbium-to-dysprosium energy-transfer mechanism and visible luminescence in lead-cadmium-fluorogermanate glass excited at 405 nm. Chem. Phys. Lett. 2019, 723, 28–32.
492. Deria, P.; Yu, J.; Smith, T.; Balaraman, R. P., Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal–Organic Framework Photophysics. J. Am. Chem. Soc. 2017, 139, 5973–5983.
493. Yu, J.; Park, J.; Van Wyk, A.; Rumbles, G.; Deria, P., Excited-State Electronic Properties in Zr-Based Metal–Organic Frameworks as a Function of a Topological Network. J. Am. Chem. Soc. 2018, 140, 10488–10496.
494. D’Aléo, A.; Pointillart, F.; Ouahab, L.; Andraud, C.; Maury, O., Charge transfer excited states sensitization of lanthanide emitting from the visible to the near-infra-red. Coord. Chem. Rev. 2012, 256, 1604–1620.
495. SeethaLekshmi, S.; Ramya, A. R.; Reddy, M. L. P.; Varughese, S., Lanthanide complex-derived white-light emitting solids: A survey on design strategies. J. Photochem. Photobiol. 2017, 33, 109–131.
496. de Bettencourt-Dias, A., Introduction to Lanthanide Ion Luminescence. in Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials. John Wiley & Sons, Ltd, 2014, 1–48.
497. Velázquez, J. J.; Mosa, J.; Gorni, G.; Balda, R.; Fernández, J.; Pascual, L.; Durán, A.; Castro, Y., Transparent SiO2-GdF3 sol–gel nano-glass ceramics for optical applications. J. Sol-Gel Sci. Technol. 2019, 89, 322–332.
498. Kofod, N.; Arppe-Tabbara, R.; Sørensen, T. J., Electronic Energy Levels of Dysprosium(III) ions in Solution. Assigning the Emitting State and the Intraconfigurational 4f–4f Transitions in the Vis–NIR Region and Photophysical Characterization of Dy(III) in Water, Methanol, and Dimethyl Sulfoxide. J. Phys. Chem. A. 2019, 123, 2734–2744.
499. Yu, D. C.; Huang, X. Y.; Ye, S.; Zhang, Q. Y.; Wang, J., A sequential two-step near-infrared quantum splitting in Ho3+ singly doped NaYF4. AIP Adv. 2011, 1, 042161, 1–6.
500. Ivanova, S.; Pellé, F., Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells. J. Opt. Soc. Am. B. 2009, 26, 1930–1938.
501. Marconi da Silva M. D. Linhares, H.; Felipe Henriques Librantz, A.; Gomes, L.; Coronato Courrol, L.; Lícia Baldochi, S.; Marcia Ranieri, I., Energy transfer rates and population inversion investigation of 1G4 and 1D2 excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals. J. Appl. Phys. 2011, 109, 083533.
502. Liu, Q.; Tian, Y.; Wang, C.; Huang, F.; Jing, X.; Zhang, J.; Zhang, X.; Xu, S., Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments. Phys. Chem. Chem. Phys. 2017, 19, 29833–29839.
503. Adam, J.-L., Chapter 8 - Optical Properties and Applications of Fluoride Glasses. in Advanced Inorganic Fluorides. Elsevier, Switzerland, 2000, (eds. Nakajima, T., Žemva, B. & Tressaud, A.) 235–281.
504. Wang, R.; Meng, X.; Yin, F.; Feng, Y.; Qin, G.; Qin, W., Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7 μm laser applications. Opt. Mater. Express. 2013, 3, 1127–1136.
505. L. Maurizio, S.; Tessitore, G.; A. Mandl, G.; A. Capobianco, J., Luminescence dynamics and enhancement of the UV and visible emissions of Tm3+ in LiYF4 :Yb3+ ,Tm3+ upconverting nanoparticles. Nanoscale Adv. 2019, 1, 4492–4500.
506. Serrano, D.; Braud, A.; Doualan, J.-L.; Camy, P.; Moncorgé, R., Highly efficient energy transfer in Pr3+, Yb3+ codoped CaF2 for luminescent solar converters. J. Opt. Soc. Am. B. 2011, 28, 1760–1765.
