Login | Register

Occupancy-Informed Energy Management Strategies for Grid-Interactive Buildings

Title:

Occupancy-Informed Energy Management Strategies for Grid-Interactive Buildings

Doma, Aya (2025) Occupancy-Informed Energy Management Strategies for Grid-Interactive Buildings. PhD thesis, Concordia University.

[thumbnail of Doma_PhD_F2025.pdf]
Preview
Text (application/pdf)
Doma_PhD_F2025.pdf - Accepted Version
Available under License Spectrum Terms of Access.
9MB

Abstract

The global shift towards electrification transforms buildings from passive electricity consumers into active prosumers capable of energy generation, storage, and trading. This evolution expands the building-to-grid (B2G) interactions, moving beyond conventional demand-side management (DSM) strategies toward dynamic peer-to-peer (P2P) energy markets. Such markets necessitate innovative solutions to align energy supply with fluctuating demand through enhanced building flexibility. This thesis focuses on occupancy as a critical but underutilized dimension of building energy flexibility, particularly for informing control strategies in B2G and P2P energy markets. It develops occupancy-informed energy management strategies that dynamically respond to real-time occupancy variations, optimizing energy use and facilitating effective interactions between buildings and the local grid, as well as with peer buildings. The research primary objectives are to: (1) develop approaches for generating representative occupancy schedules for the urban modelling of various building types; (2) formulate occupancy-informed control algorithms for residential and non-residential buildings aiming at enhancing the energy flexibility of these buildings; (3) evaluate the impact of these strategies at both building and grid-distribution levels, addressing roles of both consumers and prosumers; and (4) assess the feasibility of the developed strategies within the current energy policies and future P2P market contexts.
Utilizing open-source datasets, such as mobile positioning data (GPS) and smart thermostat data, combined with advanced modelling, this thesis developed occupancy schedule generators (OSGs) suitable for urban energy simulations. Then, a comprehensive framework was developed to dynamically model urban building energy performance, considering occupancy variations, interactions among buildings, local grids, and neighbouring infrastructure within varying market structures. Applying this framework to urban-scale case studies demonstrated significant reductions in peak energy demand, achieving up to 35% savings in residential buildings and over 17% in non-residential buildings, alongside notable energy cost reductions. Ultimately, this research provides foundational methods and practical tools to leverage building energy flexibility strategically, facilitating optimized interactions within evolving sustainable energy systems.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering
Item Type:Thesis (PhD)
Authors:Doma, Aya
Institution:Concordia University
Degree Name:Ph. D.
Program:Building Engineering
Date:23 April 2025
Thesis Supervisor(s):Ouf, Mohamed
Keywords:Grid-interactive Buildings, Occupancy, Energy Management
ID Code:996045
Deposited By: aya doma
Deposited On:04 Nov 2025 15:17
Last Modified:04 Nov 2025 15:17

References:

[1] Canadian Renewable Energy Association, “Powering Canada’s Journey to Net-Zero: CanREA’s 2050 Vision,” Canadian Renewable Energy Association. Accessed: Nov. 21, 2024. [Online]. Available: https://renewablesassociation.ca/2050-vision/
[2] “CanREA.”
[3] “position-paper-energy-flexibility-as-a-key-asset-i-a-smart-building-future.pdf.” Accessed: Jan. 08, 2024. [Online]. Available: https://www.annex67.org/media/1470/position-paper-energy-flexibility-as-a-key-asset-i-a-smart-building-future.pdf
[4] N. G. Paterakis, O. Erdinç, and J. P. S. Catalão, “An overview of Demand Response: Key-elements and international experience,” Renew. Sustain. Energy Rev., vol. 69, pp. 871–891, Mar. 2017, doi: 10.1016/j.rser.2016.11.167.
[5] N. T. Mbungu, R. M. Naidoo, R. C. Bansal, M. W. Siti, and D. H. Tungadio, “An overview of renewable energy resources and grid integration for commercial building applications,” J. Energy Storage, vol. 29, p. 101385, Jun. 2020, doi: 10.1016/j.est.2020.101385.
[6] “The fight against climate change: A win-win for Quebec and the planet!” Accessed: Oct. 12, 2024. [Online]. Available: https://www.environnement.gouv.qc.ca/changementsclimatiques/index-en.htm
[7] E. A. Soto, L. B. Bosman, E. Wollega, and W. D. Leon-Salas, “Peer-to-peer energy trading: A review of the literature,” Appl. Energy, vol. 283, p. 116268, Feb. 2021, doi: 10.1016/j.apenergy.2020.116268.
[8] Hydro Quebec, “Action Plan 2035 – Towards a Decarbonized and Prosperous Québec,” 2023.
[9] M. F. Zia, M. Benbouzid, E. Elbouchikhi, S. M. Muyeen, K. Techato, and J. M. Guerrero, “Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis,” IEEE Access, vol. 8, pp. 19410–19432, 2020, doi: 10.1109/ACCESS.2020.2968402.
[10] “A critical review of control schemes for demand-side energy management of building clusters - ScienceDirect.” Accessed: Feb. 11, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S037877882101015X
[11] Z. Khorasani Zadeh, M. Ouf, B. Gunay, B. Delcroix, G. Larochelle Martin, and A. Daoud, “Development of prediction models for thermostat override behavior in direct load control events,” Energy Build., vol. 301, p. 113707, Dec. 2023, doi: 10.1016/j.enbuild.2023.113707.
[12] B. Dong, Z. Li, A. Taha, and N. Gatsis, “Occupancy-based buildings-to-grid integration framework for smart and connected communities,” Appl. Energy, vol. 219, pp. 123–137, Jun. 2018, doi: 10.1016/j.apenergy.2018.03.007.
[13] C. Zhang, T. Yang, and Y. Wang, “Peer-to-Peer energy trading in a microgrid based on iterative double auction and blockchain,” Sustain. Energy Grids Netw., vol. 27, p. 100524, Sep. 2021, doi: 10.1016/j.segan.2021.100524.
[14] A. Satchwell et al., “A National Roadmap for Grid-Interactive Efficient Buildings,” Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States), May 2021. doi: 10.2172/1784302.
[15] A. R. Kalair, N. Abas, M. Seyedmahmoudian, S. Rauf, A. Stojcevski, and N. Khan, “Duck curve leveling in renewable energy integrated grids using internet of relays,” J. Clean. Prod., vol. 294, p. 126294, Apr. 2021, doi: 10.1016/j.jclepro.2021.126294.
[16] R. G. Junker et al., “Characterizing the energy flexibility of buildings and districts,” Appl. Energy, vol. 225, pp. 175–182, Sep. 2018, doi: 10.1016/j.apenergy.2018.05.037.
[17] V. Stavrakas and A. Flamos, “A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector,” Energy Convers. Manag., vol. 205, p. 112339, Feb. 2020, doi: 10.1016/j.enconman.2019.112339.
[18] S. Stinner, K. Huchtemann, and D. Müller, “Quantifying the operational flexibility of building energy systems with thermal energy storages,” Appl. Energy, vol. 181, pp. 140–154, Nov. 2016, doi: 10.1016/j.apenergy.2016.08.055.
