Lyu, Linxiang
ORCID: https://orcid.org/0009-0003-2800-0491
(2025)
Assessing the Environmental Impacts of Plastic Materials: A Step Towards Sustainable Materials and Eco-Friendly Products.
PhD thesis, Concordia University.
Text (application/pdf)
10MBLyu_PhD_F2025.pdf - Accepted Version Restricted to Repository staff only until 1 September 2027. Available under License Spectrum Terms of Access. |
Abstract
The unprecedented surge in disposable face mask consumption during the COVID-19 pandemic has led to the accumulation of substantial plastic waste, posing significant environmental and ecological challenges, particularly due to the reliance on non-biodegradable polypropylene (PP) materials. However, the long-term environmental behavior and degradation pathways of these masks remain poorly understood, comparative evaluations of biodegradable alternatives such as polylactic acid (PLA) are still limited, and effective strategies for identifying and implementing sustainable material alternatives are still lacking. This dissertation presents a comprehensive, multi-phase investigation into the environmental impact, available material alternatives, and predictive evaluation frameworks for single-use face masks, facilitating the transition toward sustainable personal protective equipment (PPE) solutions.
The degradation behavior of PP-based masks in simulated landfill leachate environments was studied. The results revealed that PP masks experience rapid structural deterioration and release quantities of microplastics (MPs) and metal elements, raising concerns about long-term ecological toxicity. In addition, to address these issues, biodegradable polymer PLA was proposed as a sustainable alternative to be further investigated. A full life cycle assessment (LCA) comparing PP and PLA masks was systematically conducted, encompassing raw material extraction, production, packaging, transportation, and end-of-life management. Results indicate that PLA masks produce approximately 37% lower greenhouse gas emissions and generally outperform PP masks in several key environmental impact categories, particularly global warming potential and fossil resource depletion. To further validate the environmental suitability of PLA, laboratory-scale degradation experiments were carried out under diverse environmental conditions, including exposure to ultraviolet (UV) radiation, landfill leachate, seawater, and enzymatic environments. These results revealed that PLA degrades primarily through hydrolysis, with significant differences in degradation rates across environments and material layers. PLA masks released significantly fewer microparticles than PP masks, suggesting a significantly reduced risk of persistent pollution.
Building on these findings, the final phase of this study introduces a novel predictive screening framework that integrates multi-criteria decision analysis (MCDA) and machine learning (ML). The model uses material-level properties—such as molecular weight and functional group composition—to predict degradation performance and rank candidate materials in terms of environmental suitability. The framework enables rapid, early-stage screening of novel materials without requiring extensive laboratory experimentation, thus providing a scalable tool for sustainable material development and selection. In summary, this dissertation bridges environmental risk assessment, life cycle-based decision-making, and data-driven prediction to provide a holistic strategy for assessing and guiding the transition toward usage and development of sustainable raw materials for mask production.
| Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Building, Civil and Environmental Engineering |
|---|---|
| Item Type: | Thesis (PhD) |
| Authors: | Lyu, Linxiang |
| Institution: | Concordia University |
| Degree Name: | Ph. D. |
| Program: | Civil Engineering |
| Date: | 5 July 2025 |
| Thesis Supervisor(s): | An, Chunjiang and Bagchi, Monisha |
| Keywords: | Plastic materials; Degradation; LCA; Machine Learning; Microplastic |
| ID Code: | 996187 |
| Deposited By: | Linxiang Lyu |
| Deposited On: | 04 Nov 2025 15:31 |
| Last Modified: | 04 Nov 2025 15:31 |
References:
A Lucre Musket Ltd, n.d. Face Mask PPE Zero Waste Recycle Program. Face Mask Store. https://thefacemaskstore.co.uk/face-mask-ppe-zero-waste-recycle-program/ (accessed 7.22.23).Accinelli, C., Saccà, M.L., Mencarelli, M., Vicari, A., 2012. Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative. Chemosphere 89, 136–143. https://doi.org/10.1016/j.chemosphere.2012.05.028
Adanur, S., Jayswal, A., 2022. Filtration mechanisms and manufacturing methods of face masks: an overview. J. Ind. Text. 51, 3683S-3717S. https://doi.org/10.1177/1528083720980169
Adusei-Gyamfi, J., Boateng, K.S., Sulemana, A., Hogarh, J.N., 2022. Post COVID-19 recovery: Challenges and opportunities for solid waste management in Africa. Environ. Chall. 6, 100442. https://doi.org/10.1016/j.envc.2022.100442
Aftab, B., Shin, H.-S., Hur, J., 2018. Exploring the fate and oxidation behaviors of different organic constituents in landfill leachate upon Fenton oxidation processes using EEM-PARAFAC and 2D-COS-FTIR. J. Hazard. Mater. 354, 33–41. https://doi.org/10.1016/j.jhazmat.2018.04.059
Ahlstrom-Munksjö’s new face mask fabrics are advancing product functionality and sustainability. Ahlstrom. http://www.ahlstrom.com/Media/articles/ahlstrom-munkjos-new-face-mask-fabrics-are-advancing-product-functionality-and-sustainability/ (accessed 1.5.23).
Ahmad, J., Zhou, Z., 2022. Mechanical properties of natural as well as synthetic fiber reinforced concrete: a review. Constr. Build. Mater. 333, 127353. https://doi.org/10.1016/j.conbuildmat.2022.127353
Akarsu, C., Madenli, Ö., Deveci, E.Ü., 2021. Characterization of littered face masks in the southeastern part of Turkey. Environ. Sci. Pollut. Res. 28, 47517–47527. https://doi.org/10.1007/s11356-021-14099-8
Akhir, M.A.M., Zubir, S.A., Mariatti, J., 2022. Effect of different starch contents on physical, morphological, mechanical, barrier, and biodegradation properties of tapioca starch and poly(butylene adipate-co-terephthalate) blend film. Polym. Adv. Technol. 34, 717–730. https://doi.org/10.1002/pat.5922
Alassali, A., Fiore, S., Kuchta, K., 2018. Assessment of plastic waste materials degradation through near infrared spectroscopy. Waste Manag. 82, 71–81. https://doi.org/10.1016/j.wasman.2018.10.010
Ali, Sameh S., Elsamahy, T., Al-Tohamy, R., Zhu, D., Mahmoud, Y.A.-G., Koutra, E., Metwally, M.A., Kornaros, M., Sun, J., 2021. Plastic wastes biodegradation: mechanisms, challenges and future prospects. Sci. Total Environ. 780, 146590. https://doi.org/10.1016/j.scitotenv.2021.146590
Ali, Sameh Samir, Elsamahy, T., Koutra, E., Kornaros, M., El-Sheekh, M., Abdelkarim, E.A., Zhu, D., Sun, J., 2021. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Sci. Total Environ. 771, 144719. https://doi.org/10.1016/j.scitotenv.2020.144719
Alimuzzaman, S., Gong, R. h., Akonda, M., 2014. Biodegradability of nonwoven flax fiber reinforced polylactic acid biocomposites. Polym. Compos. 35, 2094–2102. https://doi.org/10.1002/pc.22871
Al-Malack, M.H., 2001. Migration of lead from unplasticized polyvinyl chloride pipes. J. Hazard. Mater. 82, 263–274. https://doi.org/10.1016/S0304-3894(00)00366-6
Alprol, A.E., Gaballah, M.S., Hassaan, M.A., 2021. Micro and nanoplastics analysis: Focus on their classification, sources, and impacts in marine environment. Reg. Stud. Mar. Sci. 42, 101625. https://doi.org/10.1016/j.rsma.2021.101625
Al-Salem, S.M., Al-Hazza’a, A., Karam, H.J., Al-Wadi, M.H., Al-Dhafeeri, A.T., Al-Rowaih, A.A., 2019. Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene (PE) thin films. J. Environ. Manage. 250, 109475. https://doi.org/10.1016/j.jenvman.2019.109475
Al-Salem, S.M., Leeke, G.A., El-Eskandarany, M.S., Van Haute, M., Constantinou, A., Dewil, R., Baeyens, J., 2022. On the implementation of the circular economy route for E-waste management: A critical review and an analysis for the case of the state of Kuwait. J. Environ. Manage. 323, 116181. https://doi.org/10.1016/j.jenvman.2022.116181
Alshabanat, M., 2019. Morphological, thermal, and biodegradation properties of LLDPE/treated date palm waste composite buried in a soil environment. J. Saudi Chem. Soc. 23, 355–364. https://doi.org/10.1016/j.jscs.2018.08.008
Al-Tohamy, R., Ali, S.S., Zhang, M., Elsamahy, T., Abdelkarim, E.A., Jiao, H., Sun, S., Sun, J., 2023. Environmental and human health impact of disposable face masks during the COVID-19 pandemic: Wood-feeding termites as a model for plastic biodegradation. Appl. Biochem. Biotechnol. 195, 2093–2113. https://doi.org/10.1007/s12010-022-04216-9
Amanatidou, E., Samiotis, G., Trikoilidou, E., Tsikritzis, L., Taousanidis, N., 2023. Centennial assessment of greenhouse gases emissions of young and old hydroelectric reservoir in mediterranean mainland. J. Environ. Inform. 41, 27–36.
Amenaghawon, A.N., Anyalewechi, C.L., Okieimen, C.O., Kusuma, H.S., 2021. Biomass pyrolysis technologies for value-added products: a state-of-the-art review. Environ. Dev. Sustain. 23, 14324–14378. https://doi.org/10.1007/s10668-021-01276-5
Amin, A., Altinoz, B., Dogan, E., 2020. Analyzing the determinants of carbon emissions from transportation in European countries: the role of renewable energy and urbanization. Clean Technol. Environ. Policy 22, 1725–1734. https://doi.org/10.1007/s10098-020-01910-2
Ammendolia, J., Saturno, J., Brooks, A.L., Jacobs, S., Jambeck, J.R., 2021. An emerging source of plastic pollution: Environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city. Environ. Pollut. 269, 116160. https://doi.org/10.1016/j.envpol.2020.116160
Andooz, A., Eqbalpour, M., Kowsari, E., Ramakrishna, S., Ansari Cheshmeh, Z., 2023. A comprehensive review on pyrolysis from the circular economy point of view and its environmental and social effects. J. Clean. Prod. 388, 136021. https://doi.org/10.1016/j.jclepro.2023.136021
Ansell, L., Valle, L.D., 2022. Social media integration of flood data: A vine copula-based approach. J. Environ. Inform. 39, 97–110. https://doi.org/10.3808/jei.202200471
Aragaw, T.A., 2020. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar. Pollut. Bull. 159, 111517. https://doi.org/10.1016/j.marpolbul.2020.111517
Archana, K.M., Rajagopal, R., Krishnaswamy, V.G., Aishwarya, S., 2021. Application of green synthesised copper iodide particles on cotton fabric-protective face mask material against COVID-19 pandemic. J. Mater. Res. Technol. 15, 2102–2116. https://doi.org/10.1016/j.jmrt.2021.09.020
Armentano, I., Barbanera, M., Carota, E., Crognale, S., Marconi, M., Rossi, S., Rubino, G., Scungio, M., Taborri, J., Calabrò, G., 2021. Polymer materials for respiratory protection: processing, end use, and testing methods. ACS Appl. Polym. Mater. 3, 531–548. https://doi.org/10.1021/acsapm.0c01151
Artru, M., Lecerf, A., 2019. Slow degradation of compostable plastic carrier bags in a stream and its riparian area. Ann. Limnol. - Int. J. Limnol. 55, 18. https://doi.org/10.1051/limn/2019017
Asif, S., Wenhui, Y., ur-Rehman, S.-, Ul-Ain, Q.-, Amjad, K., Yueyang, Y., Jinhai, S., Awais, M., 2024. Advancements and Prospects of Machine Learning in Medical Diagnostics: Unveiling the Future of Diagnostic Precision. Arch. Comput. Methods Eng. 32, 853–883. https://doi.org/10.1007/s11831-024-10148-w
Aßmann, D., Sieber, N., 2005. Transport in developing countries: renewable energy versus energy reduction? Transp. Rev. 25, 719–738. https://doi.org/10.1080/01441640500361066
Attrah, M., Elmanadely, A., Akter, D., Rene, E.R., 2022. A review on medical waste management: treatment, recycling, and disposal options. Environments 9, 146. https://doi.org/10.3390/environments9110146
Azam, F., Ahmad, F., Uddin, Z., Rasheed, A., Nawab, Y., Afzal, A., Ahmad, S., Zafar, M.S., Ashraf, M., 2022. A review of the fabrication methods, testing, and performance of face masks. Int. J. Polym. Sci. 2022, e2161869. https://doi.org/10.1155/2022/2161869
Babaahmadi, V., Amid, H., Naeimirad, M., Ramakrishna, S., 2021. Biodegradable and multifunctional surgical face masks: a brief review on demands during COVID-19 pandemic, recent developments, and future perspectives. Sci. Total Environ. 798, 149233. https://doi.org/10.1016/j.scitotenv.2021.149233
Badday, A.S., Abdullah, A.Z., Lee, K.T., Khayoon, M.Sh., 2012. Intensification of biodiesel production via ultrasonic-assisted process: a critical review on fundamentals and recent development. Renew. Sustain. Energy Rev. 16, 4574–4587. https://doi.org/10.1016/j.rser.2012.04.057
Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N.D., Vlachopoulos, A., Koumentakou, I., Bikiaris, D.N., 2021. Poly(lactic Acid): a versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers 13, 1822. https://doi.org/10.3390/polym13111822
Baxter, J., Ho, Y., Rollins, Y., Maclaren, V., 2016. Attitudes toward waste to energy facilities and impacts on diversion in Ontario, Canada. Waste Manag. 50, 75–85. https://doi.org/10.1016/j.wasman.2016.02.017
Behera, A.K., Avancha, S., Manna, S., Sen, R., Adhikari, B., 2013. Effect of nanoclay on physical, mechanical, and microbial degradation of jute-reinforced, soy milk-based nano-biocomposites. Polym. Eng. Sci. 54, 345–354. https://doi.org/10.1002/pen.23556
Behera, A.K., Srivastava, R., Das, A.B., 2022. Mechanical and degradation properties of thermoplastic starch reinforced nanocomposites. Starch - Stärke 74, 2100270. https://doi.org/10.1002/star.202100270
Beltrán-Sanahuja, A., Benito-Kaesbach, A., Sánchez-García, N., Sanz-Lázaro, C., 2021. Degradation of conventional and biobased plastics in soil under contrasting environmental conditions. Sci. Total Environ. 787, 147678. https://doi.org/10.1016/j.scitotenv.2021.147678
Beltrán-Sanahuja, A., Casado-Coy, N., Simó-Cabrera, L., Sanz-Lázaro, C., 2020. Monitoring polymer degradation under different conditions in the marine environment. Environ. Pollut. 259, 113836. https://doi.org/10.1016/j.envpol.2019.113836
Benavides, P.T., Lee, U., Zarè-Mehrjerdi, O., 2020. Life cycle greenhouse gas emissions and energy use of polylactic acid, bio-derived polyethylene, and fossil-derived polyethylene. J. Clean. Prod. 277, 124010. https://doi.org/10.1016/j.jclepro.2020.124010
Benavides, P.T., Zare Mehrjerdi, O.J., Lee, U., 2019. Life cycle inventory for polylactic acid production. Argonne Natl Lab.
Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., Riahi, K., 2008. IPCC, 2007: Climate Change 2007: Synthesis Report. IPCC, Geneva.
Bhagwat, G., O’Connor, W., Grainge, I., Palanisami, T., 2021. Understanding the fundamental basis for biofilm formation on plastic surfaces: role of conditioning films. Front. Microbiol. 12.
Bhatt, K.P., Patel, S., Upadhyay, D.S., Patel, R.N., 2022. A critical review on solid waste treatment using plasma pyrolysis technology. Chem. Eng. Process. - Process Intensif. 177, 108989. https://doi.org/10.1016/j.cep.2022.108989
Bi, H., An, C., Owens, E., Lee, K., Chen, Z., Mulligan, C., Taylor, E., Boufadel, M., 2021. A framework for the evaluation and selection of shoreline surface washing agents in oil spill response. J. Environ. Manage. 287, 112346. https://doi.org/10.1016/j.jenvman.2021.112346
Bin Mobarak, M., Hossain, Md.S., Chowdhury, F., Ahmed, S., 2022. COVID-19 waste facemask conundrum: A facile way of utilization through fabricating composite material with unsaturated polyester resin and evaluation of its mechanical properties. Heliyon 8, e12197. https://doi.org/10.1016/j.heliyon.2022.e12197
Bogacka, M., Salazar, G.L., 2022. Study on the effect of bio-based materials’ natural degradation in the environment. Sustainability 14, 4675. https://doi.org/10.3390/su14084675
Bond, T., Ferrandiz-Mas ,Veronica, Felipe-Sotelo ,Mónica, and van Sebille, E., 2018. The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: A review. Crit. Rev. Environ. Sci. Technol. 48, 685–722. https://doi.org/10.1080/10643389.2018.1483155
Brunke, J.-C., Blesl, M., 2014. Energy conservation measures for the German cement industry and their ability to compensate for rising energy-related production costs. J. Clean. Prod. 82, 94–111. https://doi.org/10.1016/j.jclepro.2014.06.074
Brüssow, H., Zuber, S., 2022. Can a combination of vaccination and face mask wearing contain the COVID-19 pandemic? Microb. Biotechnol. 15, 721–737. https://doi.org/10.1111/1751-7915.13997
Bussan, D.D., Snaychuk, L., Bartzas, G., Douvris, C., 2022. Quantification of trace elements in surgical and KN95 face masks widely used during the SARS-COVID-19 pandemic. Sci. Total Environ. 814, 151924. https://doi.org/10.1016/j.scitotenv.2021.151924
Bustillo, A., Reis, R., Machado, A.R., Pimenov, D.Y., 2020. Improving the accuracy of machine-learning models with data from machine test repetitions. J. Intell. Manuf. 33, 203–221. https://doi.org/10.1007/s10845-020-01661-3
Butylina, S., Hyvärinen, M., Kärki, T., 2012. A study of surface changes of wood-polypropylene composites as the result of exterior weathering. Polym. Degrad. Stab. 97, 337–345. https://doi.org/10.1016/j.polymdegradstab.2011.12.014
Cabrejos-Cardeña, U., De-la-Torre, G.E., Dobaradaran, S., Rangabhashiyam, S., 2023. An ecotoxicological perspective of microplastics released by face masks. J. Hazard. Mater. 443, 130273. https://doi.org/10.1016/j.jhazmat.2022.130273
Cai, M., Guy, C., Héroux, M., Lichtfouse, E., An, C., 2021. The impact of successive COVID-19 lockdowns on people mobility, lockdown efficiency, and municipal solid waste. Environ. Chem. Lett. 19, 3959–3965. https://doi.org/10.1007/s10311-021-01290-z
Campos, A. de, Marconato, J.C., Martins-Franchetti, S.M., 2012. The influence of soil and landfill leachate microorganisms in the degradation of PVC/PCL films cast from DMF. Polímeros 22, 220–227. https://doi.org/10.1590/S0104-14282012005000029
Cao, Q., Dai, H.-C., He, J.-H., Wang, C.-L., Zhou, C., Cheng, X.-F., Lu, J.-M., 2022. Microwave-initiated MAX Ti3AlC2-catalyzed upcycling of polyolefin plastic wastes: Selective conversion to hydrogen and carbon nanofibers for sodium-ion battery. Appl. Catal. B Environ. 318, 121828. https://doi.org/10.1016/j.apcatb.2022.121828
Cardoso, R., Costa, C.A. da, Figueiredo, R.M. de, Zehetmeyer, G., Schmith, J., 2024. A method to predict the percentage of biodegradation in polymeric materials. Comput. Electr. Eng. 118, 109473. https://doi.org/10.1016/j.compeleceng.2024.109473
Carneiro, J.R., Almeida, P.J., Lopes, M. de L., 2018. Laboratory evaluation of interactions in the degradation of a polypropylene geotextile in marine environments. Adv. Mater. Sci. Eng. 2018, e9182658. https://doi.org/10.1155/2018/9182658
Castro Aguirre, E., Iñiguez Franco, F., Samsudin, H., Fang, X., Auras, R., 2016. Poly (lactic acid)—mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev., PLA biodegradable polymers 107, 333–366. https://doi.org/10.1016/j.addr.2016.03.010
Cavalcante, J., Hardian, R., Szekely, G., 2022. Antipathogenic upcycling of face mask waste into separation materials using green solvents. Sustain. Mater. Technol. 32, e00448. https://doi.org/10.1016/j.susmat.2022.e00448
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L., Suh, S., 2020a. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635
Chammingkwan, P., Yamaguchi, F., Terano, M., Taniike, T., 2017. Influence of isotacticity and its distribution on degradation behavior of polypropylene. Polym. Degrad. Stab. 143, 253–258. https://doi.org/10.1016/j.polymdegradstab.2017.07.024
Chattopadhyay, I., 2022. Role of microbiome and biofilm in environmental plastic degradation. Biocatal. Agric. Biotechnol. 39, 102263. https://doi.org/10.1016/j.bcab.2021.102263
Chen, C., Yu, G., Wang, B., Li, F., Liu, H., Zhang, W., 2023. Lifetime prediction of non-woven face masks in ocean and contributions to microplastics and dissolved organic carbon. J. Hazard. Mater. 441, 129816. https://doi.org/10.1016/j.jhazmat.2022.129816
Chen, X., Huang, G., Li, Y., An, C., Feng, R., Wu, Y., Shen, J., 2020. Functional PVDF ultrafiltration membrane for Tetrabromobisphenol-A (TBBPA) removal with high water recovery. Water Res. 181, 115952. https://doi.org/10.1016/j.watres.2020.115952
Chen, X., Zhu, M., Tang, Y., Xie, H., Fan, X., 2023. Methine initiated polypropylene-based disposable face masks aging validated by micromechanical properties loss of atomic force microscopy. J. Hazard. Mater. 441, 129831. https://doi.org/10.1016/j.jhazmat.2022.129831
Chen, Xianchuan, Chen, Xiaofei, Liu, Q., Zhao, Q., Xiong, X., Wu, C., 2021. Used disposable face masks are significant sources of microplastics to environment. Environ. Pollut. 285, 117485. https://doi.org/10.1016/j.envpol.2021.117485
Chen, Z., Elektorowicz, M., An, C., Tian, X., 2023a. Entrainment and enrichment of microplastics in ice formation processes: implications for the transport of microplastics in cold regions. Environ. Sci. Technol. 57, 3176–3186. https://doi.org/10.1021/acs.est.2c09340
Chen, Z., Elektorowicz, M., An, C., Tian, X., Peng, H., 2024. Role of aquatic dissolved organic matter in the entrainment of microplastics under freezing conditions. ACS EST Water 4, 256–267. https://doi.org/10.1021/acsestwater.3c00579
Chen, Z., Elektorowicz, M., An, C., Tian, X., Peng, H., 2023b. Role of aquatic dissolved organic matter in the entrainment of microplastics under freezing conditions. ACS EST Water 4, 256–267. https://doi.org/10.1021/acsestwater.3c00579
Chen, Zigu, Zhang, W., Yang, H., Min, K., Jiang, J., Lu, D., Huang, X., Qu, G., Liu, Q., Jiang, G., 2022. A pandemic-induced environmental dilemma of disposable masks: solutions from the perspective of the life cycle. Environ. Sci. Process. Impacts 24, 649–674. https://doi.org/10.1039/D1EM00509J
Chen, Zhikun, Feng, Q., Yue, R., Chen, Zhi, Moselhi, O., Soliman, A., Hammad, A., An, C., 2022. Construction, renovation, and demolition waste in landfill: a review of waste characteristics, environmental impacts, and mitigation measures. Environ. Sci. Pollut. Res. 29, 46509–46526. https://doi.org/10.1007/s11356-022-20479-5
Cheng, Y., Jin, L., Fu, H.Y., Fan, Y.R., Bai, R.L., Wei, Y., 2024. Novel fuzzy best-worst multicriteria decision-making method based on the dual interval algorithm for environmental decision support systems. J. Environ. Inform. 44.
