Bakalis, Georgios (2025) Prediction of Detonation Cell Size and Modulation of its Regularity in Gaseous Systems. PhD thesis, Concordia University.
Preview |
Text (application/pdf)
19MBBakalis_PhD_F2025.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
A detonation is a self-sustained, supersonic, combustion-driven compression wave which causes significant pressure and temperature changes. This phenomenon is relevant to the safety of engineering applications and industrial processes, as well as to the development of aerospace propulsion systems. A detonation wave typically displays a complex, nonlinear and unstable structure. This work aims to better quantify and predict characteristic length scales of the detonation structure, to clarify the influence of cellular regularity on detonation dynamics and to explore ways to modulate it. To that effect, the first half of this work is focused on developing a series of Artificial Neural Networks (ANN) using different chemical kinetic and thermodynamic input parameters to predict two main characteristic length scales, the detonation cell size and the critical tube diameter. The feedforward neural networks are trained and validated using available experimental data from the Caltech detonation database, covering a wide variety of gaseous combustible mixtures at different initial conditions. The second half of this work uses one- and two-dimensional numerical simulations to study the effect of O3 as an additive in the reactive mixture to study how it can change the instability and cellular structure of detonations. The use of microplates to modulate cellular regularity is also explored, with the modulated detonation used in the critical tube diameter problem in order to conclusively demonstrate the role of cellular instabilities on detonation dynamics and critical phenomena.
| Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering |
|---|---|
| Item Type: | Thesis (PhD) |
| Authors: | Bakalis, Georgios |
| Institution: | Concordia University |
| Degree Name: | Ph. D. |
| Program: | Mechanical Engineering |
| Date: | 29 April 2025 |
| Thesis Supervisor(s): | Ng, Hoi Dick |
| Keywords: | gaseous detonations, detonation modulation, detonation stability, detonation cell size prediction, critical tube diameter, artificial neural networks, ozone sensitization, hydrogen |
| ID Code: | 995827 |
| Deposited By: | Georgios Bakalis |
| Deposited On: | 04 Nov 2025 17:17 |
| Last Modified: | 04 Nov 2025 17:17 |
References:
Akbar, R., Kaneshige, M., Schultz, E., & Shepherd, J. (1997). Detonations in H2-N2O-CH4-NH3-O2-N2 mixtures. Explosion Dynamics Laboratory Report FM97-3, Graduate Aeronautical Laboratories, California Institute of Technology (GALCIT).Berger, M. J., & Oliger, J. (1984). Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics, 53(3), 484–512. https://doi.org/10.1016/0021-9991(84)90073-1
Bian, J., Zhou, L., Yang, P., Teng, H., & Ng, H. D. (2022). A reconstruction method of detonation wave surface based on convolutional neural network. Fuel, 315, 123068. https://doi.org/10.1016/j.fuel.2021.123068
Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight Uncertainty in Neural Networks. Proceedings of the 32nd International Conference on Machine Learning, PMLR 37:1613-1622, 2015.
Bourlioux, A., & Majda, A. J. (1992). Theoretical and numerical structure for unstable two-dimensional detonations. Combustion and Flame, 90(3–4), 211–229.
Bourlioux, A., Majda, A. J., & Roytburd, V. (1991). Theoretical and numerical structure for unstable one-dimensional detonations. SIAM Journal on Applied Mathematics, 51(2), 303–343.
Browne, S. T., Ziegler, J., Bitter, N. P., Schmidt, B. E., Lawson, J., & Shepherd, J. (2018). SDToolbox: Numerical Solution Methods for Shock and Detonation Jump Conditions (No. FM2018.001; GALCIT Report). California Institute of Technology.
Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual review of fluid mechanics, 52(1), 477-508
Burke, M. P., Chaos, M., Ju, Y., Dryer, F. L., & Klippenstein, S. J. (2012). Comprehensive H2/O2 kinetic model for high-pressure combustion. International Journal of Chemical Kinetics, 44(7), 444–474.
Chemical-Kinetic Mechanisms for Combustion Applications", San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego (http://combustion.ucsd.edu)
Chollet, F. et al. (2015). Keras. https://keras.io
Ciccarelli, G., Ginsberg, T., & Boccio, J. L. (1997). Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility. (No. NUREG/CR-6391; BNL-NUREG-52482). US Nuclear Regulatory Commission (NRC), Washington, DC (United States). Div. of Systems Technology; Brookhaven National Lab.(BNL), Upton, NY (United States); Nuclear Power Engineering Corp., Tokyo (Japan).