507. Pope, S. J. A., Dual-emissive complexes: Visible and near-infrared luminescence from bis-pyrenyl lanthanide(III) complexes. Polyhedron. 2007, 26, 4818–4824.
508. Guillemot, L.; Loiko, P.; Soulard, R.; Braud, A.; Doualan, J.-L.; Hideur, A.; Moncorgé, R.; Camy, P., Thulium laser at ∼2.3 μm based on upconversion pumping. Opt. Lett. 2019, 44, 4071–4074.
509. Dalfsen, K. van; Aravazhi, S.; Grivas, C.; García-Blanco, S. M.; Pollnau, M., Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency. Opt. Lett. 2014, 39, 4380–4383.
510. Latva, M.; Takalo, H.; Mukkala, V.-M.; Matachescu, C.; Rodríguez-Ubis, J. C.; Kankare, J., Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J. Lumin. 1997, 75, 149–169.
511. Beldjoudi, Y.; Atilgan, A.; Weber, J. A.; Roy, I.; Young, R. M.; Yu, J.; Deria, P.; Enciso, A. E.; Wasielewski, M. R.; Hupp, J. T.; Stoddart, J. F., Supramolecular Porous Organic Nanocomposites for Heterogeneous Photocatalysis of a Sulfur Mustard Simulant. Adv. Mater. 2020, 32, 2001592.
512. Atilgan, A.; Cetin, M. M.; Yu, J.; Beldjoudi, Y.; Liu, J.; Stern, C. L.; Cetin, F. M.; Islamoglu, T.; Farha, O. K.; Deria, P.; Stoddart, J. F.; Hupp, J. T., Post-Synthetically Elaborated BODIPY-Based Porous Organic Polymers (POPs) for the Photochemical Detoxification of a Sulfur Mustard Simulant. J. Am. Chem. Soc. 2020, 142, 18554–18564.
513. Giles, S. L.; Kastl, A. M.; Purdy, A. P.; Leff, A. C.; Ratchford, D. C.; Maza, W. A.; Baturina, O. A., Surface- and Structural-Dependent Reactivity of Titanium Oxide Nanostructures with 2-Chloroethyl Ethyl Sulfide under Ambient Conditions. ACS Appl. Mater. Interfaces. 2022, 14, 9655–9666.
514. Schoedel, A.; Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M., Structures of Metal–Organic Frameworks with Rod Secondary Building Units. Chem. Rev. 2016, 116, 12466–12535.
515. Huo, R.; Zeng, G.; Wang, C.; Wang, Y. F.; Xing, Y. H.; Bai, F. Y., Smart Stimulation Response of a Pyrene-Based Lanthanide(III) MOF: Fluorescence Enhancement to HX (F and Cl) or R-COOH and Artificial Applicable Film on HCl Vapor Sensing. ACS Appl. Mater. Interfaces. 2023, 15, 50275–50289.
516. Liu, R.; Liu, Q.-Y.; Krishna, R.; Wang, W.; He, C.-T.; Wang, Y.-L., Water-Stable Europium 1,3,6,8-Tetrakis(4-carboxylphenyl)pyrene Framework for Efficient C2H2/CO2 Separation. Inorg. Chem. 2019, 58, 5089–5095.
517. Kondo, Y.; Hino, K.; Kuwahara, Y.; Mori, K.; Yamashita, H., Photosynthesis of hydrogen peroxide from dioxygen and water using aluminium-based metal–organic framework assembled with porphyrin- and pyrene-based linkers. J. Mater. Chem. A. 2023, 11, 9530–9537.
518. Chiu, N. C.; Lessard, J. M.; Musa, E. N.; Lancaster, L. S.; Wheeler, C.; Krueger, T. D.; Chen, C.; Gallagher, T. C.; Nord, M. T.; Huang, H.; Cheong, P. H.-Y.; Fang, C.; Stylianou, K. C., Elucidation of the role of metals in the adsorption and photodegradation of herbicides by metal-organic frameworks. Nat Commun. 2024, 15, 1459.
519. Wang, T. C.; Vermeulen, N. A.; Kim, I. S.; Martinson, A. B. F.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K., Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nat Protoc. 2016, 11, 149–
Repository Staff Only: item control page


Download Statistics
Download Statistics