Cheung, C.K.H., Not, C., 2024. Early signs of plastic degradation and fragmentation: A 40-day study in marine environments. Mar. Pollut. Bull. 207, 116809. https://doi.org/10.1016/j.marpolbul.2024.116809
Coltelli, M.B., Danti, S., Trombi, L., Morganti, P., Donnarumma, G., Baroni, A., Fusco, A., Lazzeri, A., 2018. Preparation of innovative skin compatible films to release polysaccharides for biobased beauty masks. Cosmetics 5, 70. https://doi.org/10.3390/cosmetics5040070
Costa, J.P. da, Avellan, A., Mouneyrac, C., Duarte, A., Rocha-Santos, T., 2023. Plastic additives and microplastics as emerging contaminants: Mechanisms and analytical assessment. TrAC Trends Anal. Chem. 158, 116898. https://doi.org/10.1016/j.trac.2022.116898
Crespo, C., Ibarz, G., Sáenz, C., Gonzalez, P., Roche, S., 2021. Study of recycling potential of FFP2 face masks and characterization of the plastic mix-material obtained. A way of reducing waste in times of COVID-19. Waste Biomass Valorization 12, 6423–6432. https://doi.org/10.1007/s12649-021-01476-0
Cruz Sanchez, F.A., Boudaoud, H., Camargo, M., Pearce, J.M., 2020. Plastic recycling in additive manufacturing: A systematic literature review and opportunities for the circular economy. J. Clean. Prod. 264, 121602. https://doi.org/10.1016/j.jclepro.2020.121602
Cudjoe, D., Wang, H., zhu, B., 2022. Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis. Energy 249, 123707. https://doi.org/10.1016/j.energy.2022.123707
Cui, J., Qi, M., Zhang, Z., Gao, S., Xu, N., Wang, X., Li, N., Chen, G., 2023. Disposal and resource utilization of waste masks: a review. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-023-25353-6
Czarnecka, E., Walczak, M., Kumar, G., Piechota, G., Nowaczyk, J., 2022. Degradation of biodegradable diapers as an element circular economy in waste containing various plastics. J. Clean. Prod. 377, 134426. https://doi.org/10.1016/j.jclepro.2022.134426
Daly, P., Cai, F., Kubicek, C.P., Jiang, S., Grujic, M., Rahimi, M.J., Sheteiwy, M.S., Giles, R., Riaz, A., de Vries, R.P., Akcapinar, G.B., Wei, L., Druzhinina, I.S., 2021. From lignocellulose to plastics: knowledge transfer on the degradation approaches by fungi. Biotechnol. Adv. 50, 107770. https://doi.org/10.1016/j.biotechadv.2021.107770
Dan, A., Oka, M., Fujii, Y., Soda, S., Ishigaki, T., Machimura, T., Ike, M., 2017. Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands. Sci. Total Environ. 584–585, 742–750. https://doi.org/10.1016/j.scitotenv.2017.01.112
Das, A.K., Islam, Md.N., Billah, Md.M., Sarker, A., 2021. COVID-19 pandemic and healthcare solid waste management strategy – a mini-review. Sci. Total Environ. 778, 146220. https://doi.org/10.1016/j.scitotenv.2021.146220
Das, O., Neisiany, R.E., Capezza, A.J., Hedenqvist, M.S., Försth, M., Xu, Q., Jiang, L., Ji, D., Ramakrishna, S., 2020. The need for fully bio-based facemasks to counter coronavirus outbreaks: a perspective. Sci. Total Environ. 736, 139611. https://doi.org/10.1016/j.scitotenv.2020.139611
Datta, D., Halder, G., 2019. Effect of rice husk derived nanosilica on the structure, properties and biodegradability of corn-starch/ldpe composites. J. Polym. Environ. 27, 710–727. https://doi.org/10.1007/s10924-019-01386-2
de Jong, S.J., Arias, E.R., Rijkers, D.T.S., van Nostrum, C.F., Kettenes-van den Bosch, J.J., Hennink, W.E., 2001. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer 42, 2795–2802. https://doi.org/10.1016/S0032-3861(00)00646-7
de la Luz-Ramos, A., Palma-Ramírez, D., Pineda-Flores, G., Dorantes-Rosales, H., García-Zaleta, D.S., 2024. Degradation features of bioplastics-based disposable straws in soil and aerobic mineralization: Insight into final properties and chemical pathways. Sustain. Chem. Pharm. 37, 101403. https://doi.org/10.1016/j.scp.2023.101403
Delacuvellerie, A., Benali, S., Cyriaque, V., Moins, S., Raquez, J.-M., Gobert, S., Wattiez, R., 2021. Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J. Hazard. Mater. 419, 126526. https://doi.org/10.1016/j.jhazmat.2021.126526
De-la-Torre, G.E., Dioses-Salinas, D.C., Dobaradaran, S., Spitz, J., Keshtkar, M., Akhbarizadeh, R., Abedi, D., Tavakolian, A., 2022a. Physical and chemical degradation of littered personal protective equipment (PPE) under simulated environmental conditions. Mar. Pollut. Bull. 178, 113587. https://doi.org/10.1016/j.marpolbul.2022.113587
De-la-Torre, G.E., Dioses-Salinas, D.C., Pizarro-Ortega, C.I., Fernández Severini, M.D., Forero López, A.D., Mansilla, R., Ayala, F., Castillo, L.M.J., Castillo-Paico, E., Torres, D.A., Mendoza-Castilla, L.M., Meza-Chuquizuta, C., Vizcarra, J.K., Mejía, M., De La Gala, J.J.V., Ninaja, E.A.S., Calisaya, D.L.S., Flores-Miranda, W.E., Rosillo, J.L.E., Espinoza-Morriberón, D., Gonzales, K.N., Torres, F.G., Rimondino, G.N., Ben-Haddad, M., Dobaradaran, S., Aragaw, T.A., Santillán, L., 2022b. Binational survey of personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in coastal environments: abundance, distribution, and analytical characterization. J. Hazard. Mater. 426, 128070. https://doi.org/10.1016/j.jhazmat.2021.128070
Demirhan, H., 2022. Solar photovoltaic utilization in electricity generation to tackle climate change. J. Environ. Inform. 40, 41–55. https://doi.org/10.3808/jei.202200475
Derakhshani, R., Lankof, L., GhasemiNejad, A., Zaresefat, M., 2024. Artificial intelligence-driven assessment of salt caverns for underground hydrogen storage in Poland. Sci. Rep. 14, 14246. https://doi.org/10.1038/s41598-024-64020-9
Dey, S., Anand, U., Kumar, V., Kumar, S., Ghorai, M., Ghosh, A., Kant, N., Suresh, S., Bhattacharya, S., Bontempi, E., Bhat, S.A., Dey, A., 2023. Microbial strategies for degradation of microplastics generated from COVID-19 healthcare waste. Environ. Res. 216, 114438. https://doi.org/10.1016/j.envres.2022.114438
Dharmaraj, S., Ashokkumar, V., Pandiyan, R., Halimatul Munawaroh, H.S., Chew, K.W., Chen, W.-H., Ngamcharussrivichai, C., 2021. Pyrolysis: An effective technique for degradation of COVID-19 medical wastes. Chemosphere 275, 130092. https://doi.org/10.1016/j.chemosphere.2021.130092
Dimassi, S.N., Hahladakis, J.N., Daly Yahia, M.N., Ahmad, M.I., Sayadi, S., Al-Ghouti, M.A., 2023. Insights into the degradation mechanism of PET and PP under marine conditions using FTIR. J. Hazard. Mater. 447, 130796. https://doi.org/10.1016/j.jhazmat.2023.130796
Dimassi, S.N., Hahladakis, J.N., Yahia, M.N.D., Ahmad, M.I., Sayadi, S., Al-Ghouti, M.A., 2022. Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. Arab. J. Chem. 15, 104262. https://doi.org/10.1016/j.arabjc.2022.104262
Do Thi, H.T., Mizsey, P., Toth, A.J., 2021. Applicability of membranes in protective face masks and comparison of reusable and disposable face masks with life cycle assessment. Sustainability 13, 12574. https://doi.org/10.3390/su132212574
Doğan, M., 2021. Ultraviolet light accelerates the degradation of polyethylene plastics. Microsc. Res. Tech. 84, 2774–2783. https://doi.org/10.1002/jemt.23838
Du, H., Huang, S., Wang, J., 2022. Environmental risks of polymer materials from disposable face masks linked to the COVID-19 pandemic. Sci. Total Environ. 815, 152980. https://doi.org/10.1016/j.scitotenv.2022.152980
Du, L., Zuo, J., O’Farrell, K., Chang, R., Zillante, G., Li, L., 2023. Transnational recycling of Australian export waste: An exploratory study. Resour. Conserv. Recycl. 196, 107041. https://doi.org/10.1016/j.resconrec.2023.107041
Duan, J., Li, Y., Gao, J., Cao, R., Shang, E., Zhang, W., 2022. ROS-mediated photoaging pathways of nano- and micro-plastic particles under UV irradiation. Water Res. 216, 118320. https://doi.org/10.1016/j.watres.2022.118320
Elsawy, M.A., Kim, K.-H., Park, J.-W., Deep, A., 2017. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sustain. Energy Rev. 79, 1346–1352. https://doi.org/10.1016/j.rser.2017.05.143
Fan, X., Win, K.Y., Hu, Z., Loh, X.J., Li, Z., 2019. Precise synthesis of PS-PLA Janus star-like copolymer. Macromol. Rapid Commun. 40, 1800217. https://doi.org/10.1002/marc.201800217
Fan, X., Zou, Y., Geng, N., Liu, J., Hou, J., Li, D., Yang, C., Li, Y., 2021. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process. J. Hazard. Mater. 401, 123363. https://doi.org/10.1016/j.jhazmat.2020.123363
Fang, G., Kang, R., Cai, S., Ge, C., 2023. Insight into nanozymes for their environmental applications as antimicrobial and antifouling agents: Progress, challenges and prospects. Nano Today 48, 101755. https://doi.org/10.1016/j.nantod.2023.101755
Feijoo, P., Marín, A., Samaniego-Aguilar, K., Sánchez-Safont, E., Lagarón, J.M., Gámez-Pérez, J., Cabedo, L., 2023. Effect of the presence of lignin from woodflour on the compostability of pha-based biocomposites: disintegration, biodegradation and microbial dynamics. Polymers 15, 2481. https://doi.org/10.3390/polym15112481
Feng, Q., An, C., Chen, Z., Wang, Z., 2020. Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management. Renew. Sustain. Energy Rev. 133, 110293. https://doi.org/10.1016/j.rser.2020.110293
Feng, Q., An, C., Chen, Z., Yin, J., Zhang, B., Lee, K., Wang, Z., 2022a. Investigation into the impact of aged microplastics on oil behavior in shoreline environments. J. Hazard. Mater. 421, 126711. https://doi.org/10.1016/j.jhazmat.2021.126711
Feng, Q., Chen, Z., Greer, C.W., An, C., Wang, Z., 2022b. Transport of microplastics in shore substrates over tidal cycles: roles of polymer characteristics and environmental factors. Environ. Sci. Technol. 56, 8187–8196. https://doi.org/10.1021/acs.est.2c01599
Feng, Q., Chen, Z., Huang, G., An, C., Yang, X., Wang, Z., 2024a. Prolonged drying impedes the detachment of microplastics in unsaturated substrate: Role of flow regimes. Water Res. 252, 121246. https://doi.org/10.1016/j.watres.2024.121246
Ferronato, N., Torretta, V., 2019. Waste mismanagement in developing countries: a review of global issues. Int. J. Environ. Res. Public. Health 16, 1060. https://doi.org/10.3390/ijerph16061060
Friedlander, B., n.d. Engineers propose greener recycling for medical PPE waste | Cornell Chronicle. https://news.cornell.edu/stories/2022/01/engineers-propose-greener-recycling-medical-ppe-waste (accessed 7.22.23).
Furlong, A., Lynch, S., 2022. So much for coordination: EU countries ignore pandemic lessons amid China’s COVID surge. POLITICO. https://www.politico.eu/article/european-countries-covid-pandemic-china-ingore-pandemic-lessons/ (accessed 1.3.23).
Ganesapillai, M., Tiwari, A., Mehta, R., Sinha, A., Sarkar, I., Mondal, B., Chellappa, V., Riar, A., 2023. Is the pandemic masking waste management? – A review on fallout of the COVID-19 viral contagion. Green Chem. Lett. Rev. 16, 2164224. https://doi.org/10.1080/17518253.2022.2164224
Gewert, B., M. Plassmann, M., MacLeod, M., 2015. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 17, 1513–1521. https://doi.org/10.1039/C5EM00207A
Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782. https://doi.org/10.1126/sciadv.1700782
Giakoumakis, G., Politi, D., Sidiras, D., 2021. Medical Waste treatment technologies for energy, fuels, and materials production: a review. Energies 14, 8065. https://doi.org/10.3390/en14238065
Gironi, Fausto, Piemonte, V., 2011. Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water. Environ. Prog. Sustain. Energy 30, 459–468. https://doi.org/10.1002/ep.10490
Gironi, F., Piemonte, V., 2011. Bioplastics and petroleum-based plastics: strengths and weaknesses. Energy Sources Part Recovery Util. Environ. Eff. 33, 1949–1959. https://doi.org/10.1080/15567030903436830
Global Sources | verified suppliers, wholesale manufacturers & distributors from global B2B sourcing platform. Glob. Sources. URL https://www.globalsources.com/ (accessed 1.22.23).
Gobikannan, T., Pawar, S.J., Kumar, S.K.S., Chavhan, Md.V., Navinbhai, A.H., Prakash, C., 2023. Importance of antiviral and antibacterial face mask used in pandemics: an overview. J. Nat. Fibers 20, 2160407. https://doi.org/10.1080/15440478.2022.2160407
Government of Canada, S.C., 2022. Personal protective equipment demand and supply. https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310078601 (accessed 10.30.22).