Courant, R., & Friedrichs, K. (1999). Supersonic Flow and Shock Waves. (Vol. 21). Springer Science & Business Media: New York, USA
Crane, J., Shi, X., Lipkowicz, J. T., Kempf, A. M., & Wang, H. (2021). Geometric modeling and analysis of detonation cellular stability. Proceedings of the Combustion Institute, 38(3), 3585–3593. https://doi.org/10.1016/j.proci.2020.06.278
Crane, J., Shi, X., Singh, A. V., Tao, Y., & Wang, H. (2019). Isolating the effect of induction length on detonation structure: Hydrogen–oxygen detonation promoted by ozone. Combustion and Flame, 200, 44–52. https://doi.org/10.1016/j.combustflame.2018.11.008
Deiterding, R. (2005). Detonation structure simulation with AMROC. In: L. T. Yang, O. F. Rana, B. Di Martino, & J. Dongarra (Eds.), High Performance Computing and Communications (Vol. 3726, pp. 916–927). Springer Berlin Heidelberg. https://doi.org/10.1007/11557654_103
Deiterding, R. (2011). High-resolution numerical simulation and analysis of mach reflection structures in detonation waves in low-pressure H2–O2–Ar mixtures: A summary of results obtained with the adaptive mesh refinement framework AMROC. Journal of Combustion, 2011, 1–18. https://doi.org/10.1155/2011/738969
Desbordes, D., Guerraud, C., Hamada, L., & Presles, H. (1993). Failure of the classical dynamic parameters relationships in highly regular cellular detonation systems. Progress in Astronautics and Aeronautics, 153, 347–347.
Du, N., Han, W., Kong, W., & Ju, Y. (2019). Numerical studies on the effects of ozone addition on flame acceleration and deflagration-to-detonation transition for hydrogen/oxygen mixtures. Proc. of the 27th International Colloquium on the Dynamics of Explosions and Reactive systems, Beijing, China, July 28-Aug. 2, 2019
Elton, D. C., Boukouvalas, Z., Butrico, M. S., Fuge, M. D., & Chung, P. W. (2018). Applying machine learning techniques to predict the properties of energetic materials. Scientific Reports, 8(1), 9059. https://doi.org/10.1038/s41598-018-27344-x
Erpenbeck, J. J. (1964). Stability of idealized one-reaction detonations. Physics of Fluids, 7(5), 684–696.
Fickett, W., & Davis, W. C. (1979). Detonation: Theory and Experiment. University of California Press.
Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In: M. F. Balcan & K. Q. Weinberger (Eds.), Proceedings of The 33rd International Conference on Machine Learning (Vol. 48, pp. 1050–1059). PMLR. https://proceedings.mlr.press/v48/gal16.html
Gallier, S., Le Palud, F., Pintgen, F., Mével, R., & Shepherd, J. E. (2017). Detonation wave diffraction in H2–O2–Ar mixtures. Proceedings of the Combustion Institute, 36(2), 2781–2789. https://doi.org/10.1016/j.proci.2016.06.090
Gamezo, V. N., Desbordes, D., & Oran, E. S. (1999). Formation and evolution of two-dimensional cellular detonations. Combustion and Flame, 116(1), 154–165. https://doi.org/10.1016/S0010-2180(98)00031-5
Gavrikov, A. I., Efimenko, A. A., & Dorofeev, S. B. (2000). A model for detonation cell size prediction from chemical kinetics. Combustion and Flame, 120(1–2), 19–33. https://doi.org/10.1016/S0010-2180(99)00076-0
Giavarina, D. (2015). Understanding Bland Altman analysis. Biochemia Medica, 25(2), 141–151. https://doi.org/10.11613/BM.2015.015
Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 315–323.