[19] M. R. Hamouda, F. Amara, J. C. Oviedo, L. Rueda, and D. Toquica, “Historical-based bidding strategy in transactive energy market for household: Data driven analysis,” Ain Shams Eng. J., p. 102243, Apr. 2023, doi: 10.1016/j.asej.2023.102243.
[20] L. Ableitner, V. Tiefenbeck, A. Meeuw, A. Wörner, E. Fleisch, and F. Wortmann, “User behavior in a real-world peer-to-peer electricity market,” Appl. Energy, vol. 270, p. 115061, Jul. 2020, doi: 10.1016/j.apenergy.2020.115061.
[21] W. El-Baz, P. Tzscheutschler, and U. Wagner, “Integration of energy markets in microgrids: A double-sided auction with device-oriented bidding strategies,” Appl. Energy, vol. 241, pp. 625–639, May 2019, doi: 10.1016/j.apenergy.2019.02.049.
[22] T. Capper et al., “Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models,” Renew. Sustain. Energy Rev., vol. 162, p. 112403, Jul. 2022, doi: 10.1016/j.rser.2022.112403.
[23] R. E. Hedegaard, M. H. Kristensen, T. H. Pedersen, A. Brun, and S. Petersen, “Bottom-up modelling methodology for urban-scale analysis of residential space heating demand response,” Appl. Energy, vol. 242, pp. 181–204, May 2019, doi: 10.1016/j.apenergy.2019.03.063.
[24] G. Reynders, “Quantifying the Impact of Building Design on the Potential of Structural Storage for Active Demand Response in Residential Buildings,” Sep. 2015, Accessed: Jan. 08, 2024. [Online]. Available: https://lirias.kuleuven.be/1729315
[25] T. Chen et al., “Optimal demand response strategy of commercial building-based virtual power plant using reinforcement learning,” IET Gener. Transm. Distrib., vol. 15, no. 16, pp. 2309–2318, 2021, doi: 10.1049/gtd2.12179.
[26] “Residential Demand Response Strategies and Applications in Active Distribution Network Management,” Renew. Sustain. Energy Rev., vol. 138, p. 110567, Mar. 2021, doi: 10.1016/j.rser.2020.110567.
[27] S. Ø. Jensen et al., “IEA EBC Annex 67 Energy Flexible Buildings,” Energy Build., vol. 155, pp. 25–34, Nov. 2017, doi: 10.1016/j.enbuild.2017.08.044.
[28] “About || IEA EBC || Annex 82.” Accessed: Jan. 09, 2024. [Online]. Available: https://annex82.iea-ebc.org/about
[29] A. Doma and M. Ouf, “Modelling occupant behaviour for urban scale simulation: Review of available approaches and tools,” Build. Simul., vol. 16, no. 2, pp. 169–184, Feb. 2023, doi: 10.1007/s12273-022-0939-3.
[30] L. Sarran, H. B. Gunay, W. O’Brien, C. A. Hviid, and C. Rode, “A data-driven study of thermostat overrides during demand response events,” Energy Policy, vol. 153, p. 112290, Jun. 2021, doi: 10.1016/j.enpol.2021.112290.
[31] G. Happle, J. A. Fonseca, and A. Schlueter, “A review on occupant behavior in urban building energy models,” Energy Build., vol. 174, pp. 276–292, Sep. 2018, doi: 10.1016/j.enbuild.2018.06.030.
[32] Y. Q. Ang, Z. M. Berzolla, and C. F. Reinhart, “From concept to application: A review of use cases in urban building energy modeling,” Appl. Energy, vol. 279, p. 115738, Dec. 2020, doi: 10.1016/j.apenergy.2020.115738.
[33] “Urban Scale Vehicle-to-Building-to-Grid Integration Leveraging Human Mobility Modeling - ProQuest.” Accessed: Feb. 21, 2025. [Online]. Available: https://www.proquest.com/openview/48cc18b896d1fd86b9d86031fcd1e72f/1?pq-origsite=gscholar&cbl=18750&diss=y
[34] A. Bresa, T. Zakula, and D. Ajdukovic, “Occupant-centric control in buildings: Investigating occupant intentions and preferences for indoor environment and grid flexibility interactions,” Energy Build., vol. 317, p. 114393, Aug. 2024, doi: 10.1016/j.enbuild.2024.114393.
[35] Z. Nagy et al., “Ten questions concerning occupant-centric control and operations,” Build. Environ., vol. 242, p. 110518, Aug. 2023, doi: 10.1016/j.buildenv.2023.110518.
[36] Z. Pang, Y. Chen, J. Zhang, Z. O’Neill, H. Cheng, and B. Dong, “Nationwide HVAC energy-saving potential quantification for office buildings with occupant-centric controls in various climates,” Appl. Energy, vol. 279, p. 115727, Dec. 2020, doi: 10.1016/j.apenergy.2020.115727.
[37] H. Stopps, B. Huchuk, M. F. Touchie, and W. O’Brien, “Is anyone home? A critical review of occupant-centric smart HVAC controls implementations in residential buildings,” Build. Environ., vol. 187, p. 107369, Jan. 2021, doi: 10.1016/j.buildenv.2020.107369.
[38] L. Rueda et al., “Online Unsupervised Occupancy Anticipation System Applied to Residential Heat Load Management,” IEEE Access, vol. 9, pp. 109806–109821, 2021, doi: 10.1109/ACCESS.2021.3098631.
[39] V. Tomat, M. Vellei, A. P. Ramallo-González, A. González-Vidal, J. Le Dréau, and A. Skarmeta-Gómez, “Understanding patterns of thermostat overrides after demand response events,” Energy Build., vol. 271, p. 112312, Sep. 2022, doi: 10.1016/j.enbuild.2022.112312.
[40] A. Doma, M. M. Ouf, F. Amara, N. Morovat, and A. Athienitis, “Occupancy-informed predictive control strategies for enhancing the energy flexibility of grid-interactive buildings,” Energy Build., p. 115388, Jan. 2025, doi: 10.1016/j.enbuild.2025.115388.
[41] M. M. Ouf, W. O’Brien, and B. Gunay, “On quantifying building performance adaptability to variable occupancy,” Build. Environ., vol. 155, pp. 257–267, May 2019, doi: 10.1016/j.buildenv.2019.03.048.
[42] M. Kane and K. Sharma, “Data-Driven Modeling of Adaptive Occupant Thermostat Behavior Dynamics,” ASHRAE Trans., vol. 126, no. 2, pp. 123–130, Jul. 2020.
[43] S. Dabirian, K. Panchabikesan, and U. Eicker, “Occupant-centric urban building energy modeling: Approaches, inputs, and data sources - A review,” Energy Build., vol. 257, p. 111809, Feb. 2022, doi: 10.1016/j.enbuild.2021.111809.
[44] H. Saha, A. R. Florita, G. P. Henze, and S. Sarkar, “Occupancy sensing in buildings: A review of data analytics approaches,” Energy Build., vol. 188–189, pp. 278–285, Apr. 2019, doi: 10.1016/j.enbuild.2019.02.030.