Government of Canada, S.C., 2020. The Daily — Commodity flows by mode in Canada: Canadian Freight Analysis Framework, 2017. https://www150.statcan.gc.ca/n1/daily-quotidien/200514/dq200514c-eng.htm (accessed 11.18.22).
Grause, G., Chien, M.-F., Inoue, C., 2020. Changes during the weathering of polyolefins. Polym. Degrad. Stab. 181, 109364. https://doi.org/10.1016/j.polymdegradstab.2020.109364
Grossule, V., Fang, D., Yue, D., Lavagnolo, M.C., Raga, R., 2021. Preparation of artificial MSW leachate for treatment studies: testing on black soldier fly larvae process. Waste Manag. Res. 0734242X211066702. https://doi.org/10.1177/0734242X211066702
Gryta, M., Grzechulska-Damszel, J., Markowska, A., Karakulski, K., 2009. The influence of polypropylene degradation on the membrane wettability during membrane distillation. J. Membr. Sci. 326, 493–502. https://doi.org/10.1016/j.memsci.2008.10.022
Gunti, R., Ratna Prasad, A. v., Gupta, A. v. s. s. k. s., 2016. Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass. Polym. Compos. 39, 1125–1136. https://doi.org/10.1002/pc.24041
Guo, C., Guo, H., 2022. Progress in the degradability of biodegradable film materials for packaging. Membranes 12, 500. https://doi.org/10.3390/membranes12050500
Guselnikova, O., Semyonov, O., Kirgina, M., Ivanov, A., Zinoviev, A., Postnikov, P., 2022. Polymer waste surgical masks decorated by superhydrophobic metal-organic frameworks towards oil spills clean-up. J. Environ. Chem. Eng. 10, 107105. https://doi.org/10.1016/j.jece.2021.107105
Hadiuzzaman, M., Salehi, M., Fujiwara, T., 2022. Plastic litter fate and contaminant transport within the urban environment, photodegradation, fragmentation, and heavy metal uptake from storm runoff. Environ. Res. 212, 113183. https://doi.org/10.1016/j.envres.2022.113183
Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., Purnell, P., 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014
Hai, A., Bharath, G., Patah, M.F.A., Daud, W.M.A.W., K., R., Show, P., Banat, F., 2023. Machine learning models for the prediction of total yield and specific surface area of biochar derived from agricultural biomass by pyrolysis. Environ. Technol. Innov. 30, 103071. https://doi.org/10.1016/j.eti.2023.103071
Haider, T.P., Völker, C., Kramm, J., Landfester, K., Wurm, F.R., 2019. Plastics of the future? The Impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 58, 50–62. https://doi.org/10.1002/anie.201805766
Hailu, S., Deribew, K.T., Teferi, E., Moisa, M.B., Roba, Z.R., Dagne, S.S., Woldetsadik, M., 2024. Spatial assessment employing fusion logistic regression and frequency ratio models to monitor landslide susceptibility in the upper Blue Nile basin of Ethiopia: Muger watershed. Environ. Syst. Res. 13, 54. https://doi.org/10.1186/s40068-024-00382-3
Han, Y., Wei, M., Shi, X., Wang, D., Zhang, X., Zhao, Y., Kong, M., Song, X., Xie, Z., Li, F., 2020. Effects of tensile stress and soil burial on mechanical and chemical degradation potential of agricultural plastic films. Sustainability 12, 7985. https://doi.org/10.3390/su12197985
Hantoko, D., Li, X., Pariatamby, A., Yoshikawa, K., Horttanainen, M., Yan, M., 2021. Challenges and practices on waste management and disposal during COVID-19 pandemic. J. Environ. Manage. 286, 112140. https://doi.org/10.1016/j.jenvman.2021.112140
Harding, K.G., Dennis, J.S., von Blottnitz, H., Harrison, S.T.L., 2007. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J. Biotechnol. 130, 57–66. https://doi.org/10.1016/j.jbiotec.2007.02.012
Harussani, M.M., Sapuan, S.M., Rashid, U., Khalina, A., Ilyas, R.A., 2022. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci. Total Environ. 803, 149911. https://doi.org/10.1016/j.scitotenv.2021.149911
Hasan, M.M., Rahman, M.H., 2018. Assessment of Healthcare Waste Management Paradigms and Its Suitable Treatment Alternative: A Case Study. J. Environ. Public Health 2018, e6879751. https://doi.org/10.1155/2018/6879751
Hassan, N.S., Jalil, A.A., Hitam, C.N.C., Vo, D.V.N., Nabgan, W., 2020. Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review. Environ. Chem. Lett. 18, 1625–1648. https://doi.org/10.1007/s10311-020-01040-7
He, H., Gao, M., Illés, B., Molnar, K., 2020. 3D printed and electrospun, transparent, hierarchical polylactic acid mask nanoporous filter. Int. J. Bioprinting 6, 278. https://doi.org/10.18063/ijb.v6i4.278
He, M., Hsu, Y.-I., Uyama, H., 2024. Superior sequence-controlled poly(L-lactide)-based bioplastic with tunable seawater biodegradation. J. Hazard. Mater. 474, 134819. https://doi.org/10.1016/j.jhazmat.2024.134819
Hetemi, D., Pinson, J., 2019. Functionalization of polymers by hydrolysis, aminolysis, reduction, oxidation, and some related reactions, in: Surface Modification of Polymers. John Wiley & Sons, Ltd, pp. 211–240. https://doi.org/10.1002/9783527819249.ch8
Hita, I., Cordero-Lanzac, T., Bonura, G., Cannilla, C., Arandes, J.M., Frusteri, F., Bilbao, J., 2019. Hydrodeoxygenation of raw bio-oil towards platform chemicals over FeMoP/zeolite catalysts. J. Ind. Eng. Chem. 80, 392–400. https://doi.org/10.1016/j.jiec.2019.08.019
Hossini, H., Atashkar, S., Massahi, T., 2021. Face mask consumption and medical waste generation during the COVID-19 pandemic in Iran: challenges and problems. Int. J. Health Life Sci. 7. https://doi.org/10.5812/ijhls.115046
Hou, Y., Feng, Z., He, Y., Gao, Q., Ni, L., Su, M., Ren, H., Liu, Z., Hu, W., 2022. Co-pyrolysis characteristics and synergistic interaction of bamboo residues and disposable face mask. Renew. Energy 194, 415–425. https://doi.org/10.1016/j.renene.2022.05.111
Hu, X., Su, T., Li, P., Wang, Z., 2018. Blending modification of PBS/PLA and its enzymatic degradation. Polym. Bull. 75, 533–546. https://doi.org/10.1007/s00289-017-2054-7
Huang, C., Liao, Y., Zou, Z., Chen, Y., Jin, M., Zhu, J., Hussain Abdalkarim, S.Y., Zhou, Y., Yu, H.-Y., 2022. Novel strategy to interpret the degradation behaviors and mechanisms of bio- and non-degradable plastics. J. Clean. Prod. 355, 131757. https://doi.org/10.1016/j.jclepro.2022.131757
Huang, D., Hu, Z.-D., Ding, Y., Zhen, Z.-C., Lu, B., Ji, J.-H., Wang, G.-X., 2019. Seawater degradable PVA/PCL blends with water-soluble polyvinyl alcohol as degradation accelerator. Polym. Degrad. Stab. 163, 195–205. https://doi.org/10.1016/j.polymdegradstab.2019.03.011
Huang, D., Xu, Y., Lei, F., Yu, X., Ouyang, Z., Chen, Y., Jia, H., Guo, X., 2021a. Degradation of polyethylene plastic in soil and effects on microbial community composition. J. Hazard. Mater. 416, 126173. https://doi.org/10.1016/j.jhazmat.2021.126173
Huang, D., Xu, Y., Lei, F., Yu, X., Ouyang, Z., Chen, Y., Jia, H., Guo, X., 2021b. Degradation of polyethylene plastic in soil and effects on microbial community composition. J. Hazard. Mater. 416, 126173. https://doi.org/10.1016/j.jhazmat.2021.126173
Huang, J., 2017. Sustainable development of green paper packaging. Environ. Pollut. 6, 1–7.
Huang, J., Veksha, A., Chan, W.P., Giannis, A., Lisak, G., 2022. Chemical recycling of plastic waste for sustainable material management: a prospective review on catalysts and processes. Renew. Sustain. Energy Rev. 154, 111866. https://doi.org/10.1016/j.rser.2021.111866
Huang, Jitao, Cui, C., Yan, G., Huang, Jianhua, Zhang, M., 2016. A study on degradation of composite material PBS/PCL. Polym. Polym. Compos. 24, 143–148. https://doi.org/10.1177/096739111602400209
Huang, W.W., Chen, X.J., Fan, Y.R., Li, Y.P., 2022. Management of drinking water source in rural communities under climate change. J. Environ. Inform. 39, 136–151. https://doi.org/10.3808/jei.202000431
Huang, X., Li, Y., Shu, Z., Huang, L., Liu, Q., Jiang, G., 2024. High-efficiency degradation of pet plastics by glutathione s-transferase under mild conditions. Environ. Sci. Technol. 58, 13358–13369. https://doi.org/10.1021/acs.est.4c02132
Huang, Y., Gancheva, T., Favis, B.D., Abidli, A., Wang, J., Park, C.B., 2021. Hydrophobic porous polypropylene with hierarchical structures for ultrafast and highly selective oil/water separation. ACS Appl. Mater. Interfaces 13, 16859–16868. https://doi.org/10.1021/acsami.0c21852
Hughes, K., 2020. Protector or polluter? The impact of COVID-19 on the movement to end plastic waste, in: World Economic Forum.
