Kodie-Ampaw, Joseph Kwabena (2025) Numerical Investigation of the Unsteady Turbulent Wake Regimes of a Notchback Ahmed Body. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
4MBKodie-Ampaw_MA_F2025.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
This study investigates the influence of Reynolds number on the unsteady turbulent wake regimes of a notchback Ahmed body with an effective backlight angle of 17.8°. Three-dimensional improved delayed detached eddy simulations (IDDES) were conducted at two Reynolds numbers, Reh = 10000 (denoted as Re1E4) and Reh = 50000 (Re5E4), representing symmetric and fully asymmetric flow regimes, respectively. Detailed aspects of the wake dynamics, including the mean flow, Reynolds stresses, large-scale anisotropy, global instabilities, and the pumping motion (i.e., quasi-periodic expansion and contraction) of reverse flow regions, are used to characterize the effects of Reynolds number. The results showed that, unlike Re1E4, the wake of Re5E4 is associated with asymmetric reattachment on the deck and a directional bias of the vortical structures towards one side of the body. This asymmetry significantly enhances turbulence anisotropy and causes a spanwise imbalance in turbulence production in Re5E4 compared to Re1E4. The pumping motion of the reverse flow regions was found to be synchronized between the bubbles over the slant and behind the back for Re1E4, but out of phase for Re5E4. Additionally, for Re5E4, frequent contractions on one side of the body were accompanied by expansions on the opposite side, a behavior not prevalent in Re1E4.
| Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering |
|---|---|
| Item Type: | Thesis (Masters) |
| Authors: | Kodie-Ampaw, Joseph Kwabena |
| Institution: | Concordia University |
| Degree Name: | M.A. Sc. |
| Program: | Mechanical Engineering |
| Date: | 27 August 2025 |
| Thesis Supervisor(s): | Essel, Ebenezer Ekow |
| Keywords: | Ahmed body, Flow Separation, Unsteady Wake dynamics, Vortex shedding |
| ID Code: | 996042 |
| Deposited By: | Joseph Kwabena Kodie-Ampaw |
| Deposited On: | 04 Nov 2025 17:13 |
| Last Modified: | 04 Nov 2025 17:13 |
References:
Ahmed, S. R., Ramm, G., & Faltin, G. (1984). Some Salient Features of the Time-Averaged Ground Vehicle Wake. SAE Transactions, 93, 473–503. http://www.jstor.org/stable/44434262Aleyasin, S. S., Tachie, M. F., & Balachandar, R. (2021). Characteristics of flow past elongated bluff bodies with underbody gaps due to varying inflow turbulence. Physics of Fluids, 33(12), 125106. https://doi.org/10.1063/5.0072390
Bello-Millán, F. J., Mäkelä, T., Parras, L., Del Pino, C., & Ferrera, C. (2016). Experimental study on Ahmed's body drag coefficient for different yaw angles. Journal of Wind Engineering and Industrial Aerodynamics, 157, 140-144.
Chen, C. W., Wang, S., & Ghaemi, S. (2024). Spectral proper orthogonal decomposition of time-resolved three-dimensional flow measurements in the turbulent wake of the Ahmed body. Journal of Fluid Mechanics, 985, A19. https://doi.org/10.1017/jfm.2024.288
Chen, G., Li, X. B., He, K., Cheng, Z., Zhou, D., & Liang, X. F. (2023). Effect of the free-stream turbulence on the bi-modal wake dynamics of square-back bluff body. Physics of Fluids, 35(1). https://doi.org/10.1063/5.0134912
Choi, H., Lee, J., & Park, H. (2014). Aerodynamics of heavy vehicles. Annual Review of Fluid Mechanics, 46, 441–468. https://doi.org/10.1146/annurev-fluid-011212-140616
Cherry, N. J., Hillier, R., & Latour, M. (1984). Unsteady measurements in a separated and reattaching flow. Journal of Fluid Mechanics, 144, 13–46. https://doi.org/10.1017/S002211208400149X
Cogotti, A. (1986). Car-Wake Imaging Using a Seven-Hole Probe. SAE Transactions, 95, 1071–1095. http://www.jstor.org/stable/44721731
Dalla Longa, L., Evstafyeva, O., & Morgans, A. S. (2019). Simulations of the bi-modal wake past three-dimensional blunt bluff bodies. Journal of Fluid Mechanics, 866, 791–809. https://doi.org/10.1017/jfm.2019.92
Fan, Y., Xia, C., Chu, S., Yang, Z., & Cadot, O. (2020). Experimental and numerical analysis of the bi-stable turbulent wake of a rectangular flat-backed bluff body. Physics of Fluids, 32(10), 105111. https://doi.org/10.1063/5.0019794
Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic subgrid‐scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7), 1760–1765. https://doi.org/10.1063/1.857955