[45] B. Huchuk, S. Sanner, and W. O’Brien, “Comparison of machine learning models for occupancy prediction in residential buildings using connected thermostat data,” Build. Environ., vol. 160, p. 106177, Aug. 2019, doi: 10.1016/j.buildenv.2019.106177.
[46] A. Doma and M. Ouf, “Developing Urban-Scale Markovian Occupancy Profiles for Residential Buildings Using Smart Thermostat Data,” in Proceedings of the 5th International Conference on Building Energy and Environment, L. L. Wang, H. Ge, Z. J. Zhai, D. Qi, M. Ouf, C. Sun, and D. Wang, Eds., in Environmental Science and Engineering. Singapore: Springer Nature, 2023, pp. 897–905. doi: 10.1007/978-981-19-9822-5_96.
[47] J. Y. Park et al., “A critical review of field implementations of occupant-centric building controls,” Build. Environ., vol. 165, p. 106351, Nov. 2019, doi: 10.1016/j.buildenv.2019.106351.
[48] T. Labeodan, W. Zeiler, G. Boxem, and Y. Zhao, “Occupancy measurement in commercial office buildings for demand-driven control applications—A survey and detection system evaluation,” Energy Build., vol. 93, pp. 303–314, Apr. 2015, doi: 10.1016/j.enbuild.2015.02.028.
[49] “Personal comfort models—A new paradigm in thermal comfort for occupant-centric environmental control.” Accessed: Aug. 01, 2024. [Online]. Available: https://escholarship.org/uc/item/18d174zs
[50] M. Meimand and F. Jazizadeh, “A personal touch to demand response: An occupant-centric control strategy for HVAC systems using personalized comfort models,” Energy Build., vol. 303, p. 113769, Jan. 2024, doi: 10.1016/j.enbuild.2023.113769.
[51] R. H. Dodier, G. P. Henze, D. K. Tiller, and X. Guo, “Building occupancy detection through sensor belief networks,” Energy Build., vol. 38, no. 9, pp. 1033–1043, Sep. 2006, doi: 10.1016/j.enbuild.2005.12.001.
[52] F. C. Sangogboye, K. Arendt, A. Singh, C. T. Veje, M. B. Kjærgaard, and B. N. Jørgensen, “Performance comparison of occupancy count estimation and prediction with common versus dedicated sensors for building model predictive control,” Build. Simul., vol. 10, no. 6, pp. 829–843, Dec. 2017, doi: 10.1007/s12273-017-0397-5.
[53] W. Shen, G. Newsham, and B. Gunay, “Leveraging existing occupancy-related data for optimal control of commercial office buildings: A review,” Adv. Eng. Inform., vol. 33, pp. 230–242, Aug. 2017, doi: 10.1016/j.aei.2016.12.008.
[54] B. Gunay, Z. Nagy, C. Miller, M. Ouf, and B. Dong, “Using Occupant-Centric Control for Commercial HVAC Systems,” ASHRAE J., vol. 63, no. 5, pp. 30-32,34-36,38-40, May 2021.
[55] A. Doma, S. N. Prajapati, and M. M. Ouf, “Developing a residential occupancy schedule generator based on smart thermostat data,” Build. Environ., vol. 261, p. 111713, Aug. 2024, doi: 10.1016/j.buildenv.2024.111713.
[56] J. Zhang, R. G. Lutes, G. Liu, and M. R. Brambley, “Energy Savings for Occupancy-Based Control (OBC) of Variable-Air-Volume (VAV) Systems,” PNNL-22072, 1063080, Jan. 2013. doi: 10.2172/1063080.
[57] S. S. K. Kwok and E. W. M. Lee, “A study of the importance of occupancy to building cooling load in prediction by intelligent approach,” Energy Convers. Manag., vol. 52, no. 7, pp. 2555–2564, Jul. 2011, doi: 10.1016/j.enconman.2011.02.002.
[58] R. Melfi, B. Rosenblum, B. Nordman, and K. Christensen, “Measuring building occupancy using existing network infrastructure,” in 2011 International Green Computing Conference and Workshops, Jul. 2011, pp. 1–8. doi: 10.1109/IGCC.2011.6008560.
[59] N. Alishahi, M. M. Ouf, and M. Nik-Bakht, “Using WiFi connection counts and camera-based occupancy counts to estimate and predict building occupancy,” Energy Build., vol. 257, p. 111759, Feb. 2022, doi: 10.1016/j.enbuild.2021.111759.
[60] B. Dong and K. P. Lam, “Building energy and comfort management through occupant behaviour pattern detection based on a large-scale environmental sensor network,” J. Build. Perform. Simul., vol. 4, no. 4, pp. 359–369, Dec. 2011, doi: 10.1080/19401493.2011.577810.
[61] B. W. Hobson, D. Lowcay, H. B. Gunay, A. Ashouri, and G. R. Newsham, “Opportunistic occupancy-count estimation using sensor fusion: A case study,” Build. Environ., vol. 159, p. 106154, Jul. 2019, doi: 10.1016/j.buildenv.2019.05.032.
[62] I. P. Mohottige, T. Sutjarittham, N. Raju, H. H. Gharakheili, and V. Sivaraman, “Role of Campus WiFi Infrastructure for Occupancy Monitoring in a Large University,” in 2018 IEEE International Conference on Information and Automation for Sustainability (ICIAfS), Dec. 2018, pp. 1–5. doi: 10.1109/ICIAFS.2018.8913341.
[63] M. M. Ouf, M. H. Issa, A. Azzouz, and A.-M. Sadick, “Effectiveness of using WiFi technologies to detect and predict building occupancy,” Sustain. Build., vol. 2, p. 7, 2017, doi: 10.1051/sbuild/2017005.
[64] A. Doma, F. Amara, and M. Ouf, “A Parameter-based Transfer Learning Approach for Predicting Occupancy in Institutional Buildings”.
[65] N. Alishahi, M. Nik-Bakht, and M. M. Ouf, “A framework to identify key occupancy indicators for optimizing building operation using WiFi connection count data,” Build. Environ., vol. 200, p. 107936, Aug. 2021, doi: 10.1016/j.buildenv.2021.107936.
[66] B. Gunay and M. Ouf, “Using Occupant-Centric Control for Commercial HVAC Systems”.
[67] Z. D. Tekler and A. Chong, “Occupancy prediction using deep learning approaches across multiple space types: A minimum sensing strategy,” Build. Environ., vol. 226, p. 109689, Dec. 2022, doi: 10.1016/j.buildenv.2022.109689.
[68] B. Kula, D. Mitra, Y. Chu, K. Cetin, R. Gallagher, and S. Banerji, “Laboratory testing methods to evaluate the reliability of occupancy sensors for commercial building applications,” Build. Environ., vol. 240, p. 110457, Jul. 2023, doi: 10.1016/j.buildenv.2023.110457.
[69] H. Alkhatib, P. Lemarchand, B. Norton, and D. T. J. O’Sullivan, “Deployment and control of adaptive building facades for energy generation, thermal insulation, ventilation and daylighting: A review,” Appl. Therm. Eng., vol. 185, p. 116331, Feb. 2021, doi: 10.1016/j.applthermaleng.2020.116331.