Hussain, R., Batool, S.A., Aizaz, A., Abbas, M., Ur Rehman, M.A., 2023. Biodegradable packaging based on poly(vinyl alcohol) and carboxymethyl cellulose films incorporated with ascorbic acid for food packaging applications. ACS Omega 8, 42301–42310. https://doi.org/10.1021/acsomega.3c04397
Ibarra-Valenzuela, A.P., Troncoso-Rojas, R., Islas-Rubio, A.R., Samsudin, H., Peralta, E., Soto-Valdez, H., 2023. Replacement of conventional packaging with sustainable materials for corn tortillas. Food Packag. Shelf Life 40, 101207. https://doi.org/10.1016/j.fpsl.2023.101207
Idowu, G.A., Olalemi, A.O., Aiyesanmi, A.F., 2023. Environmental impacts of covid-19 pandemic: release of microplastics, organic contaminants and trace metals from face masks under ambient environmental conditions. Environ. Res. 217, 114956. https://doi.org/10.1016/j.envres.2022.114956
Idrees, M., Akbar, A., Mohamed, A.M., Fathi, D., Saeed, F., 2022. Recycling of waste facial masks as a construction material, a step towards sustainability. Materials 15, 1810. https://doi.org/10.3390/ma15051810
Ilgin, M.A., 2022. Integrating linear physical programming and fuzzy programming for the management of third party reverse logistics providers. J. Environ. Inform. 39, 11–21. https://doi.org/doi:10.3808/jei.202100466
Ilyas, S., Srivastava, R.R., Kim, H., 2020. Disinfection technology and strategies for COVID-19 hospital and bio-medical waste management. Sci. Total Environ. 749, 141652. https://doi.org/10.1016/j.scitotenv.2020.141652
Ito, M., Nagai, K., 2007. Analysis of degradation mechanism of plasticized PVC under artificial aging conditions. Polym. Degrad. Stab. 92, 260–270. https://doi.org/10.1016/j.polymdegradstab.2006.11.003
Iyer, M., Tiwari, S., Renu, K., Pasha, M.Y., Pandit, S., Singh, B., Raj, N., Krothapalli, S., Kwak, H.J., Balasubramanian, V., Jang, S.B., G., D.K., Uttpal, A., Narayanasamy, A., Kinoshita, M., Subramaniam, M.D., Nachimuthu, S.K., Roy, A., Valsala Gopalakrishnan, A., Ramakrishnan, P., Cho, S.-G., Vellingiri, B., 2021. Environmental survival of SARS-CoV-2 – A solid waste perspective. Environ. Res. 197, 111015. https://doi.org/10.1016/j.envres.2021.111015
Jankowski, M.D., Williams, C.J., Fair, J.M., Owen, J.C., 2013. Birds shed RNA-viruses according to the pareto principle. PLOS ONE 8, e72611. https://doi.org/10.1371/journal.pone.0072611
Jasso-Salcedo, A.B., Salinas-Hernández, M., Fonseca-García, A., Jiménez-Regalado, E.J., Aguirre-Loredo, R.Y., 2024. Disintegration of commercial single-use plastics from synthetic and biobased origins and effects on plant growth. Polym. Degrad. Stab. 230, 111071. https://doi.org/10.1016/j.polymdegradstab.2024.111071
Jędruchniewicz, K., Ok, Y.S., Oleszczuk, P., 2021. COVID-19 discarded disposable gloves as a source and a vector of pollutants in the environment. J. Hazard. Mater. 417, 125938. https://doi.org/10.1016/j.jhazmat.2021.125938
Jemec Kokalj, A., Dolar, A., Drobne, D., Škrlep, L., Škapin, A.S., Marolt, G., Nagode, A., van Gestel, C.A.M., 2022. Effects of microplastics from disposable medical masks on terrestrial invertebrates. J. Hazard. Mater. 438, 129440. https://doi.org/10.1016/j.jhazmat.2022.129440
Jeoung, S.K., Ha, J.U., Ko, Y.K., Kim, B.-R., Yoo, S.E., Lee, K.D., Lee, S.N., Lee, P.-C., 2014. Aerobic biodegradability of polyester/polylactic acid composites for automotive NVH parts. Int. J. Precis. Eng. Manuf. 15, 1703–1707. https://doi.org/10.1007/s12541-014-0522-7
Ju, J.T.J., Boisvert, L.N., Zuo, Y.Y., 2021. Face masks against COVID-19: standards, efficacy, testing and decontamination methods. Adv. Colloid Interface Sci. 292, 102435. https://doi.org/10.1016/j.cis.2021.102435
Kaczmarek, H., Ołdak, D., Malanowski, P., Chaberska, H., 2005. Effect of short wavelength UV-irradiation on ageing of polypropylene/cellulose compositions. Polym. Degrad. Stab. 88, 189–198. https://doi.org/10.1016/j.polymdegradstab.2004.04.017
Kara, Y., Molnár, K., 2022. A review of processing strategies to generate melt-blown nano/microfiber mats for high-efficiency filtration applications. J. Ind. Text. 51, 137S-180S. https://doi.org/10.1177/15280837211019488
Karatzos, S., van Dyk, J.S., McMillan, J.D., Saddler, J., 2017. Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I. Biofuels Bioprod. Biorefining 11, 344–362. https://doi.org/10.1002/bbb.1746
Keller, A.A., Adeleye, A.S., Conway, J.R., Garner, K.L., Zhao, L., Cherr, G.N., Hong, J., Gardea-Torresdey, J.L., Godwin, H.A., Hanna, S., Ji, Z., Kaweeteerawat, C., Lin, S., Lenihan, H.S., Miller, R.J., Nel, A.E., Peralta-Videa, J.R., Walker, S.L., Taylor, A.A., Torres-Duarte, C., Zink, J.I., Zuverza-Mena, N., 2017. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact 7, 28–40. https://doi.org/10.1016/j.impact.2017.05.003
Khadanga, M.K., Mishra, R.K., Sahu, B.K., 2022. Assessment of pollution and ecological risk index of heavy metals in the surface sediment of estuary and the coastal environment of bay of Bengal. J. Environ. Inform. 39, 35–48. https://doi.org/10.3808/jei.202100469
Kilmartin-Lynch, S., Saberian, M., Li, J., Roychand, R., Zhang, G., 2021. Preliminary evaluation of the feasibility of using polypropylene fibres from COVID-19 single-use face masks to improve the mechanical properties of concrete. J. Clean. Prod. 296, 126460. https://doi.org/10.1016/j.jclepro.2021.126460
Kim, J., Mayorga-Martinez, C.C., Pumera, M., 2023. Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption. Nat. Commun. 14, 935. https://doi.org/10.1038/s41467-023-36650-6
Kim, S., Lee, Y., Andrew Lin, K.-Y., Hong, E., Kwon, E.E., Lee, J., 2020. The valorization of food waste via pyrolysis. J. Clean. Prod. 259, 120816. https://doi.org/10.1016/j.jclepro.2020.120816
Klimek, L., Huppertz, T., Alali, A., Spielhaupter, M., Hörmann, K., Matthias, C., Hagemann, J., 2020. A new form of irritant rhinitis to filtering facepiece particle (FFP) masks (FFP2/N95/KN95 respirators) during COVID-19 pandemic. World Allergy Organ. J. 13, 100474. https://doi.org/10.1016/j.waojou.2020.100474
Knicker, H., Velasco-Molina, M., 2022. Biodegradability of disposable surgical face masks littered into soil systems during the COVID 19 pandemic—a first approach using microcosms. Soil Syst. 6, 39. https://doi.org/10.3390/soilsystems6020039
Krug, N., Zarges, J.-C., Heim, H.-P., 2024. Influence of ethylene oxide and gamma irradiation sterilization processes on the degradation behaviour of poly(lactic acid) (PLA) in the course of artificially accelerated aging. Polym. Test. 132, 108362. https://doi.org/10.1016/j.polymertesting.2024.108362
Kumar, S., Bhowmik, S., Mahakur, V.K., 2022. Thermo-mechanical and degradation properties of naturally derived biocomposites for prosthesis applications: Analysis of the interface pressure and stress distribution on the developed socket. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 237, 1999–2015. https://doi.org/10.1177/09544089221131155
Kumar, S., Singh, S., Senapati, S., Singh, A.P., Ray, B., Maiti, P., 2017. Controlled drug release through regulated biodegradation of poly(lactic acid) using inorganic salts. Int. J. Biol. Macromol. 104, 487–497. https://doi.org/10.1016/j.ijbiomac.2017.06.033
Kwon, E.E., Lee, T., Ok, Y.S., Tsang, D.C.W., Park, C., Lee, J., 2018. Effects of calcium carbonate on pyrolysis of sewage sludge. Energy 153, 726–731. https://doi.org/10.1016/j.energy.2018.04.100
Lamanna, L., Corigliano, G., Narayanan, A., Villani, S., Friuli, M., Chietera, F.P., Stanca, B.D.C., Giannotti, L., Siculella, L., Colella, R., Catarinucci, L., Athanassiou, A., Cataldi, P., Demitri, C., Caironi, M., Sannino, A., 2024. Beyond Plastic: Oleogel as gel-state biodegradable thermoplastics. Chem. Eng. J. 498, 154988. https://doi.org/10.1016/j.cej.2024.154988
Lambert, S., Wagner, M., 2016. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265–268. https://doi.org/10.1016/j.chemosphere.2015.11.078
Lee, A.W.L., Neo, E.R.K., Khoo, Z.-Y., Yeo, Z., Tan, Y.S., Chng, S., Yan, W., Lok, B.K., Low, J.S.C., 2021. Life cycle assessment of single-use surgical and embedded filtration layer (EFL) reusable face mask. Resour. Conserv. Recycl. 170, 105580. https://doi.org/10.1016/j.resconrec.2021.105580
Lee, Q.Y., Li, H., 2021. Photocatalytic degradation of plastic waste: a mini review. Micromachines 12, 907. https://doi.org/10.3390/mi12080907
Lee, S.B., Lee, J., Tsang, Y.F., Kim, Y.-M., Jae, J., Jung, S.-C., Park, Y.-K., 2021. Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis. Environ. Pollut. 283, 117060. https://doi.org/10.1016/j.envpol.2021.117060
Lee, W., Lee, J., Chung, J.W., Kwak, S.-Y., 2021. Enhancement of tensile toughness of poly(lactic acid) (PLA) through blending of a polydecalactone-grafted cellulose copolymer: The effect of mesophase transition on mechanical properties. Int. J. Biol. Macromol. 193, 1103–1113. https://doi.org/10.1016/j.ijbiomac.2021.09.205
Lestari, P., Trihadiningrum, Y., Warmadewanthi, I., 2022. Simulated degradation of low-density polyethylene and polypropylene due to ultraviolet radiation and water velocity in the aquatic environment. J. Environ. Chem. Eng. 10, 107553. https://doi.org/10.1016/j.jece.2022.107553
Li, C., Yuan, X., Sun, Z., Suvarna, M., Hu, X., Wang, X., Ok, Y.S., 2022. Pyrolysis of waste surgical masks into liquid fuel and its life-cycle assessment. Bioresour. Technol. 346, 126582. https://doi.org/10.1016/j.biortech.2021.126582
Li, L., Zhang, X., 2020. Integrated optimization of railway freight operation planning and pricing based on carbon emission reduction policies. J. Clean. Prod. 263, 121316. https://doi.org/10.1016/j.jclepro.2020.121316
Li, X., Liu, X., Zhang, J., Chen, F., Khalid, M., Ye, J., Romantschuk, M., Hui, N., 2024. Hydrolase and plastic-degrading microbiota explain degradation of polyethylene terephthalate microplastics during high-temperature composting. Bioresour. Technol. 393, 130108. https://doi.org/10.1016/j.biortech.2023.130108
Li, X., Yi, S., Cundy, A.B., Chen, W., 2022. Sustainable decision-making for contaminated site risk management: A decision tree model using machine learning algorithms. J. Clean. Prod. 371, 133612. https://doi.org/10.1016/j.jclepro.2022.133612
Li, Y.Z., Wang, Z.L., Huang, X.Y., 2024. Super real-time forecast of wildland fire spread by a dual-model deep learning method. J. Environ. Inform. 3.
Li, Z., Zhang, Z., Fei, M., Shi, X., 2022. Upcycling waste mask PP microfibers in portland cement paste: Surface treatment by graphene oxide. Mater. Lett. 318, 132238. https://doi.org/10.1016/j.matlet.2022.132238
Liao, J., Chen, Q., 2021. Biodegradable plastics in the air and soil environment: low degradation rate and high microplastics formation. J. Hazard. Mater. 418, 126329. https://doi.org/10.1016/j.jhazmat.2021.126329
Liao, J., Ji, S., Chi, Y., 2022. Effects of discarded masks on the offshore microorganisms during the COVID-19 pandemic. Toxics 10, 426. https://doi.org/10.3390/toxics10080426
Liu, D.P., Liu, M., Sun, G.Y., Zhou, Z.Q., Wang, D.L., He, F., Li, J.X., Xie, J.C., Gettler, R., Brunson, E., Steevens, J., Xu, D., 2023. Assessing environmental oil spill based on fluorescence images of water samples and deep learning. J. Environ. Inform. 42, 1–12.
Liu, J., Fu, H., Zhou, G., Guo, Z., Hu, B., Li, Y., Jiang, X., Lu, Q., 2023. Preparation of aromatic hydrocarbons from fast pyrolysis of waste medical mask catalyzed by modified HZSM-5. J. Anal. Appl. Pyrolysis 169, 105797. https://doi.org/10.1016/j.jaap.2022.105797
Liu, P., Zhan, X., Wu, X., Li, J., Wang, H., Gao, S., 2020. Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks. Chemosphere 242, 125193. https://doi.org/10.1016/j.chemosphere.2019.125193
Liu, Q., Martinez-Villarreal, S., Wang, S., Ngoc Thanh Tien, N., Kammoun, M., De Roover, Q., Len, C., Richel, A., 2024. The role of plastic chemical recycling processes in a circular economy context. Chem. Eng. J. 498, 155227. https://doi.org/10.1016/j.cej.2024.155227
Liu, R., Mabury, S.A., 2021. Single-use face masks as a potential source of synthetic antioxidants to the environment. Environ. Sci. Technol. Lett. 8, 651–655. https://doi.org/10.1021/acs.estlett.1c00422
Liu, Y., Zhang, Y., Sheng, X.R., Li, N., Ping, Q.W., Niu, M.H., Lu, P., Zhang, J., 2023. Preparation of diatomite based porous slow-release materials and its adsorption-release properties on phoxim. J. Environ. Inform. 41, 67–74.