Han, W., Huang, J., & Wang, C. (2021). Pulsating and cellular instabilities of hydrogen–oxygen detonations with ozone sensitization. Physics of Fluids, 33(7), 076113. https://doi.org/10.1063/5.0055080
Han, W., Liang, W., Wang, C., Wen, J. X., & Law, C. K. (2021). Spontaneous initiation and development of hydrogen–oxygen detonation with ozone sensitization. Proceedings of the Combustion Institute, 38(3), 3575–3583. https://doi.org/10.1016/j.proci.2020.06.239
Han, W., Ma, W., Qian, C., Wen, J., & Wang, C. (2019). Bifurcation of pulsation instability in one-dimensional H2−O2 detonation with detailed reaction mechanism. Physical Review Fluids, 4(10), 103202. https://doi.org/10.1103/PhysRevFluids.4.103202
Han, X., Lubrano Lavadera, M., & Konnov, A. A. (2021). An experimental and kinetic modeling study on the laminar burning velocity of NH3+N2O+air flames. Combustion and Flame, 228, 13–28. https://doi.org/10.1016/j.combustflame.2021.01.027
Huang, X., Weng, Z., Mevel, R., Chatelain, K. P., Vargas, J., Melguizo-Gavilanes, J., & Lacoste, D. A. (2023). Uncertainty on Predicted Detonation Cell Width. Proceedings of the 29th International Colloquium on the Dynamics of Explosions and Reactive Systems, Seoul, Korea, July 23-28, 2023
Jiang, Z. (2023). Standing oblique detonation for hypersonic propulsion: A review. Progress in Aerospace Sciences, 143, 100955. https://doi.org/10.1016/j.paerosci.2023.100955
Jing, Q., Huang, J., Liu, Q., wang, D., Chen, X., Wang, Z., & Liu, C. (2021). The flame propagation characteristics and detonation parameters of ammonia/oxygen in a large-scale horizontal tube: As a carbon-free fuel and hydrogen-energy carrier. International Journal of Hydrogen Energy, 46(36), 19158–19170. https://doi.org/10.1016/j.ijhydene.2021.03.032
Johnson, K. B., Ferguson, D. H., Tempke, R. S., & Nix, A. C. (2021). Application of a Convolutional Neural Network for wave mode identification in a rotating detonation combustor using high-speed imaging. Journal of Thermal Science and Engineering Applications, 13(6), 061021. https://doi.org/10.1115/1.4049868
Kabir, H. M. D., Khosravi, A., Hosen, M. A., & Nahavandi, S. (2018). Neural network-based uncertainty quantification: A survey of methodologies and applications. IEEE Access, 6, 36218–36234. https://doi.org/10.1109/ACCESS.2018.2836917
Kailasanath, K. (2000). Review of propulsion applications of detonation waves. AIAA Journal, 38(9), 1698–1708. https://doi.org/10.2514/2.1156
Kaneshige, M., Akbar, R., & Shepherd, J. (1997). Hydrocarbon-air-nitrous oxide detonations. Proceedings of the Spring Meeting of the Western States Section of the Combustion Institute, Livermore, CA, USA, 14–15 April
Kaneshige, M., Schultz, E., Pfahl, U., Shepherd, J., & Akbar, R. (2000). Detonations in mixtures containing nitrous oxide. Proceedings of the 22nd International Symposium on Shock Waves, London, UK, 18–23 July 1999; pp. 251–256.
Kaneshige, M., & Shepherd, J. E. (1997). Detonation Database. GALCIT Technical Report FM97. 1997. Available online: http://www.galcit.caltech.edu/detn_db/html/db.html
Kawasaki, A., & Kasahara, J. (2020). A novel characteristic length of detonation relevant to supercritical diffraction. Shock Waves, 30(1), 1–12. https://doi.org/10.1007/s00193-019-00890-7
Kee, R. J., Rupley, F. M., & Miller, J. A. (1989). Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics; Technical Report SAND-89-8009; Sandia National Lab: Albuquerque, NM, USA, 1989 https://doi.org/10.2172/5681118
Kellenberger, M., & Ciccarelli, G. (2018). Advancements on the propagation mechanism of a detonation wave in an obstructed channel. Combustion and Flame, 191, 195–209. https://doi.org/10.1016/j.combustflame.2017.12.023
Kiyanda, C. B., Morgan, G. H., Nikiforakis, N., & Ng, H. D. (2015). High resolution GPU-based flow simulation of the gaseous methane-oxygen detonation structure. Journal of Visualization, 18(2), 273–276. https://doi.org/10.1007/s12650-014-0247-9
Knystautas, R., Lee, J., & Guirao, C. (1982). The critical tube diameter for detonation failure in hydrocarbon-air mixtures. Combustion and Flame, 48, 63–83.
Konnov, A. A. (1998). Detailed reaction mechanism for small hydrocarbons combustion. Chemkin Mechanism Release 0.4.
Konnov, A. A. (2019). Yet another kinetic mechanism for hydrogen combustion. Combustion and Flame, 203, 14–22. https://doi.org/10.1016/j.combustflame.2019.01.032
Kumar, D. S., Ivin, K., & Singh, A. V. (2021). Sensitizing gaseous detonations for hydrogen/ethylene-air mixtures using ozone and H2O2 as dopants for application in rotating detonation engines. Proceedings of the Combustion Institute, 38(3), 3825–3834. https://doi.org/10.1016/j.proci.2020.08.061
Le Naour, B., Davidenko, D., Gaillard, T., & Vidal, P. (2023). Rotating detonation combustors for propulsion: Some fundamental, numerical and experimental aspects. Frontiers in Aerospace Engineering, 2, 1152429. https://doi.org/10.3389/fpace.2023.1152429
Lee, H., & Stewart, D. S. (1990). Calculation of linear detonation instability: One-dimensional instability of plane detonation. Journal of Fluid Mechanics, 216, 103–132.