[70] A. Mirakhorli and B. Dong, “Occupant-behavior driven appliance scheduling for residential buildings,” Build. Simul., vol. 10, no. 6, pp. 917–931, Dec. 2017, doi: 10.1007/s12273-017-0402-z.
[71] R. Tang and S. Wang, “Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids,” Appl. Energy, vol. 242, pp. 873–882, May 2019, doi: 10.1016/j.apenergy.2019.03.038.
[72] B. Dong and K. P. Lam, “A real-time model predictive control for building heating and cooling systems based on the occupancy behavior pattern detection and local weather forecasting,” Build. Simul., vol. 7, no. 1, pp. 89–106, Feb. 2014, doi: 10.1007/s12273-013-0142-7.
[73] B. Dong, Z. Li, A. Taha, and N. Gatsis, “Occupancy-based buildings-to-grid integration framework for smart and connected communities,” Appl. Energy, vol. 219, pp. 123–137, Jun. 2018, doi: 10.1016/j.apenergy.2018.03.007.
[74] Z. Li and B. Dong, “A new modeling approach for short-term prediction of occupancy in residential buildings,” Build. Environ., vol. 121, pp. 277–290, Aug. 2017, doi: 10.1016/j.buildenv.2017.05.005.
[75] Z. Li and B. Dong, “Short term predictions of occupancy in commercial buildings—Performance analysis for stochastic models and machine learning approaches,” Energy Build., vol. 158, pp. 268–281, Jan. 2018, doi: 10.1016/j.enbuild.2017.09.052.
[76] H. B. Gunay, M. Ouf, G. Newsham, and W. O’Brien, “Sensitivity analysis and optimization of building operations,” Energy Build., vol. 199, pp. 164–175, Sep. 2019, doi: 10.1016/j.enbuild.2019.06.048.
[77] B. Alfalah, M. Shahrestani, and L. Shao, “Developing a Hidden Markov model for occupancy prediction in high-density higher education buildings,” J. Build. Eng., vol. 73, p. 106795, Aug. 2023, doi: 10.1016/j.jobe.2023.106795.
[78] W. Wang, J. Chen, and X. Song, “Modeling and predicting occupancy profile in office space with a Wi-Fi probe-based Dynamic Markov Time-Window Inference approach,” Build. Environ., vol. 124, pp. 130–142, Nov. 2017, doi: 10.1016/j.buildenv.2017.08.003.
[79] N. Alishahi, “Using WiFi connection counts and camera-based occupancy counts to estimate and predict building occupancy,” 2022.
[80] E. E. Dikel, J. A. Veitch, S. Mancini, H. H. Xue, and J. J. Valdés, “Lighting-on-Demand: Balancing Occupant Needs and Energy Savings,” LEUKOS, vol. 14, no. 1, pp. 3–11, Jan. 2018, doi: 10.1080/15502724.2017.1373597.
[81] B. Merema, M. Delwati, M. Sourbron, and H. Breesch, “Demand controlled ventilation (DCV) in school and office buildings: Lessons learnt from case studies,” Energy Build., vol. 172, pp. 349–360, Aug. 2018, doi: 10.1016/j.enbuild.2018.04.065.
[82] S. Zhan, B. Dong, and A. Chong, “Improving energy flexibility and PV self-consumption for a tropical net zero energy office building,” Energy Build., vol. 278, p. 112606, Jan. 2023, doi: 10.1016/j.enbuild.2022.112606.
[83] W. Liang, H. Li, S. Zhan, A. Chong, and T. Hong, “Energy flexibility quantification of a tropical net-zero office building using physically consistent neural network-based model predictive control,” Adv. Appl. Energy, vol. 14, p. 100167, Jul. 2024, doi: 10.1016/j.adapen.2024.100167.
[84] J. Malik, E. Azar, A. Mahdavi, and T. Hong, “A level-of-details framework for representing occupant behavior in agent-based models,” Autom. Constr., vol. 139, p. 104290, Jul. 2022, doi: 10.1016/j.autcon.2022.104290.
[85] OGC, “CityGML.” Accessed: May 20, 2022. [Online]. Available: https://www.ogc.org/standards/citygml
[86] OGC, “CityJSON Community Standard 1.0.” Accessed: Jun. 02, 2022. [Online]. Available: https://docs.ogc.org/cs/20-072r2/20-072r2.html
[87] NREL, “BCL.” Accessed: May 20, 2022. [Online]. Available: https://bcl.nrel.gov/
[88] Department of Energy, “Buildings Performance Database Overview,” Energy.gov. Accessed: Jun. 02, 2022. [Online]. Available: https://www.energy.gov/eere/buildings/downloads/doe-building-technologies-program
[89] F. Biljecki, H. Ledoux, and J. Stoter, “An improved LOD specification for 3D building models,” Comput. Environ. Urban Syst., vol. 59, pp. 25–37, Sep. 2016, doi: 10.1016/j.compenvurbsys.2016.04.005.
[90] A. Mathur, P. Fennell, R. Rawal, and I. Korolija, “Assessing a fit-for-purpose urban building energy modelling framework with reference to Ahmedabad,” Sci. Technol. Built Environ., vol. 27, no. 8, pp. 1075–1103, Sep. 2021, doi: 10.1080/23744731.2021.1941248.
[91] D. Robinson et al., “SUNtool – A new modelling paradigm for simulating and optimising urban sustainability,” Sol. Energy, vol. 81, no. 9, pp. 1196–1211, Sep. 2007, doi: 10.1016/j.solener.2007.06.002.
[92] 209 ASHRAE, “ASHRAE 209-2018.” Accessed: May 18, 2022. [Online]. Available: https://www.techstreet.com/standards/ashrae-209-2018?product_id=2010483
[93] NECB, “National Energy Code of Canada for Buildings: 2017 - NRC Publications Archive.” Accessed: May 19, 2022. [Online]. Available: https://nrc-publications.canada.ca/eng/view/object/?id=3eea8f31-47ef-4280-86b0-1c148744f8f1
[94] J. Li, Z. (Jerry) Yu, F. Haghighat, and G. Zhang, “Development and improvement of occupant behavior models towards realistic building performance simulation: A review,” Sustain. Cities Soc., vol. 50, p. 101685, Oct. 2019, doi: 10.1016/j.scs.2019.101685.
[95] B. Huchuk, S. Sanner, and W. O’Brien, “Comparison of machine learning models for occupancy prediction in residential buildings using connected thermostat data,” Build. Environ., vol. 160, p. 106177, Aug. 2019, doi: 10.1016/j.buildenv.2019.106177.
[96] I. Richardson, M. Thomson, and D. Infield, “A high-resolution domestic building occupancy model for energy demand simulations,” Energy Build., vol. 40, no. 8, pp. 1560–1566, Jan. 2008, doi: 10.1016/j.enbuild.2008.02.006.
[97] H. B. Gunay, W. O’Brien, I. Beausoleil-Morrison, and S. Gilani, “Development and implementation of an adaptive lighting and blinds control algorithm,” Build. Environ., vol. 113, pp. 185–199, 2017, doi: 10.1016/j.buildenv.2016.08.027.