Liu, Z., Wang, J., Yang, X., Huang, Q., Zhu, K., Sun, Y., Van Hulle, S., Jia, H., 2022. Generation of environmental persistent free radicals (EPFRs) enhances ecotoxicological effects of the disposable face mask waste with the COVID-19 pandemic. Environ. Pollut. 301, 119019. https://doi.org/10.1016/j.envpol.2022.119019
Longo, C., Savaris, M., Zeni, M., Brandalise, R.N., Grisa, A.M.C., 2011. Degradation study of polypropylene (PP) and bioriented polypropylene (BOPP) in the environment. Mater. Res. 14, 442–448. https://doi.org/10.1590/S1516-14392011005000080
López-Ibáñez, S., Quade, J., Wlodarczyk, A., Abad, M.-J., Beiras, R., 2024. Marine degradation and ecotoxicity of conventional, recycled and compostable plastic bags. Environ. Pollut. 351, 124096. https://doi.org/10.1016/j.envpol.2024.124096
Lou, X.F., Nair, J., 2009. The impact of landfilling and composting on greenhouse gas emissions – a review. Bioresour. Technol., Selected papers from the international conference on technologies and strategic management of sustainable biosystems 100, 3792–3798. https://doi.org/10.1016/j.biortech.2008.12.006
Lu, B., Wang, G.-X., Huang, D., Ren, Z.-L., Wang, X.-W., Wang, P.-L., Zhen, Z.-C., Zhang, W., Ji, J.-H., 2018. Comparison of PCL degradation in different aquatic environments: effects of bacteria and inorganic salts. Polym. Degrad. Stab. 150, 133–139. https://doi.org/10.1016/j.polymdegradstab.2018.02.002
Luhar, I., Luhar, S., Abdullah, M.M.A.B., 2022. Challenges and impacts of COVID-19 pandemic on global waste management systems: a review. J. Compos. Sci. 6, 271. https://doi.org/10.3390/jcs6090271
Luo, J., Sun, S., Chen, X., Lin, J., Ma, R., Zhang, R., Fang, L., 2021. In-depth exploration of the energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis. Appl. Energy 292, 116941. https://doi.org/10.1016/j.apenergy.2021.116941
Lv, S., Zhang, Y., Gu, J., Tan, H., 2018. Physicochemical evolutions of starch/poly (lactic acid) composite biodegraded in real soil. J. Environ. Manage. 228, 223–231. https://doi.org/10.1016/j.jenvman.2018.09.033
Lyu, L., Bagchi, M., Markoglou, N., An, C., 2024a. Innovations and development of sustainable personal protective equipment: a path to a greener future. Environ. Syst. Res. 13, 1–5. https://doi.org/10.1186/s40068-024-00350-x
Lyu, L., Bagchi, M., Markoglou, N., An, C., Peng, H., Bi, H., Yang, X., Sun, H., 2024b. Towards environmentally sustainable management: A review on the generation, degradation, and recycling of polypropylene face mask waste. J. Hazard. Mater. 461, 132566. https://doi.org/10.1016/j.jhazmat.2023.132566
Lyu, L., Bagchi, M., Ng, K.T.W., Markoglou, N., Chowdhury, R., An, C., Chen, Z., Yang, X., 2024c. The degradation of polylactic acid face mask components in different environments. J. Environ. Manage. 370, 122731. https://doi.org/10.1016/j.jenvman.2024.122731
Lyu, L., Peng, H., An, C., Sun, H., Yang, X., Bi, H., 2023a. An insight into the benefits of substituting polypropylene with biodegradable polylactic acid face masks for combating environmental emissions. Sci. Total Environ. 167137. https://doi.org/10.1016/j.scitotenv.2023.167137
Lyu, L., Wang, Z., Bagchi, M., Ye, Z., Soliman, A., Bagchi, A., Markoglou, N., Yin, J., An, C., Yang, X., Bi, H., Cai, M., 2023d. An investigation into the aging of disposable face masks in landfill leachate. J. Hazard. Mater. 446, 130671. https://doi.org/10.1016/j.jhazmat.2022.130671
Ma, J., Chen, F., Xu, H., Jiang, H., Liu, J., Li, P., Chen, C.C., Pan, K., 2021. Face masks as a source of nanoplastics and microplastics in the environment: quantification, characterization, and potential for bioaccumulation. Environ. Pollut. 288, 117748. https://doi.org/10.1016/j.envpol.2021.117748
Ma, J., Chen, F., Xu, H., Liu, J., Chen, C.C., Zhang, Z., Jiang, H., Li, Y., Pan, K., 2022. Fate of face masks after being discarded into seawater: aging and microbial colonization. J. Hazard. Mater. 129084. https://doi.org/10.1016/j.jhazmat.2022.129084
Maderuelo-Sanz, R., Acedo-Fuentes, P., García-Cobos, F.J., Sánchez-Delgado, F.J., Mota-López, M.I., Meneses-Rodríguez, J.M., 2021. The recycling of surgical face masks as sound porous absorbers: Preliminary evaluation. Sci. Total Environ. 786, 147461. https://doi.org/10.1016/j.scitotenv.2021.147461
Madhavan Nampoothiri, K., Nair, N.R., John, R.P., 2010. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101, 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092
Mahajan, A., Singh, I., Arora, N., 2023. An integrated multi-criteria decision-making framework for the selection of sustainable biodegradable polymer for food packaging applications. Environ. Dev. Sustain. 26, 8399–8420. https://doi.org/10.1007/s10668-023-03052-z
Maiurova, A., Kurniawan, T.A., Kustikova, M., Bykovskaia, E., Othman, M.H.D., Singh, D., Goh, H.H., 2022. Promoting digital transformation in waste collection service and waste recycling in Moscow (Russia): Applying a circular economy paradigm to mitigate climate change impacts on the environment. J. Clean. Prod. 354, 131604. https://doi.org/10.1016/j.jclepro.2022.131604
Maj, H., Zjn, S., Pmf, E., G, S., F, V., Mdm, V., A, H., M, Z., R, van Z., 2016. ReCiPe 2016 : a harmonized life cycle impact assessment method at midpoint and endpoint level report I: characterization (Report). Rijksinstituut voor Volksgezondheid en Milieu RIVM.
Makobe, B., Mhangara, P., Gidey, E., Kganyago, M., 2024. Monitoring the invasion of Campuloclinium macrocephalum (less) DC plants using a novel MaxEnt and machine learning ensemble in the Cradle Nature Reserve, South Africa. Environ. Syst. Res. 13, 24. https://doi.org/10.1186/s40068-024-00351-w
Marcharla, E., Vinayagam, S., Gnanasekaran, L., Soto-Moscoso, M., Chen, W.-H., Thanigaivel, S., Ganesan, S., 2024. Microplastics in marine ecosystems: a comprehensive review of biological and ecological implications and its mitigation approach using nanotechnology for the sustainable environment. Environ. Res. 256, 119181. https://doi.org/10.1016/j.envres.2024.119181
Marples, M., 2022. Face masks expired? How to tell, plus why you should hold onto them despite easing restrictions. https://www.cnn.com/2022/03/03/health/mask-mandate-lift-guidelines-wellness/index.html (accessed 7.14.23).
Mazzei, H.G., Specchia, S., 2023. Latest insights on technologies for the treatment of solid medical waste: A review. J. Environ. Chem. Eng. 11, 109309. https://doi.org/10.1016/j.jece.2023.109309
Mehrabi Mazidi, M., Edalat, A., Berahman, R., Hosseini, F.S., 2018. Highly-toughened polylactide- (pla-) based ternary blends with significantly enhanced glass transition and melt strength: tailoring the interfacial interactions, phase morphology, and performance. Macromolecules 51, 4298–4314. https://doi.org/10.1021/acs.macromol.8b00557
Meng, K., Teng, Y., Ren, W., Wang, B., Geissen, V., 2023. Degradation of commercial biodegradable plastics and temporal dynamics of associated bacterial communities in soils: A microcosm study. Sci. Total Environ. 865, 161207. https://doi.org/10.1016/j.scitotenv.2022.161207
Meng, X., Qiu, J., Zhang, B., Sakai, E., Zhang, L., Feng, H., Tang, J., 2024. Optimizing mechanical and environmental degradation performance of polybutylene adipate terephthalate by adjusting polyvinyl alcohol content. Mater. Today Commun. 41, 110786. https://doi.org/10.1016/j.mtcomm.2024.110786
Menglei, Z., Zeng, Y., Jingnan, Z., Yan, W., Xiaolei, M.A., Jian, G.U.O., 2022. Life cycle assessment of biodegradable polylactic acid (PLA) plastic packaging products—taking Tianjin, China as a case study. J. Resour. Ecol. 13, 428.
Mercier, A., Gravouil, K., Aucher, W., Brosset-Vincent, S., Kadri, L., Colas, J., Bouchon, D., Ferreira, T., 2017. Fate of eight different polymers under uncontrolled composting conditions: relationships between deterioration, biofilm formation, and the material surface properties. Environ. Sci. Technol. 51, 1988–1997. https://doi.org/10.1021/acs.est.6b03530
Mhaske, S.T., Mestry, S.U., Patil, D.A., 2022. Cross-linking of polymers by various radiations: mechanisms and parameters, in: Radiation Technologies and Applications in Materials Science. CRC Press, pp. 1–28.
Min, K., Cuiffi, J.D., Mathers, R.T., 2020. Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nat. Commun. 11, 727. https://doi.org/10.1038/s41467-020-14538-z
Mishra, Sujata, Swain, S., Sahoo, M., Mishra, Sunanda, Das, A.P., 2022. Microbial colonization and degradation of microplastics in aquatic ecosystem: a review. Geomicrobiol. J. 39, 259–269. https://doi.org/10.1080/01490451.2021.1983670
Mohamed Nor, N.H., Obbard, J.P., 2014. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 79, 278–283. https://doi.org/10.1016/j.marpolbul.2013.11.025
Mohana, A.A., Islam, M.M., Rahman, M., Pramanik, S.K., Haque, N., Gao, L., Pramanik, B.K., 2023. Generation and consequence of nano/microplastics from medical waste and household plastic during the COVID-19 pandemic. Chemosphere 311, 137014. https://doi.org/10.1016/j.chemosphere.2022.137014
Muensterman, D.J., Cahuas, L., Titaley, I.A., Schmokel, C., De la Cruz, F.B., Barlaz, M.A., Carignan, C.C., Peaslee, G.F., Field, J.A., 2022. Per- and polyfluoroalkyl substances (PFAS) in facemasks: potential source of human exposure to PFAS with implications for disposal to landfills. Environ. Sci. Technol. Lett. 9, 320–326. https://doi.org/10.1021/acs.estlett.2c00019
Munir, M.T., Mardon, I., Al-Zuhair, S., Shawabkeh, A., Saqib, N.U., 2019. Plasma gasification of municipal solid waste for waste-to-value processing. Renew. Sustain. Energy Rev. 116, 109461. https://doi.org/10.1016/j.rser.2019.109461
Nair, L.S., Laurencin, C.T., 2007. Biodegradable polymers as biomaterials. Prog. Polym. Sci., Polymers in Biomedical Applications 32, 762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
Nanda, S., Berruti, F., 2021a. Thermochemical conversion of plastic waste to fuels: a review. Environ. Chem. Lett. 19, 123–148. https://doi.org/10.1007/s10311-020-01094-7
Nanda, S., Berruti, F., 2021b. A technical review of bioenergy and resource recovery from municipal solid waste. J. Hazard. Mater. 403, 123970. https://doi.org/10.1016/j.jhazmat.2020.123970
Naragund, V.S., Panda, P.K., 2022. Electrospun nanofiber-based respiratory face masks—a review. Emergent Mater. 5, 261–278. https://doi.org/10.1007/s42247-022-00350-6
Nguyen, T.A., Ichise, S., Kinashi, K., Sakai, W., Tsutsumi, N., Okubayashi, S., 2022. Spin trapping analysis of the thermal degradation of polypropylene. Polym. Degrad. Stab. 197, 109871. https://doi.org/10.1016/j.polymdegradstab.2022.109871
Nicosia, A., Gieparda, W., Foksowicz Flaczyk, J., Walentowska, J., Wesołek, D., Vazquez, B., Prodi, F., Belosi, F., 2015. Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Sep. Purif. Technol. 154, 154–160. https://doi.org/10.1016/j.seppur.2015.09.037
Nie, S., Huang, C.Z., Huang, W.W., Liu, J., 2021. A non-deterministic integrated optimization model with risk measure for identifying water resources management strategy. J. Environ. Inform. 38, 41–55. https://doi.org/10.3808/jei.202100459
Occasi, G., De Angelis, D., Scarsella, M., Tammaro, M., Tuccinardi, L., Tuffi, R., 2022. Recovery material from a new designed surgical face mask: A complementary approach based on mechanical and thermo-chemical recycling. J. Environ. Manage. 324, 116341. https://doi.org/10.1016/j.jenvman.2022.116341
Oliveira, A.M., Patrício Silva, A.L., Soares, A.M.V.M., Barceló, D., Duarte, A.C., Rocha-Santos, T., 2023. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment. J. Environ. Chem. Eng. 11, 109308. https://doi.org/10.1016/j.jece.2023.109308
Othman, S.H., Ronzi, N.D.A., Shapi’i, R.A., Dun, M., Ariffin, S.H., Mohammed, M.A.P., 2023. Biodegradability of starch nanocomposite films containing different concentrations of chitosan nanoparticles in compost and planting soils. Coatings 13, 777. https://doi.org/10.3390/coatings13040777
Paço, A., Jacinto, J., da Costa, J.P., Santos, P.S.M., Vitorino, R., Duarte, A.C., Rocha-Santos, T., 2019. Biotechnological tools for the effective management of plastics in the environment. Crit. Rev. Environ. Sci. Technol. 49, 410–441. https://doi.org/10.1080/10643389.2018.1548862
PADM Medical, 2022. World’s first plant-based medical grade face mask authorized under EUA by U.S. FDA. https://www.prnewswire.com/news-releases/worlds-first-plant-based-medical-grade-face-mask-authorized-under-eua-by-us-fda-301648847.html (accessed 1.5.23).