Lee, J. H. (1984). Dynamic parameters of gaseous detonations. Annual Review of Fluid Mechanics, 16(1), 311–336.
Lee, J.H.S. (1996) On the critical tube diameter. In: Bowen, J. (ed.) Dynamics of exothermicity, p. 321. Gordon and Breach, Amsterdam.
Lee, J. H. (2008). The Detonation Phenomenon. Cambridge University Press: Cambridge, UK
Lee, J., & Higgins, A. (1999). Comments on criteria for direct initiation of detonation. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 357(1764), 3503–3521.
Lee, J., & Radulescu, M. (2005). On the hydrodynamic thickness of cellular detonations. Combustion, Explosion and Shock Waves, 41, 745–765.
Li, J., Ning, J., Kiyanda, C. B., & Ng, H. D. (2016). Numerical simulations of cellular detonation diffraction in a stable gaseous mixture. Propulsion and Power Research, 5(3), 177–183. https://doi.org/10.1016/j.jppr.2016.07.004
Li, Y., Bi, M., Li, B., Zhou, Y., Huang, L., & Gao, W. (2018). Explosion hazard evaluation of renewable hydrogen/ammonia/air fuels. Energy, 159, 252–263. https://doi.org/10.1016/j.energy.2018.06.174
Liang, W., Wang, G., Ning, X., Zhang, J., Li, Y., Jiang, C., & Zhang, N. (2020). Application of BP neural network to the prediction of coal ash melting characteristic temperature. Fuel, 260, 116324. https://doi.org/10.1016/j.fuel.2019.116324
Lokachari, N., Burke, U., Ramalingam, A., Turner, M., Hesse, R., Somers, K. P., Beeckmann, J., Heufer, K. A., Petersen, E. L., & Curran, H. J. (2019). New experimental insights into acetylene oxidation through novel ignition delay times, laminar burning velocities and chemical kinetic modelling. Proceedings of the Combustion Institute, 37(1), 583–591. https://doi.org/10.1016/j.proci.2018.07.027
Lu, T., Law, C. K., & Ju, Y. (2003). Some aspects of chemical kinetics in Chapman-Jouguet detonation: Induction length analysis. Journal of Propulsion and Power, 19(5), 901–907. https://doi.org/10.2514/2.6181
Mach, P., & Radulescu, M. I. (2011). Mach reflection bifurcations as a mechanism of cell multiplication in gaseous detonations. Proceedings of the Combustion Institute, 33(2), 2279–2285. https://doi.org/10.1016/j.proci.2010.06.145
Meagher, P. A., Shi, X., Santos, J. P., Muraleedharan, N. K., Crane, J., Poludnenko, A. Y., Wang, H., & Zhao, X. (2023). Isolating gasdynamic and chemical effects on the detonation cellular structure: A combined experimental and computational study. Proceedings of the Combustion Institute, 39(3), 2865–2873. https://doi.org/10.1016/j.proci.2022.08.001
Mehrjoo, N., Gao, Y., Kiyanda, C. B., Ng, H. D., & Lee, J. H. S. (2015). Effects of porous walled tubes on detonation transmission into unconfined space. Proceedings of the Combustion Institute, 35(2), 1981–1987. https://doi.org/10.1016/j.proci.2014.06.031
Mehrjoo, N., Zhang, B., Portaro, R., Ng, H. D., & Lee, J. H. S. (2014). Response of critical tube diameter phenomenon to small perturbations for gaseous detonations. Shock Waves, 24(2), 219–229. https://doi.org/10.1007/s00193-013-0491-2
Merrill, C. (2008). Nitrous oxide explosive hazards. Air Force Research Laboratory, Edwards AFB, CA. NASA,“Chemical Equilibrium with Applications (CEA)”. Cleveland, OH: Glenn Research. Center NASA, Retrieved on March, 5, 2012.
Mével, R. (2009). Etude de mécanismes cinétiques et des propriétés explosives des systèmes hydrogène-protoxyde d’azote et silane-protoxyde d’azote: Application à la sécurité industrielle [PhD Thesis]. Orléans.
Mével, R., Lafosse, F., Catoire, L., Chaumeix, N., Dupré, G., & Paillard, C.-E. (2008). Induction delay times and detonation cell size prediction of hydrogen-nitrous nxide-diluent mixtures. Combustion Science and Technology, 180(10–11), 1858–1875. https://doi.org/10.1080/ 00102200802261340
Mi, X. C., Higgins, A. J., Kiyanda, C. B., Ng, H. D., & Nikiforakis, N. (2018). Effect of spatial inhomogeneities on detonation propagation with yielding confinement. Shock Waves, 28(5), 993–1009. https://doi.org/10.1007/s00193-018-0847-8
Mi, X., Higgins, A. J., Ng, H. D., Kiyanda, C. B., & Nikiforakis, N. (2017). Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium. Physical Review Fluids, 2(5), 053201. https://doi.org/10.1103/PhysRevFluids.2.053201
Miller, J. A., & Bowman, C. T. (1989). Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 15(4), 287–338.
Mitrofanov, V., & Soloukhin, R. (1965). The diffraction of multifront detonation waves. Soviet Physics Doklady, 9, 1055.
Moen, I. O. (1984). Detonation length scales for fuel-air explosives. Progress in Astronautics and Aeronautics, 94, 55–79.
Monnier, V., Rodriguez, V., Vidal, P., & Zitoun, R. (2022). An analysis of three-dimensional patterns of experimental detonation cells. Combustion and Flame, 245, 112310. https://doi.org/10.1016/j.combustflame.2022.112310
Nettleton, M. (1987). Gaseous Detonations: Their Nature, Effects and Control. Springer Science & Business Media.
Ng, H. D. (2005). The Effect of Chemical Reaction Kinetics on the Structure of Gaseous Detonations [PhD Thesis]. McGill University Montréal, Québec, Canada.
Ng, H. D., Higgins, A., Kiyanda, C., Radulescu, M., Lee, J., Bates, K., & Nikiforakis, N. (2005). Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations. Combustion Theory and Modelling, 9(1), 159–170. https://doi.org/10.1080/13647830500098357
Ng, H. D., Ju, Y., & Lee, J. (2007). Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis. International Journal of Hydrogen Energy, 32(1), 93–99. https://doi.org/10.1016/j.ijhydene.2006.03.012
Ng, H. D., Radulescu, M. I., Higgins, A. J., Nikiforakis, N., & Lee, J. H. S. (2005). Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics. Combustion Theory and Modelling, 9(3), 385–401. https://doi.org/10.1080/13647830500307758
Ng, H. D., & Zhang, F. (2011). Detonation instability. In: Shock Waves Science and Technology Library, Vol. 6: Detonation Dynamics (pp. 107–212). Springer.
Ó Conaire, M., Curran, H. J., Simmie, J. M., Pitz, W. J., & Westbrook, C. K. (2004). A comprehensive modeling study of hydrogen oxidation. International Journal of Chemical Kinetics, 36(11), 603–622. https://doi.org/10.1002/kin.20036
Olm, C., Zsély, I. Gy., Pálvölgyi, R., Varga, T., Nagy, T., Curran, H. J., & Turányi, T. (2014). Comparison of the performance of several recent hydrogen combustion mechanisms. Combustion and Flame, 161(9), 2219–2234. https://doi.org/10.1016/ j.combustflame.2014.03.006
O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., & others. (2019). Keras tuner. Retrieved May, 21, 2020.
Oran, E.S. & Boris, J. (1987). Numerical methods in reacting flows. 25th AIAA Aerospace Sciences Meeting, 24-26 March 1987, Reno, NV, U.S.A.
Oran, E. S., & Gamezo, V. N. (2007). Origins of the deflagration-to-detonation transition in gas-phase combustion. Combustion and Flame, 148(1), 4–47. https://doi.org/10.1016/ j.combustflame.2006.07.010
Oran, E. S., Weber, J. W., Stefaniw, E. I., Lefebvre, M. H., & Anderson, J. D. (1998). A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model. Combustion and Flame, 113(1–2), 147–163. https://doi.org/10.1016/S0010-2180(97)00218-6
Otomo, J., Koshi, M., Mitsumori, T., Iwasaki, H., & Yamada, K. (2018). Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion. International Journal of Hydrogen Energy, 43(5), 3004–3014. https://doi.org/10.1016/j.ijhydene.2017.12.066
Paknahad, R., Lipkowicz, J. T., Gaffran, N., Wlokas, I., Kempf, A. M., & Crane, J. (2024). Statistics of detonation confinement: 1D, 2D and 3D simulations in hydrogen–oxygen. Proceedings of the Combustion Institute, 40(1–4), 105388. https://doi.org/10.1016/ j.proci.2024.105388
Pintgen, F., & Shepherd, J. E. (2009). Detonation diffraction in gases. Combustion and Flame, 156(3), 665–677. https://doi.org/10.1016/j.combustflame.2008.09.008
Prechelt, L. (1998). Automatic early stopping using cross validation: Quantifying the criteria. Neural Networks, 11(4), 761–767. https://doi.org/10.1016/S0893-6080(98)00010-0
Radulescu, M. I. (2003). The Propagation and Failure Mechanism of Gaseous Detonations: Experiments in Porous-Walled Tubes. [PhD Thesis]. McGill University Montréal, Québec, Canada
Radulescu, M. I. (2018). A detonation paradox: Why inviscid detonation simulations predict the incorrect trend for the role of instability in gaseous cellular detonations? Combustion and Flame, 195, 151–162. https://doi.org/10.1016/j.combustflame.2018.05.002
Radulescu, M. I., & Lee, J. H. S. (2002). The failure mechanism of gaseous detonations: Experiments in porous wall tubes. Combustion and Flame, 131(1), 29–46. https://doi.org/10.1016/S0010-2180(02)00390-5
Radulescu, M. I., Mével, R., Xiao, Q., & Gallier, S. (2021). On the self-similarity of diffracting gaseous detonations and the critical channel width problem. Physics of Fluids, 33(6), 066106. https://doi.org/10.1063/5.0054219
Radulescu, M. I., Ng, H. D., Lee, J. H. S., & Varatharajan, B. (2002). The effect of argon dilution on the stability of acetylene/oxygen detonations. Proceedings of the Combustion Institute, 29(2), 2825–2831. https://doi.org/10.1016/S1540-7489(02)80345-5
Roy, G. D., Frolov, S. M., Borisov, A. A., & Netzer, D. W. (2004). Pulse detonation propulsion: Challenges, current status, and future perspective. Progress in Energy and Combustion Science, 30(6), 545–672. https://doi.org/10.1016/j.pecs.2004.05.001
Schultz, E., & Shepherd, J. (2000a). Detonation anaylsis using detailed reaction mechanisms. Proceedings of 22nd International Symposium on Shock Waves, 273–278. Imperial College, London, UK.
Schultz, E., & Shepherd, J. (2000b). Validation of Detailed Reaction Mechanisms for Detonation Simulation. GALCIT Technical Report FM99-5. 2000.
Sepulveda, J., Rousso, A., Ha, H., Chen, T., Cheng, V., Kong, W., & Ju, Y. (2019). Kinetic enhancement of microchannel detonation transition by ozone addition to acetylene mixtures. AIAA Journal, 57(2), 476–481. https://doi.org/10.2514/1.J057773
Sharpe, G.J., & Falle, S. A. E. G. (2000). Two-dimensional numerical simulations of idealized detonations. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 456(2001), 2081–2100. https://doi.org/10.1098/rspa.2000.0603
Sharpe, G. J., & Quirk, J. J. (2008). Nonlinear cellular dynamics of the idealized detonation model: Regular cells. Combustion Theory and Modelling, 12(1), 1–21. https://doi.org/10.1080/ 13647830701335749
Sharpe, G. J., & Radulescu, M. I. (2011). Statistical analysis of cellular detonation dynamics from numerical simulations: One-step chemistry. Combustion Theory and Modelling, 15(5), 691–723. https://doi.org/10.1080/13647830.2011.558594
Shepherd, J. E. (1986). Chemical kinetics of hydrogen-air-diluent detonations. Progress in Astronautics and Aeronautics, 106, 263-293. https://doi.org/10.2514/ 5.9781600865800.0263.0293
Shepherd, J. E. (2009). Detonation in gases. Proceedings of the Combustion Institute, 32(1), 83–98. https://doi.org/10.1016/j.proci.2008.08.006
Shepherd, J. E., Moen, I. O., Murray, S. B., & Thibault, P. A. (1988). Analyses of the cellular structure of detonations. Symposium (International) on Combustion, 21(1), 1649–1658. https://doi.org/10.1016/S0082-0784(88)80398-9
Shi, L., Uy, K. C. K., & Wen, C. Y. (2020). The re-initiation mechanism of detonation diffraction in a weakly unstable gaseous mixture. Journal of Fluid Mechanics, 895, A24. https://doi.org/10.1017/jfm.2020.311
Shi, X., Crane, J., & Wang, H. (2021). Detonation and its limit in small tubes with ozone sensitization. Proceedings of the Combustion Institute, 38(3), 3547–3554. https://doi.org/10.1016/j.proci.2020.06.133
Siatkowski, S., Wacko, K., & Kindracki, J. (2023). Extensive study on the detonation cell size of biogas-oxygen mixtures. Fuel, 344, 128016. https://doi.org/10.1016/j.fuel.2023.128016
Sow, A., Lau-Chapdelaine, S.-M., & Radulescu, M. I. (2021). The effect of the polytropic index γ on the structure of gaseous detonations. Proceedings of the Combustion Institute, 38(3), 3633–3640. https://doi.org/10.1016/j.proci.2020.07.067
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958.
Strehlow, R. A. (1969). Nature of transverse waves in detonations. Astronautica Acta, 14(5), 539.
Strehlow, R. A., Liaugminas, R., Watson, R. H., & Eyman, J. R. (1967). Transverse wave structure in detonations. Symposium (International) on Combustion, 11(1), 683–692. https://doi.org/10.1016/S0082-0784(67)80194-2
Sun, W., Gao, X., Wu, B., & Ombrello, T. (2019). The effect of ozone addition on combustion: Kinetics and dynamics. Progress in Energy and Combustion Science, 73, 1–25. https://doi.org/10.1016/j.pecs.2019.02.002
Sun, X., Yan, C., Yan, Y., Mi, X., Lee, J. H. S., & Dick Ng, H. (2022). Critical tube diameter for quasi-detonations. Combustion and Flame, 244, 112280. https://doi.org/10.1016/j.combustflame.2022.112280
Taki, S., & Fujiwara, T. (1978). Numerical analysis of two-dimensional nonsteady detonations. AIAA Journal, 16(1), 73–77.
Tang Yuk, K. C., Mi, X. C., Lee, J. H. S., & Ng, H. D. (2018). Transmission of a detonation across a density interface. Shock Waves, 28(5), 967–979. https://doi.org/10.1007/s00193-018-0827-z
Tang-Yuk, K. C., Lee, J. H. S., Ng, H. D., Deiterding, R., & Mi, X. (2023). The re-initiation of cellular detonations downstream of an inert layer. Proceedings of the Combustion Institute, 39(3), 3127–3135. https://doi.org/10.1016/j.proci.2022.08.045
Taylor, B. D., Kessler, D. A., Gamezo, V. N., & Oran, E. S. (2013). Numerical simulations of hydrogen detonations with detailed chemical kinetics. Proceedings of the Combustion Institute, 34(2), 2009–2016. https://doi.org/10.1016/j.proci.2012.05.045
Teodorczyk, A., Lee, J., & Knystautas, R. (1991). Photographic study of the structure and propagation mechanisms of quasi-detonations in rough tubes. Progress in Astronautics and Aeronautics, 133, 223–240.
Toro, E. F. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. (3rd ed). Springer.
Valera-Medina, A., Pugh, D. G., Marsh, P., Bulat, G., & Bowen, P. (2017). Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors. International Journal of Hydrogen Energy, 42(38), 24495–24503. https://doi.org/10.1016/j.ijhydene.2017.08.028
Vasil’ev, A. A. (2011). Dynamic parameters of detonation. In: Shock Waves Science and Technology Library, Vol. 6: Detonation Dynamics (pp. 213–279). Springer.
Voytsekhovskiy, B., Mitrofanov, V. & Topchiyan, M., (1955). The Structure of a Detonation Front in Gases. Rep. FTD-MT-64-527, Foreign Technology Division, Wright-Patterson A.F.B., Ohio.
Wang, C., Gu, G. T., Han, W. H., & Cai, Y. (2020). Role of O3 addition in the deflagration-to-detonation transition of an ethylene–oxygen mixture in a macroscale tube. Shock Waves, 30(7–8), 781–787. https://doi.org/10.1007/s00193-020-00981-w
Weber, J. W., Jr. (1994). Physical and numerical aspects of two-dimensional detonation simulations including detailed chemical kinetics on a massively parallel connection machine [PhD Thesis], University of Maryland, College Park, MD.
Weng, Z., Mével, R., & Chaumeix, N. (2023). Detonation in ammonia-oxygen and ammonia-nitrous oxide mixtures. Combustion and Flame, 251, 112680. https://doi.org/10.1016/j.combustflame.2023.112680
Westbrook, C. K., & Urtiew, P. A. (1982). Chemical kinetic prediction of critical parameters in gaseous detonations. Symposium (International) on Combustion, 19(1), 615–623. https://doi.org/10.1016/S0082-0784(82)80236-1
Wolański, P. (2013). Detonative propulsion. Proceedings of the Combustion Institute, 34(1), 125–158. https://doi.org/10.1016/j.proci.2012.10.005
Xiao, H., Valera-Medina, A., Marsh, R., & Bowen, P. J. (2017). Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions. Fuel, 196, 344–351. https://doi.org/10.1016/j.fuel.2017.01.095
Xu, H., Mi, X., Kiyanda, C. B., Ng, H. D., Lee, J. H. S., & Yao, C. (2019). The role of cellular instability on the critical tube diameter problem for unstable gaseous detonations. Proceedings of the Combustion Institute, 37(3), 3545–3553. https://doi.org/10.1016/j.proci.2018.05.133
Xu, H., Yao, A., Yao, C., & Gao, J. (2017). Proper orthogonal decomposition for energy convergence of shock waves under severe knock. Energy, 128, 813–829. https://doi.org/10.1016/j.energy.2017.04.019
Yan, C., Ng, H. D., & Mi, X. (2023). A numerical study on the influence of increased instability of quasi-detonation on the critical tube diameter phenomenon. Proceedings of the Combustion Institute, 39(3), 2835–2845. https://doi.org/10.1016/j.proci.2022.11.007
Yan, C., Teng, H. H., Mi, X. C., & Ng, H. D. (2019). The effect of chemical reactivity on the formation of gaseous oblique detonation waves. Aerospace, 6(6), 62. https://doi.org/10.3390/aerospace6060062
Yang, P., Teng, H., Jiang, Z., & Ng, H. D. (2018). Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model. Combustion and Flame, 193, 246–256. https://doi.org/10.1016/j.combustflame.2018.03.026
Ying, X. (2019). An Overview of overfitting and its solutions. Journal of Physics: Conference Series, 1168, 022022. https://doi.org/10.1088/1742-6596/1168/2/022022
Yuan, X. Q., Mi, X. C., Ng, H. D., & Zhou, J. (2020). A model for the trajectory of the transverse detonation resulting from re-initiation of a diffracted detonation. Shock Waves, 30(1), 13–27. https://doi.org/10.1007/s00193-019-00904-4
Yuan, X. Q., Yan, C., Zhou, J., & Ng, H. D. (2021). Computational study of gaseous cellular detonation diffraction and re-initiation by small obstacle induced perturbations. Physics of Fluids, 33(4), 047115. https://doi.org/10.1063/5.0044164
Zamfirescu, C., & Dincer, I. (2008). Using ammonia as a sustainable fuel. Journal of Power Sources, 185(1), 459–465. https://doi.org/10.1016/j.jpowsour.2008.02.097
Zhang, B., Mehrjoo, N., Ng, H. D., Lee, J. H. S., & Bai, C. (2014). On the dynamic detonation parameters in acetylene–oxygen mixtures with varying amount of argon dilution. Combustion and Flame, 161(5), 1390–1397. https://doi.org/10.1016/j.combustflame.2013.11.016
Zhang, L., Xue, Y., Xie, Q., & Ren, Z. (2021). Analysis and neural network prediction of combustion stability for industrial gases. Fuel, 287, 119507. https://doi.org/10.1016/j.fuel.2020.119507
Zhang, X., Moosakutty, S. P., Rajan, R. P., Younes, M., & Sarathy, S. M. (2021). Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling. Combustion and Flame, 234, 111653. https://doi.org/10.1016/j.combustflame.2021.111653
Zhang, Y., Zhou, L., Meng, H., & Teng, H. (2020). Reconstructing cellular surface of gaseous detonation based on artificial neural network and proper orthogonal decomposition. Combustion and Flame, 212, 156–164. https://doi.org/10.1016/j.combustflame.2019.10.031
Zhao, H., Yan, Y., & Zhang, Y. (2018). Quantitative effect of Ar dilution on the dynamic detonation parameters in acetylene–oxygen mixtures. Advances in Mechanical Engineering, 10(5), 1687814018773840. https://doi.org/10.1177/1687814018773840
Zhao, H., Yang, X., & Ju, Y. (2016). Kinetic studies of ozone assisted low temperature oxidation of dimethyl ether in a flow reactor using molecular-beam mass spectrometry. Combustion and Flame, 173, 187–194. https://doi.org/10.1016/j.combustflame.2016.08.008
Zhou, L., Teng, H., Ng, H. D., Yang, P., & Jiang, Z. (2021). Reconstructing shock front of unstable detonations based on multi-layer perceptron. Acta Mechanica Sinica, 37(11), 1610–1623. https://doi.org/10.1007/s10409-021-01130-x
Zhou, R., Wu, D., & Wang, J. (2016). Progress of continuously rotating detonation engines. Chinese Journal of Aeronautics, 29(1), 15–29. https://doi.org/10.1016/j.cja.2015.12.006
Zhu, X., Khateeb, A. A., Guiberti, T. F., & Roberts, W. L. (2021). NO and OH* emission characteristics of very-lean to stoichiometric ammonia–hydrogen–air swirl flames. Proceedings of the Combustion Institute, 38(4), 5155–5162. https://doi.org/10.1016/j.proci.2020.06.275
Repository Staff Only: item control page


Download Statistics
Download Statistics