[98] M. Schumann et al., “Multi-Agent based simulation of human activity for building and urban scale assessment of residential load curves and energy use,” in Building Simulation 2021 Conference, Bruges, Belgium, Sep. 2021. Accessed: May 19, 2022. [Online]. Available: https://hal.archives-ouvertes.fr/hal-03505242
[99] M. Osman, M. Ouf, E. Azar, and B. Dong, “Stochastic bottom-up load profile generator for Canadian households’ electricity demand,” Build. Environ., vol. 241, p. 110490, Aug. 2023, doi: 10.1016/j.buildenv.2023.110490.
[100] S. Kundu, S. Bhattacharya, H. Sharma, and V. Adetola, “Developing and Validating Semi-Markov Occupancy Generative Models: A Technical Report,” Dec. 21, 2021, arXiv: arXiv:2112.11111. Accessed: May 19, 2022. [Online]. Available: http://arxiv.org/abs/2112.11111
[101] L. Rueda, S. Sansregret, B. Le Lostec, K. Agbossou, N. Henao, and S. Kelouwani, “A Probabilistic Model to Predict Household Occupancy Profiles for Home Energy Management Applications,” IEEE Access, vol. 9, pp. 38187–38201, 2021, doi: 10.1109/ACCESS.2021.3063502.
[102] F. D. Salim et al., “Modelling urban-scale occupant behaviour, mobility, and energy in buildings: A survey,” Build. Environ., vol. 183, p. 106964, Oct. 2020, doi: 10.1016/j.buildenv.2020.106964.
[103] M. Osman and M. Ouf, “A comprehensive review of time use surveys in modelling occupant presence and behavior: Data, methods, and applications,” Build. Environ., vol. 196, p. 107785, Jun. 2021, doi: 10.1016/j.buildenv.2021.107785.
[104] Ecobee Inc., “Donate Your Data | ecobee.” Accessed: Dec. 02, 2023. [Online]. Available: https://www.ecobee.com/en-ca/donate-your-data/
[105] W. Wu et al., “A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption,” Appl. Energy, vol. 278, p. 115656, Nov. 2020, doi: 10.1016/j.apenergy.2020.115656.
[106] G. Happle, J. A. Fonseca, and A. Schlueter, “Context-specific urban occupancy modeling using location-based services data,” Build. Environ., vol. 175, p. 106803, May 2020, doi: 10.1016/j.buildenv.2020.106803.
[107] G. Happle, J. A. Fonseca, and A. Schlueter, “Impacts of diversity in commercial building occupancy profiles on district energy demand and supply,” Appl. Energy, vol. 277, p. 115594, Nov. 2020, doi: 10.1016/j.apenergy.2020.115594.
[108] R. El Kontar, J. Wang, X. Jin, J. King, and T. Rakha, “Probabilistic Modeling of Commercial Building Occupancy Patterns Using Location-Based Map Data,” p. NREL/CP-5500-83345, 2022.
[109] U. Ali, M. H. Shamsi, C. Hoare, E. Mangina, and J. O’Donnell, “Review of urban building energy modeling (UBEM) approaches, methods and tools using qualitative and quantitative analysis,” Energy Build., vol. 246, p. 111073, Sep. 2021, doi: 10.1016/j.enbuild.2021.111073.
[110] T. Hong, Y. Chen, S. H. Lee, and M. Piette, CityBES: A Web-based Platform to Support City-Scale Building Energy Efficiency. 2016.
[111] P. Remmen, M. Lauster, M. Mans, M. Fuchs, T. Osterhage, and D. Müller, “TEASER: an open tool for urban energy modelling of building stocks,” J. Build. Perform. Simul., vol. 11, no. 1, pp. 84–98, Jan. 2018, doi: 10.1080/19401493.2017.1283539.
[112] C. F. Reinhart, T. Dogan, J. A. Jakubiec, T. Rakha, and A. Sang, “Umi – an urban simulation environment for building energy use, daylighting and walkability.” Accessed: Jun. 02, 2022. [Online]. Available: https://www.academia.edu/7835716/Umi_an_urban_simulation_environment_for_building_energy_use_daylighting_and_walkability?from=cover_page
[113] M. Schweiker, W. O’Brien, and H. B. Gunay, “Characterization of occupant behaviour models for simulation engineers and architects,” presented at the IPSA, 2019.
[114] I. Gaetani, P.-J. Hoes, and J. L. M. Hensen, “Occupant behavior in building energy simulation: Towards a fit-for-purpose modeling strategy,” Energy Build., vol. 121, pp. 188–204, Jun. 2016, doi: 10.1016/j.enbuild.2016.03.038.
[115] “overview-hydro-quebec-energy-resources-2022-2032.pdf.” Accessed: Nov. 27, 2023. [Online]. Available: https://www.hydroquebec.com/data/achats-electricite-quebec/pdf/overview-hydro-quebec-energy-resources-2022-2032.pdf
[116] “Demand Response (DR) Option | Hydro-Québec.” Accessed: Dec. 01, 2023. [Online]. Available: https://www.hydroquebec.com/business/customer-space/rates/demand-response-option.html
[117] A. Doma and M. Ouf, “Modelling occupant behaviour for urban scale simulation: Review of available approaches and tools,” Build. Simul., vol. 16, no. 2, pp. 169–184, Feb. 2023, doi: 10.1007/s12273-022-0939-3.
[118] T. Hong, Y. Chen, X. Luo, N. Luo, and S. H. Lee, “Ten questions on urban building energy modeling,” Build. Environ., vol. 168, p. 106508, Jan. 2020, doi: 10.1016/j.buildenv.2019.106508.
[119] W. Shen, G. Newsham, and B. Gunay, “Leveraging existing occupancy-related data for optimal control of commercial office buildings: A review,” Adv. Eng. Inform., vol. 33, pp. 230–242, Aug. 2017, doi: 10.1016/j.aei.2016.12.008.
[120] K. Sun, Q. Zhao, and J. Zou, “A review of building occupancy measurement systems,” Energy Build., vol. 216, p. 109965, Jun. 2020, doi: 10.1016/j.enbuild.2020.109965.
[121] B. W. Hobson, D. Lowcay, H. B. Gunay, A. Ashouri, and G. R. Newsham, “Opportunistic occupancy-count estimation using sensor fusion: A case study,” Build. Environ., vol. 159, p. 106154, Jul. 2019, doi: 10.1016/j.buildenv.2019.05.032.
[122] D. Sheikh Khan, J. Kolarik, C. Anker Hviid, and P. Weitzmann, “Method for long-term mapping of occupancy patterns in open-plan and single office spaces by using passive-infrared (PIR) sensors mounted below desks,” Energy Build., vol. 230, p. 110534, Jan. 2021, doi: 10.1016/j.enbuild.2020.110534.
[123] H. Stopps and M. F. Touchie, “Residential smart thermostat use: An exploration of thermostat programming, environmental attitudes, and the influence of smart controls on energy savings,” Energy Build., vol. 238, p. 110834, May 2021, doi: 10.1016/j.enbuild.2021.110834.