Pan, C., Ng, K.T.W., Fallah, B., Richter, A., 2019a. Evaluation of the bias and precision of regression techniques and machine learning approaches in total dissolved solids modeling of an urban aquifer. Environ. Sci. Pollut. Res. 26, 1821–1833. https://doi.org/10.1007/s11356-018-3751-y
Pan, C., Ng, K.T.W., Richter, A., 2019b. An integrated multivariate statistical approach for the evaluation of spatial variations in groundwater quality near an unlined landfill. Environ. Sci. Pollut. Res. 26, 5724–5737. https://doi.org/10.1007/s11356-018-3967-x
Pan, Y., Zeng, X.K., Gao, X.Y., Xu, H.X., Sun, Y.Y., Wang, D., Wu, J.C., 2022. Assessing human health risk to DNAPLs exposure in Bayesian uncertainty analysis. J. Environ. Inform. 39, 67–80. https://doi.org/10.3808/jei.202100460
Pandey, G., Madhuri, S., 2014. Heavy metals causing toxicity in animals and fishes. Res. J. Anim. Vet. Fish. Sci. 2, 17–23.
Pang, R., Wang, X., Zhang, L., Lei, L., Han, Z., Xie, B., Su, Y., 2024. Genome-centric metagenomics insights into the plastisphere-driven natural degradation characteristics and mechanism of biodegradable plastics in aquatic environments. Environ. Sci. Technol. 58, 18915–18927. https://doi.org/10.1021/acs.est.4c04965
Park, C., Choi, H., Andrew Lin, K.-Y., Kwon, E.E., Lee, J., 2021. COVID-19 mask waste to energy via thermochemical pathway: effect of co-feeding food waste. Energy 230, 120876. https://doi.org/10.1016/j.energy.2021.120876
Park, S., Jayaraman, S., 2021. From containment to harm reduction from SARS-CoV-2: a fabric mask for enhanced effectiveness, comfort, and compliance. J. Text. Inst. 112, 1144–1158. https://doi.org/10.1080/00405000.2020.1805971
Park, S., Kim, Y., Lee, W., Nam, C., 2022. Superhydrophobic polypropylene sorbent derived from discarded face masks: A highly efficient adsorbent for oil spill sorbent. Chemosphere 303, 135186. https://doi.org/10.1016/j.chemosphere.2022.135186
Parku, G.K., Collard, F.-X., Görgens, J.F., 2020. Pyrolysis of waste polypropylene plastics for energy recovery: Influence of heating rate and vacuum conditions on composition of fuel product. Fuel Process. Technol. 209, 106522. https://doi.org/10.1016/j.fuproc.2020.106522
Patil, N.A., Gore, P.M., Jaya Prakash, N., Govindaraj, P., Yadav, R., Verma, V., Shanmugarajan, D., Patil, S., Kore, A., Kandasubramanian, B., 2021. Needleless electrospun phytochemicals encapsulated nanofibre based 3-ply biodegradable mask for combating COVID-19 pandemic. Chem. Eng. J. 416, 129152. https://doi.org/10.1016/j.cej.2021.129152
Patrício Silva, A.L., Prata, J.C., Duarte, A.C., Barcelò, D., Rocha-Santos, T., 2021. An urgent call to think globally and act locally on landfill disposable plastics under and after covid-19 pandemic: pollution prevention and technological (Bio) remediation solutions. Chem. Eng. J. 426, 131201. https://doi.org/10.1016/j.cej.2021.131201
Pattnaik, S.S., Mohapatra, S.K., Mohanty, C., Behera, A.K., Tripathy, B.C., 2023. Influence of waste vetiver root fiber on mechanical, hydrophobicity, and biodegradation of soy-based biocomposites as plastic substitute. Fibers Polym. 24, 265–274. https://doi.org/10.1007/s12221-023-00085-z
Paysepar, H., Venkateswara Rao, K.T., Yuan, Z., Shui, H., Xu, C., 2020. Production of phenolic chemicals from hydrolysis lignin via catalytic fast pyrolysis. J. Anal. Appl. Pyrolysis 149, 104842. https://doi.org/10.1016/j.jaap.2020.104842
Peng, B.-Y., Sun, Y., Li, P., Yu, S., Xu, Y., Chen, J., Zhou, X., Wu, W.-M., Zhang, Y., 2023. Biodegradation of polyvinyl chloride, polystyrene, and polylactic acid microplastics in Tenebrio molitor larvae: Physiological responses. J. Environ. Manage. 345, 118818. https://doi.org/10.1016/j.jenvman.2023.118818
Peng, H., An, C., Chen, Z., Tian, X., Sun, Y., 2023a. Promoting cross-regional integration of maritime emission management: a euro-american linkage of carbon markets. Environ. Sci. Technol. 57, 12180–12190. https://doi.org/10.1021/acs.est.3c02529
Peng, H., An, C., Ng, K.T.W., Hao, J., Tian, X., 2023b. Advancing cleaner municipal waste transport through carbon accounting in the cap-and-trade system. Transp. Res. Part Transp. Environ. 114, 103560. https://doi.org/10.1016/j.trd.2022.103560
Petrescu, D.C., Rastegari, H., Petrescu-Mag, I.V., Petrescu-Mag, R.M., 2023. Determinants of proper disposal of single-use masks: knowledge, perception, behavior, and intervention measures. PeerJ 11, e15104. https://doi.org/10.7717/peerj.15104
Pizarro-Ortega, C.I., Dioses-Salinas, D.C., Fernández Severini, M.D., Forero López, A.D., Rimondino, G.N., Benson, N.U., Dobaradaran, S., De-la-Torre, G.E., 2022. Degradation of plastics associated with the COVID-19 pandemic. Mar. Pollut. Bull. 176, 113474. https://doi.org/10.1016/j.marpolbul.2022.113474
Pongputthipat, W., Ruksakulpiwat, Y., Chumsamrong, P., 2022. Development of biodegradable biocomposite films from poly(lactic acid), natural rubber and rice straw. Polym. Bull. 80, 10289–10307. https://doi.org/10.1007/s00289-022-04560-0
Ponjavic, M., Nikolic, M.S., Nikodinovic-Runic, J., Jeremic, S., Stevanovic, S., Djonlagic, J., 2017. Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions. Polym. Test. 57, 67–77. https://doi.org/10.1016/j.polymertesting.2016.11.018
Potrykus, M., Redko, V., Głowacka, K., Piotrowicz-Cieślak, A., Szarlej, P., Janik, H., Wolska, L., 2021. Polypropylene structure alterations after 5 years of natural degradation in a waste landfill. Sci. Total Environ. 758, 143649. https://doi.org/10.1016/j.scitotenv.2020.143649
Pourebrahimi, S., 2022. Upcycling face mask wastes generated during COVID-19 into value-added engineering materials: A review. Sci. Total Environ. 851, 158396. https://doi.org/10.1016/j.scitotenv.2022.158396
Prata, J.C., Silva, A.L.P., Duarte, A.C., Rocha-Santos, T., 2021. Disposable over reusable face masks: public safety or environmental disaster? Environments 8, 31. https://doi.org/10.3390/environments8040031
Prata, J.C., Silva, A.L.P., Walker, T.R., Duarte, A.C., Rocha-Santos, T., 2020. COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 54, 7760–7765. https://doi.org/10.1021/acs.est.0c02178
Pratibha, Saha, S., Hariprasad, P., 2022. Paddy straw-based biodegradable horticultural pots: An integrated greener approach to reduce plastic waste, valorize paddy straw and improve plant health. J. Clean. Prod. 337, 130588. https://doi.org/10.1016/j.jclepro.2022.130588
Priya, A., Dutta, K., Daverey, A., 2022. A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. J. Chem. Technol. Biotechnol. 97, 381–390. https://doi.org/10.1002/jctb.6675
Pulikkalparambil, H., Nandi, D., Rangappa, S.M., Prasanth, S., Siengchin, S., 2022. Polymer composites from natural fibers and recycled waste surgical masks during COVID-19 pandemic. Polym. Compos. 43, 3944–3950. https://doi.org/10.1002/pc.26668
Qin, Q., Yang, Y., Yang, C., Zhang, L., Yin, H., Yu, F., Ma, J., 2022. Degradation and adsorption behavior of biodegradable plastic PLA under conventional weathering conditions. Sci. Total Environ. 842, 156775. https://doi.org/10.1016/j.scitotenv.2022.156775
Quade, J., López-Ibáñez, S., Beiras, R., 2022. Mesocosm trials reveal the potential toxic risk of degrading bioplastics to marine life. Mar. Pollut. Bull. 179, 113673. https://doi.org/10.1016/j.marpolbul.2022.113673
Radu, E.-R., Panaitescu, D.M., Nicolae, C.-A., Gabor, R.A., Rădiţoiu, V., Stoian, S., Alexandrescu, E., Fierăscu, R., Chiulan, I., 2021. The soil biodegradability of structured composites based on cellulose cardboard and blends of polylactic acid and polyhydroxybutyrate. J. Polym. Environ. 29, 2310–2320. https://doi.org/10.1007/s10924-020-02017-x
Rahman, A.N.M.M., Alimuzzaman, S., Khan, R.A., 2019. Improvement of physical, mechanical and thermal properties of okra fiber/polypropylene composites by UV radiation. J. Inst. Eng. India Ser. E 100, 81–92. https://doi.org/10.1007/s40034-019-00138-0
Rahman, Md.M., Nayeem, Md.E.H., Ahmed, Md.S., Tanha, K.A., Sakib, Md.S.A., Uddin, K.M.M., Babu, H.Md.H., 2024. AirNet: predictive machine learning model for air quality forecasting using web interface. Environ. Syst. Res. 13, 44. https://doi.org/10.1186/s40068-024-00378-z
Raman, A., Jayan, J.S., Deeraj, B.D.S., Saritha, A., Joseph, K., 2021. Electrospun nanofibers as effective superhydrophobic surfaces: a brief review. Surf. Interfaces 24, 101140. https://doi.org/10.1016/j.surfin.2021.101140
Raut, I., Calin, M., Vuluga, Z., Alexandrescu, E., Arsene, M.L., Purcar, V., Nicolae, C.-A., Gurban, A.M., Doni, M., Jecu, L., 2019. Comparative study on the behavior of virgin and recycled polyolefins–cellulose composites in natural environmental conditions. J. Compos. Sci. 3, 60. https://doi.org/10.3390/jcs3020060
Ray, S., Cooney, R.P., 2018. Chapter 9 - Thermal degradation of polymer and polymer composites, in: Kutz, M. (Ed.), Handbook of Environmental Degradation of Materials (Third Edition). William Andrew Publishing, pp. 185–206. https://doi.org/10.1016/B978-0-323-52472-8.00009-5
Ray, S.S., Lee, H.K., Huyen, D.T.T., Chen, S.-S., Kwon, Y.-N., 2022. Microplastics waste in environment: A perspective on recycling issues from PPE kits and face masks during the COVID-19 pandemic. Environ. Technol. Innov. 26, 102290. https://doi.org/10.1016/j.eti.2022.102290
Rehman, Z. ur, Khalid, U., 2021. Reuse of COVID-19 face mask for the amelioration of mechanical properties of fat clay: A novel solution to an emerging waste problem. Sci. Total Environ. 794, 148746. https://doi.org/10.1016/j.scitotenv.2021.148746
Requena-Sanchez, N., Carbonel-Ramos, D., Moonsammy, S., Klaus, R., Punil, L.S., Ng, K.T.W., 2022. Virtual methodology for household waste characterization during the pandemic in an urban district of Peru: citizen science for waste management. Environ. Manage. 69, 1078–1090. https://doi.org/10.1007/s00267-022-01610-1
Rezvani Ghomi, E., Khosravi, F., Saedi Ardahaei, A., Dai, Y., Neisiany, R.E., Foroughi, F., Wu, M., Das, O., Ramakrishna, S., 2021. The life cycle assessment for polylactic acid (PLA) to make it a low-carbon material. Polymers 13, 1854. https://doi.org/10.3390/polym13111854
Ricardo, I.A., Alberto, E.A., Silva Júnior, A.H., Macuvele, D.L.P., Padoin, N., Soares, C., Gracher Riella, H., Starling, M.C.V.M., Trovó, A.G., 2021. A critical review on microplastics, interaction with organic and inorganic pollutants, impacts and effectiveness of advanced oxidation processes applied for their removal from aqueous matrices. Chem. Eng. J. 424, 130282. https://doi.org/10.1016/j.cej.2021.130282
Rosenboom, J.-G., Langer, R., Traverso, G., 2022. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137. https://doi.org/10.1038/s41578-021-00407-8
Rosli, N.A., Karamanlioglu, M., Kargarzadeh, H., Ahmad, I., 2021. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review. Int. J. Biol. Macromol. 187, 732–741. https://doi.org/10.1016/j.ijbiomac.2021.07.196
Rouillon, C., Bussiere, P.-O., Desnoux, E., Collin, S., Vial, C., Therias, S., Gardette, J.-L., 2016. Is carbonyl index a quantitative probe to monitor polypropylene photodegradation? Polym. Degrad. Stab. 128, 200–208. https://doi.org/10.1016/j.polymdegradstab.2015.12.011
Ruggero, F., Carretti, E., Gori, R., Lotti, T., Lubello, C., 2020. Monitoring of degradation of starch-based biopolymer film under different composting conditions, using TGA, FTIR and SEM analysis. Chemosphere 246, 125770. https://doi.org/10.1016/j.chemosphere.2019.125770
Ruggero, F., Onderwater, R.C.A., Carretti, E., Roosa, S., Benali, S., Raquez, J.-M., Gori, R., Lubello, C., Wattiez, R., 2021. Degradation of film and rigid bioplastics during the thermophilic phase and the maturation phase of simulated composting. J. Polym. Environ. 29, 3015–3028. https://doi.org/10.1007/s10924-021-02098-2
Saeed, S., Iqbal, A., Deeba, F., 2022. Biodegradation study of polyethylene and PVC using naturally occurring plastic degrading microbes. Arch. Microbiol. 204, 1–14. https://doi.org/10.1007/s00203-022-03081-8
Safaei, S.H., Young, S., Samimi, Z., Parvizi, F., Shokrollahi, A., Baniamer, M., 2022. Technology development for the removal of COVID-19 pharmaceutical active compounds from water and wastewater: a review. J. Environ. Inform. 40, 141–156. https://doi.org/doi:10.3808/jei.202200480
Saliu, F., Veronelli, M., Raguso, C., Barana, D., Galli, P., Lasagni, M., 2021. The release process of microfibers: from surgical face masks into the marine environment. Environ. Adv. 4, 100042. https://doi.org/10.1016/j.envadv.2021.100042
Sam, S.T., Ismail ,H., and Ahmad, Z., 2011. Soil burial of polyethylene-g-(Maleic Anhydride) compatibilised LLDPE/Soya powder blends. Polym.-Plast. Technol. Eng. 50, 851–861. https://doi.org/10.1080/03602559.2011.551977
Sambudi, N.S., Lin, W.Y., Harun, N.Y., Mutiari, D., 2022. Modification of poly(lactic acid) with orange peel powder as biodegradable composite. Polymers 14, 4126. https://doi.org/10.3390/polym14194126
Sangkham, S., 2020. Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Stud. Chem. Environ. Eng. 2, 100052. https://doi.org/10.1016/j.cscee.2020.100052
Sanito, R.C., Bernuy-Zumaeta, M., Yang, H.-H., Wang, Y.-F., 2022. Volatile organic compound (VOC) reduction from face mask wastes via a microwave plasma reactor. Aerosol Air Qual. Res. 22, 220266. https://doi.org/10.4209/aaqr.220266
Scheirs, J., 2000. Compositional and failure analysis of polymers: a practical approach. John Wiley & Sons.
SEA-DISTANCES.ORG - Distances. https://sea-distances.org/ (accessed 11.18.22).
Seggiani, M., Cinelli, P., Mallegni, N., Balestri, E., Puccini, M., Vitolo, S., Lardicci, C., Lazzeri, A., 2017. New bio-composites based on polyhydroxyalkanoates and posidonia oceanica fibres for applications in a marine environment. Materials 10, 326. https://doi.org/10.3390/ma10040326
Selvaranjan, K., Navaratnam, S., Rajeev, P., Ravintherakumaran, N., 2021. Environmental challenges induced by extensive use of face masks during COVID-19: a review and potential solutions. Environ. Chall. 3, 100039. https://doi.org/10.1016/j.envc.2021.100039
Sendra, M., Pereiro, P., Yeste, M.P., Novoa, B., Figueras, A., 2022. Surgical face masks as a source of emergent pollutants in aquatic systems: Analysis of their degradation product effects in Danio rerio through RNA-Seq. J. Hazard. Mater. 428, 128186. https://doi.org/10.1016/j.jhazmat.2021.128186
Seok, J.H., Enomoto, Y., Iwata, T., 2022. Synthesis of paramylon ester-graft-PLA copolymers and its two-step enzymatic degradation by proteinase K and β-1,3-glucanase. Polym. Degrad. Stab. 197, 109855. https://doi.org/10.1016/j.polymdegradstab.2022.109855
Shanmugam, V., Babu, K., Garrison, T.F., Capezza, A.J., Olsson, R.T., Ramakrishna, S., Hedenqvist, M.S., Singha, S., Bartoli, M., Giorcelli, M., Sas, G., Försth, M., Das, O., Restás, Á., Berto, F., 2021. Potential natural polymer-based nanofibres for the development of facemasks in countering viral outbreaks. J. Appl. Polym. Sci. 138, 50658. https://doi.org/10.1002/app.50658
Sharma, N.K., Sharma, L., 2019. Bio-medical waste management: An overview of various technologies. Int J Res Anal Rev 6, 65x–73x.
Sharma, P., Ranjan ,Prabhat, and Chakraborty, T., 2024. Applications of conceptual density functional theory in reference to quantitative structure–activity / property relationship. Mol. Phys. 122, e2331620. https://doi.org/10.1080/00268976.2024.2331620
Sharma, R., Chakraborty, P., Barman, S.R., 2023. Decontamination strategies and technologies for tackling COVID-19 hospitals and related biomedical waste, in: Shah, M.P. (Ed.), Modern Approaches in waste bioremediation: environmental microbiology. Springer International Publishing, Cham, pp. 57–99. https://doi.org/10.1007/978-3-031-24086-7_4
Sharma, S., Sharma, V., Chatterjee, S., 2023. Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment - a review. Sci. Total Environ. 875, 162627. https://doi.org/10.1016/j.scitotenv.2023.162627
Shashoua, Y., Peydaei, A., Mortensen, M.N., Kanstrup, A.B., Gregory, D.J., 2024. Physio-chemical degradation of single-use plastics in natural weather and marine environments. Environ. Pollut. 357, 124414. https://doi.org/10.1016/j.envpol.2024.124414
Shi, X., Chen, Z., Liu, X., Wei, W., Ni, B.-J., 2022. The photochemical behaviors of microplastics through the lens of reactive oxygen species: Photolysis mechanisms and enhancing photo-transformation of pollutants. Sci. Total Environ. 846, 157498. https://doi.org/10.1016/j.scitotenv.2022.157498
Sid, S., Mor, R.S., Kishore, A., Sharanagat, V.S., 2021. Bio-sourced polymers as alternatives to conventional food packaging materials: a review. Trends Food Sci. Technol. 115, 87–104. https://doi.org/10.1016/j.tifs.2021.06.026
Singh, E., Kumar, A., Mishra, R., Kumar, S., 2022. Solid waste management during COVID-19 pandemic: Recovery techniques and responses. Chemosphere 288, 132451. https://doi.org/10.1016/j.chemosphere.2021.132451
Sintim, H.Y., Bary, A.I., Hayes, D.G., Wadsworth, L.C., Anunciado, M.B., English, M.E., Bandopadhyay, S., Schaeffer, S.M., DeBruyn, J.M., Miles, C.A., Reganold, J.P., Flury, M., 2020. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci. Total Environ. 727, 138668. https://doi.org/10.1016/j.scitotenv.2020.138668
Sitorus, F., Brito-Parada, P.R., 2020. A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty. Renew. Sustain. Energy Rev. 127, 109891. https://doi.org/10.1016/j.rser.2020.109891
Skrzyniarz, M., Sajdak, M., Zajemska, M., Iwaszko, J., Biniek-Poskart, A., Skibiński, A., Morel, S., Niegodajew, P., 2022. Plastic waste management towards energy recovery during the covid-19 pandemic: the example of protective face mask pyrolysis. Energies 15, 2629. https://doi.org/10.3390/en15072629
Slezak, R., Krzystek, L., Puchalski, M., Krucińska, I., Sitarski, A., 2023. Degradation of bio-based film plastics in soil under natural conditions. Sci. Total Environ. 866, 161401. https://doi.org/10.1016/j.scitotenv.2023.161401
Song, J.H., Murphy, R.J., Narayan, R., Davies, G.B.H., 2009. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B Biol. Sci. 364, 2127–2139. https://doi.org/10.1098/rstb.2008.0289
Song, R., Murphy, M., Li, C., Ting, K., Soo, C., Zheng, Z., 2018. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Devel. Ther. 12, 3117–3145. https://doi.org/10.2147/DDDT.S165440
Song, Y.K., Hong, S.H., Eo, S., Han, G.M., Shim, W.J., 2020. Rapid production of micro- and nanoplastics by fragmentation of expanded polystyrene exposed to sunlight. Environ. Sci. Technol. 54, 11191–11200. https://doi.org/10.1021/acs.est.0c02288
Song, Y.K., Hong, S.H., Jang, M., Han, G.M., Jung, S.W., Shim, W.J., 2017. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 51, 4368–4376. https://doi.org/10.1021/acs.est.6b06155
Spennemann, D.H.R., 2022. Environmental decay of single use surgical face masks as an agent of plastic micro-fiber pollution. Environments 9, 94. https://doi.org/10.3390/environments9070094
Spierling, S., Knüpffer, E., Behnsen, H., Mudersbach, M., Krieg, H., Springer, S., Albrecht, S., Herrmann, C., Endres, H.-J., 2018. Bio-based plastics - a review of environmental, social and economic impact assessments. J. Clean. Prod. 185, 476–491. https://doi.org/10.1016/j.jclepro.2018.03.014
Starke, M.M., 2020. Material and structural modelling of corrugated paperboard packaging for horticultural produce (Thesis). Stellenbosch : Stellenbosch University.
Statista, 2023. Infographic: global mask sales surged 30-fold during the pandemic. Stat. Infographics. https://www.statista.com/chart/29100/global-face-mask-sales (accessed 4.12.23).
Statista, 2022. Face Masks - Worldwide | Statista Market Forecast. Statista. https://www.statista.com/outlook/cmo/tissue-hygiene-paper/face-masks/worldwide (accessed 11.5.22).
Stelzer-Braid, S., Oliver, B.G., Blazey, A.J., Argent, E., Newsome, T.P., Rawlinson, W.D., Tovey, E.R., 2009. Exhalation of respiratory viruses by breathing, coughing, and talking. J. Med. Virol. 81, 1674–1679. https://doi.org/10.1002/jmv.21556
Su, G., Ong, H.C., Ibrahim, S., Fattah, I.M.R., Mofijur, M., Chong, C.T., 2021. Valorisation of medical waste through pyrolysis for a cleaner environment: Progress and challenges. Environ. Pollut. 279, 116934. https://doi.org/10.1016/j.envpol.2021.116934
Su, Y., Shi, L., Zhao, H., Wang, J., Li, W., Jiang, Z., Wang, X., Yao, Y., Sun, X., 2023. A green strategy to recycle the waste PP melt-blown materials: From 2D to 3D construction. Waste Manag. 157, 159–167. https://doi.org/10.1016/j.wasman.2022.12.021
Sugumaran, V., Bhunia, H., Narula, A.K., 2017. Evaluation of biodegradability of potato peel powder based polyolefin biocomposites. J. Polym. Environ. 26, 2049–2060. https://doi.org/10.1007/s10924-017-1103-5
Sullivan, G.L., Delgado-Gallardo, J., Watson, T.M., Sarp, S., 2021. An investigation into the leaching of micro and nano particles and chemical pollutants from disposable face masks - linked to the COVID-19 pandemic. Water Res. 196, 117033. https://doi.org/10.1016/j.watres.2021.117033
Sun, J., Wang, X., Zheng, H., Xiang, H., Jiang, X., Fan, J., 2024. Characterization of the degradation products of biodegradable and traditional plastics on UV irradiation and mechanical abrasion. Sci. Total Environ. 909, 168618. https://doi.org/10.1016/j.scitotenv.2023.168618
Sun, J., Yang, S., Zhou, G.-J., Zhang, K., Lu, Y., Jin, Q., Lam, P.K.S., Leung, K.M.Y., He, Y., 2021. Release of microplastics from discarded surgical masks and their adverse impacts on the marine Copepod Tigriopus Japonicus. Environ. Sci. Technol. Lett. 8, 1065–1070. https://doi.org/10.1021/acs.estlett.1c00748
Sun, S., Yuan, Y., Chen, R., Xu, X., Zhang, D., 2021. Kinetic, thermodynamic and chemical reaction analyses of typical surgical face mask waste pyrolysis. Therm. Sci. Eng. Prog. 26, 101135. https://doi.org/10.1016/j.tsep.2021.101135
Surendren, A., K. Mohanty, A., Liu, Q., Misra, M., 2022. A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green Chem. 24, 8606–8636. https://doi.org/10.1039/D2GC02169B
Surip, S.N., Jaafar, W., 2018. