Login | Register

Evaluating the Impact of PCA as a Preprocessing Step in EEG Microstate Analysis

Title:

Evaluating the Impact of PCA as a Preprocessing Step in EEG Microstate Analysis

Ning, Tianhao (2025) Evaluating the Impact of PCA as a Preprocessing Step in EEG Microstate Analysis. Masters thesis, Concordia University.

[thumbnail of Ning_MASc_F2025.pdf]
Text (application/pdf)
Ning_MASc_F2025.pdf - Accepted Version
Restricted to Repository staff only until 1 September 2026.
Available under License Spectrum Terms of Access.
2MB

Abstract

Evaluating the Impact of PCA as a Preprocessing Step in EEG Microstate Analysis Tianhao Ning, MASc
Concordia University, 2025

Electroencephalography microstate analysis is now an important technique for investigating temporal dynamics of brain activity. Given that data are commonly recorded by a large number of electrodes, the high-dimensional nature of this data introduces considerable computational challenges to applying traditional clustering techniques to microstate analysis.
This study examines the application of Principal Component Analysis (PCA) as a dimensionality reduction technique to address the challenge. The PCA projects high-dimensional data into a lower-dimensional space while retaining the most critical features, which can enhance the performance of clustering algorithms like k-means. Firstly, we reproduced the EEG microstate topographies according to Jia & Zeng's work, "EEG signals respond differently to idea generation, idea evolution and evaluation in a loosely controlled creativity experiment," published in 2021, as a baseline. We then compared these results with those of the PCA-reduced data to test whether the structural characteristics of microstates concerning global explained variance, topography similarities, and coverage are preserved after dimensionality reduction.
We tested the performance of PCA in this way, maintaining 95%, 98%, and 99% variance for the original clean data for different cognitive tasks. Our results showed that PCA reduced processing time and maintained the quality of the data, particularly at 98%. However, the PCA-reduced data results differed from those obtained from the original clean data, indicating that PCA is indeed helpful but does alter the results after all.
It also has broad implications for the interpretation of how dimensionality reduction affects EEG microstate analysis, potentially providing superior techniques for handling high-dimensional neural data. Future studies should investigate the biological significance of PCA's effects on EEG data and the impact of PCA on noise signals and test whether this method is suitable as a preprocessing step for other microstate clustering algorithms to ensure that the conclusions reached analytically are both reliable and valid.

Keywords: Electroencephalography, Principal Component Analysis, Microstate Analysis, Clustering, Dimensionality Reduction

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Thesis (Masters)
Authors:Ning, Tianhao
Institution:Concordia University
Degree Name:M.A. Sc.
Program:Quality Systems Engineering
Date:July 2025
Thesis Supervisor(s):Zeng, Yong
Keywords:Electroencephalography, Principal Component Analysis, Microstate Analysis, Clustering, Dimensionality Reduction
ID Code:995856
Deposited By: Tianhao Ning
Deposited On:04 Nov 2025 17:40
Last Modified:04 Nov 2025 17:40
Additional Information:one year embago since we need to submit it to a journal

References:

References

1. Gelormini, C.; Guerrini, L.; Pescaglia, F.; Aubonnet, R.; Jónsson Jr, H.; Petersen, H.; Di Lorenzo, G.; Gargiulo, P. Assessing Brain Network Dynamics During Postural Control Task Using EEG Microstates. Brain Topogr 2025, 38, 47, doi:10.1007/s10548-025-01119-w.
2. Michel, C.M.; Koenig, T. EEG Microstates as a Tool for Studying the Temporal Dynamics of Whole-Brain Neuronal Networks: A Review. NeuroImage 2018, 180, 577–593, doi:10.1016/j.neuroimage.2017.11.062.
3. Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Segmentation of Brain Electrical Activity into Microstates: Model Estimation and Validation. IEEE Transactions on Biomedical Engineering 1995, 42, 658–665, doi:10.1109/10.391164.
4. Biasiucci, A.; Franceschiello, B.; Murray, M.M. Electroencephalography. Current Biology 2019, 29, R80–R85, doi:10.1016/j.cub.2018.11.052.
5. Hotelling, H. Analysis of a Complex of Statistical Variables into Principal Components. Journal of Educational Psychology 1933, 24, 417–441, doi:10.1037/h0071325.
6. Abdi, H.; Williams, L.J. Principal Component Analysis; 2010;
7. Jabari, I.K.O.; Shofiyah; S, P.K.; Putriwijaya, N.N.; Yudistira, N. Learning-Augmented K-Means Clustering Using Dimensional Reduction. In Proceedings of the Proceedings of the 8th International Conference on Sustainable Information Engineering and Technology; October 24 2023; pp. 99–106.
8. Jia, W.; Zeng, Y. EEG Signals Respond Differently to Idea Generation, Idea Evolution and Evaluation in a Loosely Controlled Creativity Experiment. Sci Rep 2021, 11, 2119, doi:10.1038/s41598-021-81655-0.
9. Hyvärinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; 2001; Vol. 26; ISBN 978-0-471-40540-5.
10. Britz, J.; Van De Ville, D.; Michel, C.M. BOLD Correlates of EEG Topography Reveal Rapid Resting-State Network Dynamics. NeuroImage 2010, 52, 1162–1170, doi:10.1016/j.neuroimage.2010.02.052.
11. Smith, S.M.; Nichols, T.E.; Vidaurre, D.; Winkler, A.M.; Behrens, T.E.J.; Glasser, M.F.; Ugurbil, K.; Barch, D.M.; Van Essen, D.C.; Miller, K.L. A Positive-Negative Mode of Population Covariation Links Brain Connectivity, Demographics and Behavior. Nat Neurosci 2015, 18, 1565–1567, doi:10.1038/nn.4125.
12. Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. Journal of Neuroscience Methods 2004, 134, 9–21, doi:10.1016/j.jneumeth.2003.10.009.
13. Kim, K.H.; Bang, S.W.; Kim, S.R. Emotion Recognition System Using Short-Term Monitoring of Physiological Signals. Med. Biol. Eng. Comput. 2004, 42, 419–427, doi:10.1007/BF02344719.
14. Khanna, A.; Pascual-Leone, A.; Michel, C.M.; Farzan, F. Microstates in Resting-State EEG: Current Status and Future Directions. Neurosci Biobehav Rev 2015, 49, 105–113, doi:10.1016/j.neubiorev.2014.12.010.
15. Lehmann, D. Multichannel Topography of Human Alpha EEG Fields. Electroencephalography and Clinical Neurophysiology 1971, 31, 439–449, doi:10.1016/0013-4694(71)90165-9.
16. Lehmann, D.; Skrandies, W. Reference-Free Identification of Components of Checkerboard-Evoked Multichannel Potential Fields. Electroencephalography and Clinical Neurophysiology 1980, 48, 609–621, doi:10.1016/0013-4694(80)90419-8.
17. Lehmann, D.; Ozaki, H.; Pal, I. EEG Alpha Map Series: Brain Micro-States by Space-Oriented Adaptive Segmentation. Electroencephalography and Clinical Neurophysiology 1987, 67, 271–288, doi:10.1016/0013-4694(87)90025-3.
18. Ville, D.V.D.; Britz, J.; Michel, C.M. EEG Microstate Sequences in Healthy Humans at Rest Reveal Scale-Free Dynamics. Proceedings of the National Academy of Sciences of the United States of America 2010, 107, 18179, doi:10.1073/pnas.1007841107.
19. Nguyen, T.A.; Zeng, Y. CLUSTERING DESIGNERS’ MENTAL ACTIVITIES BASED ON EEG POWER.
20. An, N.T.; Yong, Z. A Theoretical Model of Design Creativity: Nonlinear Design Dynamics and Mental Stress-Creativity Relation. Journal of Integrated Design & Process Science 2012, 65–88, doi:10.3233/jid-2012-0007.
21. Nguyen, T.A.; Zeng, Y. A Physiological Study of Relationship between Designer’s Mental Effort and Mental Stress during Conceptual Design. Computer-Aided Design 2014, 54, 3–18, doi:10.1016/j.cad.2013.10.002.
22. Nguyen, T.A.; Zeng, Y. A Physiological Study of Relationship between Designer’s Mental Effort and Mental Stress during Conceptual Design. Computer-Aided Design 2014, 54, 3–18, doi:10.1016/j.cad.2013.10.002.
23. Nguyen, P.; Nguyen, T.A.; Zeng, Y. Measuring the Evoked Hardness of Design Problems Using Transient Microstates. In Proceedings of the Volume 7: 27th International Conference on Design Theory and Methodology; American Society of Mechanical Engineers: Boston, Massachusetts, USA, August 2 2015; p. V007T06A029.
24. Nguyen, T.A.; Zeng, Y. Effects of Stress and Effort on Self-Rated Reports in Experimental Study of Design Activities. J Intell Manuf 2017, 28, 1609–1622, doi:10.1007/s10845-016-1196-z.
25. Nguyen, T.A.; Zeng, Y. A Physiological Study of Relationship between Designer’s Mental Effort and Mental Stress during Conceptual Design. Computer-Aided Design 2014, 54, 3–18, doi:10.1016/j.cad.2013.10.002.
26. Zhao, M.; Jia, W.; Yang, D.; Nguyen, P.; Nguyen, T.A.; Zeng, Y. A tEEG Framework for Studying Designer’s Cognitive and Affective States. Design Science 2020, doi:10.1017/dsj.2020.28.
27. Zangeneh Soroush, M.; Zeng, Y. EEG-Based Study of Design Creativity: A Review on Research Design, Experiments, and Analysis. Front. Behav. Neurosci. 2024, 18, doi:10.3389/fnbeh.2024.1331396.
28. Yu-chu Yeh; Wei-Chin Hsu; Elisa Marie Rega The Dynamic Relationship of Brain Networks Across Time Windows During Product-Based Creative Thinking. JPR 2019, 9, doi:10.17265/2159-5542/2019.10.002.
29. Seitzman, B.A.; Abell, M.; Bartley, S.C.; Erickson, M.A.; Bolbecker, A.R.; Hetrick, W.P. Cognitive Manipulation of Brain Electric Microstates. Neuroimage 2017, 146, 533–543, doi:10.1016/j.neuroimage.2016.10.002.
30. Brain Networks in Neuroscience: Personalization Unveiled Via Artificial Intelligence; Hassan, M.M., Yasmin, F., Islam, S.M.S., Bairagi, A.K., Aung, S.T., Eds.; River Publishers: New York, 2025; ISBN 978-87-7004-737-1.
31. Baradits, M.; Bitter, I.; Czobor, P. Multivariate Patterns of EEG Microstate Parameters and Their Role in the Discrimination of Patients with Schizophrenia from Healthy Controls. Psychiatry Research 2020, 288, 112938, doi:10.1016/j.psychres.2020.112938.
32. Lehmann, D.; Faber, P.L.; Tei, S.; Pascual-Marqui, R.D.; Milz, P.; Kochi, K. Reduced Functional Connectivity between Cortical Sources in Five Meditation Traditions Detected with Lagged Coherence Using EEG Tomography. NeuroImage 2012, 60, 1574–1586, doi:10.1016/j.neuroimage.2012.01.042.
33. Dierks, T.; Jelic, V.; Pascual-Marqui, R.D.; Wahlund, L.-O.; Julin, P.; Linden, D.E.J.; Maurer, K.; Winblad, B.; Nordberg, A. Spatial Pattern of Cerebral Glucose Metabolism (PET) Correlates with Localization of Intracerebral EEG-Generators in Alzheimer’s Disease. Clinical Neurophysiology 2000, 111, 1817–1824, doi:10.1016/S1388-2457(00)00427-2.
34. Pascual-Marqui, R.D.; Lehmann, D.; Koenig, T.; Kochi, K.; Merlo, M.C.; Hell, D.; Koukkou, M. Low Resolution Brain Electromagnetic Tomography (LORETA) Functional Imaging in Acute, Neuroleptic-Naive, First-Episode, Productive Schizophrenia. Psychiatry Res 1999, 90, 169–179, doi:10.1016/s0925-4927(99)00013-x.
35. Koenig, T.; Prichep, L.; Lehmann, D.; Sosa, P.V.; Braeker, E.; Kleinlogel, H.; Isenhart, R.; John, E.R. Millisecond by Millisecond, Year by Year: Normative EEG Microstates and Developmental Stages. NeuroImage 2002, 16, 41–48, doi:10.1006/nimg.2002.1070.
36. Jajcay, N.; Hlinka, J. Towards a Dynamical Understanding of Microstate Analysis of M/EEG Data. NeuroImage 2023, 281, 120371, doi:10.1016/j.neuroimage.2023.120371.
37. Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2016, 374, 20150202, doi:10.1098/rsta.2015.0202.
38. Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemometrics and Intelligent Laboratory Systems 1987, 2, 37–52, doi:10.1016/0169-7439(87)80084-9.
39. Makeig, S.; Jung, T.P.; Bell, A.J.; Ghahremani, D.; Sejnowski, T.J. Blind Separation of Auditory Event-Related Brain Responses into Independent Components. Proc Natl Acad Sci U S A 1997, 94, 10979–10984, doi:10.1073/pnas.94.20.10979.
40. Murray, M.M.; Brunet, D.; Michel, C.M. Topographic ERP Analyses: A Step-by-Step Tutorial Review. Brain Topogr 2008, 20, 249–264, doi:10.1007/s10548-008-0054-5.
41. von Wegner, F.; Knaut, P.; Laufs, H. EEG Microstate Sequences From Different Clustering Algorithms Are Information-Theoretically Invariant. Front Comput Neurosci 2018, 12, 70, doi:10.3389/fncom.2018.00070.
42. Wang, H.; Pi ,Y.; Liu ,G.; and Chen, H. Applications of ICA for the Enhancement and Classification of Polarimetric SAR Images. International Journal of Remote Sensing 2008, 29, 1649–1663, doi:10.1080/01431160701395211.
43. Vidaurre, D.; Hunt, L.T.; Quinn, A.J.; Hunt, B.A.E.; Brookes, M.J.; Nobre, A.C.; Woolrich, M.W. Spontaneous Cortical Activity Transiently Organises into Frequency Specific Phase-Coupling Networks. Nat Commun 2018, 9, 2987, doi:10.1038/s41467-018-05316-z.
44. Zhao, M.; Jia, W.; Jennings, S.; Law, A.; Bourgon, A.; Su, C.; Larose, M.-H.; Grenier, H.; Bowness, D.; Zeng, Y. Monitoring Pilot Trainees’ Cognitive Control under a Simulator-Based Training Process with EEG Microstate Analysis. Sci Rep 2024, 14, 24632, doi:10.1038/s41598-024-76046-0.
45. Gabard-Durnam, L.J.; Mendez Leal, A.S.; Wilkinson, C.L.; Levin, A.R. The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized Processing Software for Developmental and High-Artifact Data. Frontiers in Neuroscience 2018, 12.
46. Nolan, H.; Whelan, R.; Reilly, R.B. FASTER: Fully Automated Statistical Thresholding for EEG Artifact Rejection. Journal of Neuroscience Methods 2010, 192, 152–162, doi:10.1016/j.jneumeth.2010.07.015.
47. Zangeneh Soroush, M.; Zhao, M.; Jia, W.; Zeng, Y. Loosely Controlled Experimental EEG Datasets for Higher-Order Cognitions in Design and Creativity Tasks. Data in Brief 2024, 52, 109981, doi:https://doi.org/10.1016/j.dib.2023.109981.
48. Tzovara, A.; Murray, M.M.; Plomp, G.; Herzog, M.H.; Michel, C.M.; De Lucia, M. Decoding Stimulus-Related Information from Single-Trial EEG Responses Based on Voltage Topographies. Pattern Recognition 2012, 45, 2109–2122, doi:10.1016/j.patcog.2011.04.007.
49. Kashihara, S.; Asai, T.; Imamizu, H. Topographical Polarity Reveals Continuous EEG Microstate Transitions and Electric Field Direction in Healthy Aging 2024.
50. Jia, W.; von Wegner, F.; Zhao, M.; Zeng, Y. Network Oscillations Imply the Highest Cognitive Workload and Lowest Cognitive Control during Idea Generation in Open-Ended Creation Tasks. Sci Rep 2021, 11, 24277, doi:10.1038/s41598-021-03577-1.
51. Jia, W.; Zeng, Y. EEG Signals Respond Differently to Idea Generation, Idea Evolution and Evaluation in a Loosely Controlled Creativity Experiment. Sci Rep 2021, 11, 2119, doi:10.1038/s41598-021-81655-0.
52. Garg, S.; Torra, V. Privacy in Manifolds: Combining k-Anonymity with Differential Privacy on Fréchet Means. Computers & Security 2024, 144, 103983, doi:10.1016/j.cose.2024.103983.
53. Tzovara, A.; Murray ,Micah M.; Michel ,Christoph M.; and De Lucia, M. A Tutorial Review of Electrical Neuroimaging From Group-Average to Single-Trial Event-Related Potentials. Developmental Neuropsychology 2012, 37, 518–544, doi:10.1080/87565641.2011.636851.
54. Kuhn, H.W. The Hungarian Method for the Assignment Problem., doi:10.1002/nav.3800020109.
55. Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. Neuroimage 2002, 15, 273–289, doi:10.1006/nimg.2001.0978.
56. Hidayat, S.; Sunarko, B.; Hasanah, U. K-Means Clustering for Profiling Logical-Mathematical Intelligence and Problem-Solving Abilities. In Innovative Approaches in Computational Systems and Smart Applications; IGI Global Scientific Publishing, 2025; pp. 179–208 ISBN 9798369398463.
57. Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics 1987, 20, 53–65, doi:10.1016/0377-0427(87)90125-7.
58. Barragan, A.C. Interpreting and Validating Clustering Results with K-Means Available online: https://medium.com/@a.cervantes2012/interpreting-and-validating-clustering-results-with-k-means-e98227183a4d (accessed on 25 June 2025).
59. Xu, G.; Zong, Y.; Yang, Z. Applied Data Mining; CRC Press: Boca Raton, 2013; ISBN 978-0-429-07400-4.
60. Croce, P.; Quercia, A.; Costa, S.; Zappasodi, F. EEG Microstates Associated with Intra- and Inter-Subject Alpha Variability. Scientific Reports 2020, 10, 2469, doi:10.1038/s41598-020-58787-w.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top