[124] B. James Huchuk, S. Sanner, and W. O’Brien, “Short-Horizon Probabilistic Models For Whole Home Motion Prediction Using Connected Thermostat Data,” presented at the Building Simulation 2019, in Building Simulation, vol. 16. IBPSA, 2019, pp. 2286–2293. doi: 10.26868/25222708.2019.210869.
[125] “Synthesizing residential load profiles using behavior simulation,” Energy Procedia, vol. 122, pp. 655–660, Sep. 2017, doi: 10.1016/j.egypro.2017.07.365.
[126] “General Social Survey – Public Use Microdata Files.” Accessed: Dec. 11, 2023. [Online]. Available: https://www150.statcan.gc.ca/n1/en/catalogue/45250001
[127] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other,” Ann. Math. Stat., vol. 18, no. 1, pp. 50–60, Mar. 1947, doi: 10.1214/aoms/1177730491.
[128] B. Huchuk, S. Sanner, and W. O’Brien, “Comparison of machine learning models for occupancy prediction in residential buildings using connected thermostat data,” Build. Environ., vol. 160, p. 106177, Aug. 2019, doi: 10.1016/j.buildenv.2019.106177.
[129] A. Rana et al., “Energy efficiency in residential buildings amid COVID-19: A holistic comparative analysis between old and new normal occupancies,” Energy Build., vol. 277, p. 112551, Dec. 2022, doi: 10.1016/j.enbuild.2022.112551.
[130] E. Kawka and K. Cetin, “Impacts of COVID-19 on residential building energy use and performance,” Build. Environ., vol. 205, p. 108200, Nov. 2021, doi: 10.1016/j.buildenv.2021.108200.
[131] D. Mitra, Y. Chu, and K. Cetin, “COVID-19 impacts on residential occupancy schedules and activities in U.S. Homes in 2020 using ATUS,” Appl. Energy, vol. 324, p. 119765, Oct. 2022, doi: 10.1016/j.apenergy.2022.119765.
[132] Dunsky and Canadian Renewable Energy Association, “BTMSolar_CdnMarketOutlook_Oct2023_CanREA_Dunsky-ExecSummary.pdf.” Accessed: Feb. 24, 2025. [Online]. Available: https://renewablesassociation.ca/wp-content/uploads/2023/12/BTMSolar_CdnMarketOutlook_Oct2023_CanREA_Dunsky-ExecSummary.pdf
[133] L. Tronchin, M. Manfren, and B. Nastasi, “Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment,” Renew. Sustain. Energy Rev., vol. 95, pp. 341–353, Nov. 2018, doi: 10.1016/j.rser.2018.06.060.
[134] H. S. Chang and Y. Hsing, “The demand for residential electricity: new evidence on time-varying elasticities,” Appl. Econ., vol. 23, no. 7, pp. 1251–1256, Jul. 1991, doi: 10.1080/00036849100000165.
[135] M. Miri and M. McPherson, “Demand response programs: Comparing price signals and direct load control,” Energy, vol. 288, p. 129673, Feb. 2024, doi: 10.1016/j.energy.2023.129673.
[136] M. H. Albadi and E. F. El-Saadany, “Demand Response in Electricity Markets: An Overview,” in 2007 IEEE Power Engineering Society General Meeting, Jun. 2007, pp. 1–5. doi: 10.1109/PES.2007.385728.
[137] F. Pallonetto, M. De Rosa, F. D’Ettorre, and D. P. Finn, “On the assessment and control optimisation of demand response programs in residential buildings,” Renew. Sustain. Energy Rev., vol. 127, p. 109861, Jul. 2020, doi: 10.1016/j.rser.2020.109861.
[138] Z. Khorasani Zadeh, M. Ouf, B. Gunay, B. Delcroix, G. Larochelle Martin, and A. Daoud, “Development of prediction models for thermostat override behavior in direct load control events,” Energy Build., vol. 301, p. 113707, Dec. 2023, doi: 10.1016/j.enbuild.2023.113707.
[139] M. Osman, M. M. Saad, M. Ouf, and U. Eicker, “From buildings to cities: How household demographics shape demand response and energy consumption,” Appl. Energy, vol. 356, p. 122359, Feb. 2024, doi: 10.1016/j.apenergy.2023.122359.
[140] A. Doma, R. Padsala, M. M. Ouf, and U. Eicker, “Bottom-up framework for modelling occupancy-based demand-side management strategies in a mixed-use district,” Appl. Energy, vol. 375, p. 124081, Dec. 2024, doi: 10.1016/j.apenergy.2024.124081.
[141] B. Mota, P. Faria, and Z. Vale, “Residential load shifting in demand response events for bill reduction using a genetic algorithm,” Energy, vol. 260, p. 124978, Dec. 2022, doi: 10.1016/j.energy.2022.124978.
[142] M. I. El-Afifi, B. E. Sedhom, A. A. Eladl, M. Elgamal, and P. Siano, “Demand side management strategy for smart building using multi-objective hybrid optimization technique,” Results Eng., vol. 22, p. 102265, Jun. 2024, doi: 10.1016/j.rineng.2024.102265.
[143] A. Sridhar, S. Honkapuro, F. Ruiz, B. Mohammadi-Ivatloo, S. Annala, and A. Wolff, “Aggregator decision analysis in residential demand response under uncertain consumer behavior,” J. Clean. Prod., vol. 495, p. 144997, Mar. 2025, doi: 10.1016/j.jclepro.2025.144997.
[144] S. C. Government of Canada, “Time Use Survey (TUS).” Accessed: Feb. 27, 2025. [Online]. Available: https://www.statcan.gc.ca/en/survey/household/4503
[145] A. Doma, AyaDoma/OccupancyScheduleGenerator-OSG-. (Feb. 06, 2024). Python. Accessed: Feb. 09, 2024. [Online]. Available: https://github.com/AyaDoma/OccupancyScheduleGenerator-OSG-
[146] M. Osman and M. M. Ouf, “How Do Household Characteristics Affect Urban Occupancy Schedules? A Case Study Using Canadian Time Use Survey Data - ProQuest.” Accessed: Mar. 03, 2025. [Online]. Available: https://www.proquest.com/openview/32616e29e6d775293e3260f9184673ec/1?pq-origsite=gscholar&cbl=34619
[147] Hydro Quebec, “Offers to save this winter | Hydro-Québec.” Accessed: Mar. 04, 2025. [Online]. Available: https://www.hydroquebec.com/residentiel/mieux-consommer/offres-pour-economiser-cet-hiver/index.html
[148] Z. Khorasani Zadeh and M. M. Ouf, “A simulation-based framework to optimize occupant-centric controls given stochastic occupant behaviour,” Build. Environ., vol. 219, p. 109144, Jul. 2022, doi: 10.1016/j.buildenv.2022.109144.
[149] M. M. Ouf, J. Y. Park, and H. B. Gunay, “A simulation-based method to investigate occupant-centric controls,” Build. Simul., vol. 14, no. 4, pp. 1017–1030, Aug. 2021, doi: 10.1007/s12273-020-0726-y.
[150] S. Huang and D. Wu, “Validation on aggregate flexibility from residential air conditioning systems for building-to-grid integration,” Energy Build., vol. 200, pp. 58–67, Oct. 2019, doi: 10.1016/j.enbuild.2019.07.043.
[151] C. F. Reinhart and C. Cerezo Davila, “Urban building energy modeling – A review of a nascent field,” Build. Environ., vol. 97, pp. 196–202, Feb. 2016, doi: 10.1016/j.buildenv.2015.12.001.
[152] B. Bass, J. New, N. Clinton, M. Adams, B. Copeland, and C. Amoo, “How close are urban scale building simulations to measured data? Examining bias derived from building metadata in urban building energy modeling,” Appl. Energy, vol. 327, p. 120049, Dec. 2022, doi: 10.1016/j.apenergy.2022.120049.
[153] P. Borges, A. Pages-Ramon, and O. Travesset-Baro, “Quantifying Input Parameters Influence in UBEM Simulation Results: The Window-to-Wall Ratio Case,” in Sustainability in Energy and Buildings 2023, J. R. Littlewood, L. Jain, and R. J. Howlett, Eds., Singapore: Springer Nature, 2024, pp. 673–683. doi: 10.1007/978-981-99-8501-2_58.
[154] B. Dong, Z. Li, A. Taha, and N. Gatsis, “Occupancy-based buildings-to-grid integration framework for smart and connected communities,” Appl. Energy, vol. 219, pp. 123–137, Jun. 2018, doi: 10.1016/j.apenergy.2018.03.007.
[155] W. Wu et al., “A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption,” Appl. Energy, vol. 278, p. 115656, Nov. 2020, doi: 10.1016/j.apenergy.2020.115656.
[156] “Advan data for academics.” Accessed: Nov. 09, 2023. [Online]. Available: https://www.deweydata.io/data-partners/advan
[157] SafeGraph Inc., “Weekly Patterns | SafeGraph Docs.” Accessed: Mar. 20, 2023. [Online]. Available: https://docs.safegraph.com/docs/weekly-patterns
[158] m-wrzr, Populartimes. (Nov. 05, 2023). Python. Accessed: Nov. 19, 2023. [Online]. Available: https://github.com/m-wrzr/populartimes
[159] “Dewey Community - Academic research data community,” Dewey Community. Accessed: Jul. 16, 2024. [Online]. Available: https://community.deweydata.io/
[160] “A python library for reading data from Statistics Canada — stats_can documentation.” Accessed: Nov. 09, 2023. [Online]. Available: https://stats-can.readthedocs.io/en/latest/
[161] “Ladybug Tools | Dragonfly.” Accessed: Nov. 24, 2023. [Online]. Available: https://www.ladybug.tools/dragonfly.html
[162] “City Layers.” Accessed: Nov. 19, 2023. [Online]. Available: https://citylayers.ca/
[163] S. S. Abolhassani, M. Amayri, N. Bouguila, and U. Eicker, “A new workflow for detailed urban scale building energy modeling using spatial joining of attributes for archetype selection,” J. Build. Eng., vol. 46, p. 103661, Apr. 2022, doi: 10.1016/j.jobe.2021.103661.
[164] NRCan, Building Technology Assessment Platform (BTAP). (Apr. 11, 2023). HTML. canmet-energy. Accessed: Apr. 12, 2023. [Online]. Available: https://github.com/canmet-energy/btap
[165] “Home,” [“URBANopt Docs”]. Accessed: Nov. 19, 2023. [Online]. Available: https://docs.urbanopt.net/
[166] C. B. C. News ·, “Hydro-Québec expects record demand as extreme cold spell looms | CBC News,” CBC. Accessed: Nov. 19, 2023. [Online]. Available: https://www.cbc.ca/news/canada/montreal/hydro-quebec-electricity-cold-demand-1.6734646
[167] K. Gaspar et al., “Assessing the impact of the COVID-19 lockdown on the energy consumption of university buildings,” Energy Build., vol. 257, p. 111783, Feb. 2022, doi: 10.1016/j.enbuild.2021.111783.
[168] “Cuebiq Group, LLC | A Trusted Catalyst Leading Location Intelligence.” Accessed: Feb. 21, 2025. [Online]. Available: https://cuebiq.com/
[169] S. Balasubramanian and P. Balachandra, “Effectiveness of demand response in achieving supply-demand matching in a renewables dominated electricity system: A modelling approach,” Renew. Sustain. Energy Rev., vol. 147, p. 111245, Sep. 2021, doi: 10.1016/j.rser.2021.111245.
[170] A. Kathirgamanathan, M. De Rosa, E. Mangina, and D. P. Finn, “Data-driven predictive control for unlocking building energy flexibility: A review,” Renew. Sustain. Energy Rev., vol. 135, p. 110120, Jan. 2021, doi: 10.1016/j.rser.2020.110120.
[171] M. G. Patterson, “What is energy efficiency?: Concepts, indicators and methodological issues,” Energy Policy, vol. 24, no. 5, pp. 377–390, May 1996, doi: 10.1016/0301-4215(96)00017-1.
[172] W. O’Brien et al., “Introducing IEA EBC annex 79: Key challenges and opportunities in the field of occupant-centric building design and operation,” Build. Environ., vol. 178, p. 106738, Jul. 2020, doi: 10.1016/j.buildenv.2020.106738.
[173] M. Yin, H. Cai, A. Gattiglio, F. Khayatian, R. S. Smith, and P. Heer, “Data-driven predictive control for demand side management: Theoretical and experimental results,” Appl. Energy, vol. 353, p. 122101, Jan. 2024, doi: 10.1016/j.apenergy.2023.122101.
[174] N. Morovat, A. K. Athienitis, J. A. Candanedo, and H. F. Nouanegue, “Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building,” Energy, vol. 296, p. 131126, Jun. 2024, doi: 10.1016/j.energy.2024.131126.
[175] Y. Ding, Y. Lyu, S. Lu, and R. Wang, “Load shifting potential assessment of building thermal storage performance for building design,” Energy, vol. 243, p. 123036, Mar. 2022, doi: 10.1016/j.energy.2021.123036.
[176] S. Yang, H. Oliver Gao, and F. You, “Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage,” Appl. Energy, vol. 327, p. 120054, Dec. 2022, doi: 10.1016/j.apenergy.2022.120054.
[177] “Places Data Schema,” SafeGraph. Accessed: Jul. 16, 2024. [Online]. Available: https://docs.safegraph.com/docs/about-safegraph
[178] T. C. Nokeri, “Forecasting Using ARIMA, SARIMA, and the Additive Model,” in Implementing Machine Learning for Finance: A Systematic Approach to Predictive Risk and Performance Analysis for Investment Portfolios, T. C. Nokeri, Ed., Berkeley, CA: Apress, 2021, pp. 21–50. doi: 10.1007/978-1-4842-7110-0_2.
[179] “Control-Oriented Thermal Modeling of Multizone Buildings: Methods and Issues: Intelligent Control of a Building System | IEEE Journals & Magazine | IEEE Xplore.” Accessed: Jul. 31, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/7470638
[180] V. Dermardiros, A. K. Athienitis, and S. Bucking, “Energy Performance, Comfort, and Lessons Learned from an Institutional Building Designed for Net Zero Energy,” vol. 125.
[181] E. Jalilov, “Development of Heuristic Model-Based Predictive Control Strategies for an Institutional Net- Zero Energy Building”.
[182] A. Maturo, C. Vallianos, A. Buonomano, and A. Athienitis, “A novel multi-level predictive management strategy to optimize phase-change energy storage and building-integrated renewable technologies operation under dynamic tariffs,” Energy Convers. Manag., vol. 291, p. 117220, Sep. 2023, doi: 10.1016/j.enconman.2023.117220.
[183] “minimize — SciPy v1.14.0 Manual.” Accessed: Jul. 31, 2024. [Online]. Available: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
[184] “Welcome to CVXPY 1.5 — CVXPY 1.5 documentation.” Accessed: Aug. 13, 2024. [Online]. Available: https://www.cvxpy.org/
[185] N. G. Paterakis, O. Erdinç, and J. P. S. Catalão, “An overview of Demand Response: Key-elements and international experience,” Renew. Sustain. Energy Rev., vol. 69, pp. 871–891, Mar. 2017, doi: 10.1016/j.rser.2016.11.167.
[186] R. Li et al., “Ten questions concerning energy flexibility in buildings,” Build. Environ., vol. 223, p. 109461, Sep. 2022, doi: 10.1016/j.buildenv.2022.109461.
[187] T. Couture and Y. Gagnon, “An analysis of feed-in tariff remuneration models: Implications for renewable energy investment,” Energy Policy, vol. 38, no. 2, pp. 955–965, Feb. 2010, doi: 10.1016/j.enpol.2009.10.047.
[188] P. Sun and P. Nie, “A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry,” Renew. Energy, vol. 74, pp. 255–262, Feb. 2015, doi: 10.1016/j.renene.2014.08.027.
[189] J. An, M. Lee, S. Yeom, and T. Hong, “Determining the Peer-to-Peer electricity trading price and strategy for energy prosumers and consumers within a microgrid,” Appl. Energy, vol. 261, p. 114335, Mar. 2020, doi: 10.1016/j.apenergy.2019.114335.
[190] Y. Liu, L. Wu, and J. Li, “Peer-to-peer (P2P) electricity trading in distribution systems of the future,” Electr. J., vol. 32, no. 4, pp. 2–6, May 2019, doi: 10.1016/j.tej.2019.03.002.
[191] Q. Chen, X. Li, H. Gao, and J. Liu, “P2P Trading Framework Design for Distributed Renewable Resources,” in 2023 Panda Forum on Power and Energy (PandaFPE), Apr. 2023, pp. 666–670. doi: 10.1109/PandaFPE57779.2023.10141232.
[192] “Distributed transactive energy trading framework in distribution networks | IEEE Journals & Magazine | IEEE Xplore.” Accessed: Feb. 04, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/8409328
[193] “Consensus-Based Approach to Peer-to-Peer Electricity Markets With Product Differentiation | IEEE Journals & Magazine | IEEE Xplore.” Accessed: Feb. 04, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/8481579
[194] “Peer-to-Peer Trading in Electricity Networks: An Overview | IEEE Journals & Magazine | IEEE Xplore.” Accessed: Feb. 04, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/8972609
[195] C. Ying, Y. Zou, and Y. Xu, “Decentralized energy management of a hybrid building cluster via peer-to-peer transactive energy trading,” Appl. Energy, vol. 372, p. 123803, Oct. 2024, doi: 10.1016/j.apenergy.2024.123803.
[196] N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei, “Energy-Sharing Model With Price-Based Demand Response for Microgrids of Peer-to-Peer Prosumers,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3569–3583, Sep. 2017, doi: 10.1109/TPWRS.2017.2649558.
[197] A. Maturo, A. Buonomano, and A. Athienitis, “Optimizing energy flexibility through electricity price-responsiveness and thermal load management in buildings with convective and radiant heating systems,” Energy Build., vol. 331, p. 115355, Mar. 2025, doi: 10.1016/j.enbuild.2025.115355.
[198] “Self-generation | Hydro-Québec.” Accessed: Feb. 05, 2025. [Online]. Available: https://www.hydroquebec.com/self-generation/faq.html?utm_source=chatgpt.com
[199] “Peer-to-Peer Transactive Energy Trading of a Reconfigurable Multi-Energy Network | IEEE Journals & Magazine | IEEE Xplore.” Accessed: Feb. 04, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/9955993
[200] Y. Zhou, J. Wu, C. Long, and W. Ming, “State-of-the-Art Analysis and Perspectives for Peer-to-Peer Energy Trading,” Engineering, vol. 6, no. 7, pp. 739–753, Jul. 2020, doi: 10.1016/j.eng.2020.06.002.
[201] S. P. S. Mathur, A. Arya, and M. Dubey, “A review on bidding strategies and market power in a competitive energy market,” in 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Aug. 2017, pp. 1370–1375. doi: 10.1109/ICECDS.2017.8389668.
[202] G. Iazzolino, N. Sorrentino, D. Menniti, A. Pinnarelli, M. De Carolis, and L. Mendicino, “Energy communities and key features emerged from business models review,” Energy Policy, vol. 165, p. 112929, Jun. 2022, doi: 10.1016/j.enpol.2022.112929.
[203] E. A. Soto, L. B. Bosman, E. Wollega, and W. D. Leon-Salas, “Peer-to-peer energy trading: A review of the literature,” Appl. Energy, vol. 283, p. 116268, Feb. 2021, doi: 10.1016/j.apenergy.2020.116268.
[204] “Renewables 2018 - Global status report. A comprehensive annual overview of the state of renewable energy. Advancing the global renewable energy transition - Highlights of the REN21 Renewables 2018 Global Status Report in perspective”, Accessed: Mar. 18, 2025. [Online]. Available: https://inis.iaea.org/records/yy4gh-gbw84
[205] “Net Metering Option I for Customer-Generators,” Hydro-Québec. Accessed: Mar. 18, 2025. [Online]. Available: https://www.hydroquebec.com/residential/customer-space/rates/net-metering-option-i.html
[206] J. Iria and F. Soares, “An energy-as-a-service business model for aggregators of prosumers,” Appl. Energy, vol. 347, p. 121487, Oct. 2023, doi: 10.1016/j.apenergy.2023.121487.
[207] “PVWatts Calculator.” Accessed: Oct. 18, 2024. [Online]. Available: https://pvwatts.nrel.gov/
[208] Z. Khorasani Zadeh, Ouf ,M., Gunay ,B., Delcroix ,B., and G. and Larochelle Martin, “Modelling thermostat use behaviour in multi-zone residential buildings: a real-world data study and simulation framework for peak demand management,” J. Build. Perform. Simul., vol. 0, no. 0, pp. 1–20, Sep. 2023, doi: 10.1080/19401493.2025.2474043.
[209] F. Alfaverh, M. Denai, and Y. Sun, “A Dynamic Peer-to-Peer Electricity Market Model for a Community Microgrid With Price-Based Demand Response,” IEEE Trans. Smart Grid, vol. 14, no. 5, pp. 3976–3991, Sep. 2023, doi: 10.1109/TSG.2023.3246083.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top