Grandemange, M., Cadot, O., & Gohlke, M. (2012). Reflectional symmetry breaking of the separated flow over three-dimensional bluff bodies. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 86(3), 1–4. https://doi.org/10.1103/PhysRevE.86.035302
Grandemange, M., Gohlke, M., & Cadot, O. (2013a). Bi-stability in the turbulent wake past parallelepiped bodies with various aspect ratios and wall effects. Physics of Fluids, 25(9), 095103. https://doi.org/10.1063/1.4820372
Grandemange, M., Gohlke, M., & Cadot, O. (2013b). Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. Journal of Fluid Mechanics, 722, 51–84. https://doi.org/10.1017/jfm.2013.83
Gritskevich, M. S., Garbaruk, A. V, Schütze, J., & Menter, F. R. (2012). Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow, Turbulence and Combustion, 88, 431–449. https://doi.org/10.1007/s10494-011-9378-4
Guilmineau, E., Deng, G. B., Leroyer, A., Queutey, P., Visonneau, M., & Wackers, J. (2018). Assessment of hybrid RANS-LES formulations for flow simulation around the Ahmed body. Computers and Fluids, 176, 302–319. https://doi.org/10.1016/j.compfluid.2017.01.005
He, K., Minelli, G., Wang, J., Dong, T., Gao, G., & Krajnović, S. (2021a). Numerical investigation of the wake bi-stability behind a notchback Ahmed body. Journal of Fluid Mechanics, 926, A36. https://doi.org/10.1017/jfm.2021.748
He, K., Minelli, G., Su, X., Gao, G., & Krajnović, S. (2021b). Influence of the rounded rear edge on wake bi-stability of a notchback bluff body. Physics of Fluids, 33(11), 115107. https://doi.org/10.1063/5.0071925
He, K., Minelli, G., Su, X., Gao, G., & Krajnović, S. (2021c). Blockage influence on bi-stable flows of a notchback bluff body. Physics of Fluids, 33(12), 125113. https://doi.org/10.1063/5.0077251
He, K., Minelli, G., Wang, J., Gao, G., & Krajnović, S. (2021d). Assessment of LES, IDDES and RANS approaches for prediction of wakes behind notchback road vehicles. Journal of Wind Engineering and Industrial Aerodynamics,217, 104737. https://doi.org/10.1016/j.jweia.2021.104737
He, K., Minelli, G., Su, X., Wang, J., Gao, G., & Krajnović, S. (2022). Floor motion’s influence on wake asymmetry of a notchback bluff body. Physics of Fluids, 34(3), 035103. https://doi.org/10.1063/5.0084435
Hunt, J. C. R., Wray, A. A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research, Proceedings of the Summer Program, 193-208.
Kang, N., Essel, E. E., Roussinova, V., & Balachandar, R. (2021). Effects of approach flow conditions on the unsteady three-dimensional wake structure of a square-back Ahmed body. Physical Review Fluids, 6(3), 034613. https://doi.org/10.1103/PhysRevFluids.6.034613
Kodie-Ampaw, J. K., Bonsi, A. K., Ouedraogo N.F & Essel, E. E. (2025). The influence of Reynolds number on the turbulent wake regimes of a notchback Ahmed body. International Journal of Heat and Fluid Flow. (Under review)
Kohri, I., Yamanashi, T., Nasu, T., Hashizume, Y., & Katoh, D. (2014). Study on the transient behaviour of the vortex structure behind Ahmed body. SAE International Journal of Passenger Cars-Mechanical Systems, 7(0597), 586-602.
Krajnović, S., & Davidson, L. (2004). Exploring the flow around a simplified bus with large eddy simulation and topological tools. In R. McCallen, F. Browand, & J. Ross (Eds.), The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains (pp. 49–64). Springer Berlin Heidelberg.
Krajnović, S., & Davidson, L. (2005). Flow around a simplified car, part 1: Large eddy simulation. Journal of Fluids Engineering, Transactions of the ASME, 127(5), 907–918. https://doi.org/10.1115/1.1989371
Ladwig, M., Gericke, T., Huettig, S., & Lindken, R. (2023). Reconstruction of time-averaged 3d pressure fields of an ahmed body with pressure from piv. part i: Scanning stereo-piv. Symposium on Particle Image Velocimetry. San Diego State University.
Launder BE, Reece GJ, & Rodi W. (1975) Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 68(3), 537-566. https://doi:10.1017/S0022112075001814
Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. In Advances in geophysics, 18, 237–248. https://doi.org/10.1016/S0065-2687(08)60464-1
Lucas, J. M., Cadot, O., Herbert, V., Parpais, S., & Délery, J. (2017). A numerical investigation of the asymmetric wake mode of a squareback Ahmed body - Effect of a base cavity. Journal of Fluid Mechanics, 831, 675–697. https://doi.org/10.1017/jfm.2017.654
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
Menter, F. R., & Kuntz, M. (2002). Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In The aerodynamics of heavy vehicles: trucks, buses, and trains (pp. 339-352).
Ouedraogo, N. F., & Essel, E. E. (2024). Effects of Reynolds Number On the Wake Characteristics of a Notchback Ahmed Body. Journal of Fluids Engineering, 146(11), 111302. https://doi.org/10.1115/1.4065225
Passaggia, P. Y., Mazellier, N., & Kourta, A. (2021). Aerodynamic drag modification induced by free-stream turbulence effects on a simplified road vehicle. Physics of Fluids, 33(10). https://doi.org/10.1063/5.0062232
Pavia, G., Passmore, M., & Sardu, C. (2018). Evolution of the bi-stable wake of a square-back automotive shape. Experiments in Fluids, 59(1), 20.
Pearson, D. S., Goulart, P. J., & Ganapathisubramani, B. (2013). Turbulent separation upstream of a forward-facing step. Journal of Fluid Mechanics, 724, 284–304. https://doi.org/10.1017/jfm.2013.113
Piomelli, U. (1999). Large-eddy simulation: achievements and challenges. Progress in aerospace sciences, 35(4), 335-362. https://doi.org/10.1016/S0376-0421(98)00014-1
Pope, S. B. (2000). Turbulent flows. Cambridge University Press.
Prakash, B., Bergada, J. M., & Mellibovsky, F. (2018). Three dimensional analysis of ahmed body aerodynamic performance enhancement using steady suction and blowing flow control techniques. Tenth International Conference on Computational Fluid Dynamics (ICCFD10).
Ritchie, H., & Roser, M. (2024). Cars, planes, trains: where do CO₂ emissions from transport come from? Our World in Data.
Sarkar, S., & Sarkar, S. (2009). Large-eddy simulation of wake and boundary layer interactions behind a circular cylinder. Journal of Fluids Engineering, 131(9), 091201 https://doi.org/10.1115/1.3176982
Shur, M. L., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
Siddiqui, N. A., & Agelin-Chaab, M. (2022). Flow features of the Ahmed body at a low Reynolds number. International Journal of Heat and Fluid Flow, 98, 109052. https://doi.org/10.1016/j.ijheatfluidflow.2022.109052
Siemens Digital Industries Software. (2020). Simcenter STAR-CCM+ (Version 2020.2) [Computer software]. Siemens
Sims-Williams, D., Marwood, D., & Sprot, A. (2011). Links between Notchback Geometry, Aerodynamic Drag, Flow Asymmetry and Unsteady Wake Structure. SAE International Journal of Passenger Cars - Mechanical Systems, 4(1), 156–165. https://doi.org/10.4271/2011-01-0166
Smagorinsky, J. 1963. General Circulation Experiments with the Primitive Equations: Part I, The Basic Experiment. Monthly Weather Review, 91, pp. 99-164
Spalart, P., & Allmaras, S. (1992). A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit, 439. https://doi.org/doi:10.2514/6.1992-439
Spalart, P. R. (1997). Comments on the Feasibility of LES for Wings and on the Hybrid RANS/LES Approach. Proceedings of the First AFOSR International Conference on DNS/LES, 1997, 137–147.
Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20, 181–195. https://doi.org/10.1007/s00162-006-0015-0
Strachan, R. K., Knowles, K., & Lawson, N. J. (2007). The vortex structure behind an Ahmed reference model in the presence of a moving ground plane. Experiments in Fluids, 42(5), 659–669. https://doi.org/10.1007/s00348-007-0270-x
Tombazis, N., & Bearman, P. W. (1997). A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance. Journal of Fluid Mechanics, 330, 85–112. https://doi.org/10.1017/S0022112096003631
Tunay, T., Sahin, B., & Akilli, H. (2013). Experimental and numerical studies of the flow around the Ahmed body. Wind and Structures, 17(5), 515–535.
Vino, G., Watkins, S., Mousley, P., Watmuff, J., & Prasad, S. (2005). Flow structures in the near-wake of the Ahmed model. Journal of Fluids and Structures, 20(5), 673–695. https://doi.org/10.1016/j.jfluidstructs.2005.03.006
Volpe, R., Devinant, P., & Kourta, A. (2015). Experimental characterization of the unsteady natural wake of the full-scale square back Ahmed body: flow bi-stability and spectral analysis. Experiments in Fluids, 56(5), 99. https://doi.org/10.1007/s00348-015-1972-0
Wieser, D., Nayeri, C. N., & Paschereit, C. O. (2020). Wake structures and surface patterns of the drivaer notchback car model under side wind conditions. Energies, 13(2). https://doi.org/10.3390/en13020320
Repository Staff Only: item control page


Download Statistics
Download Statistics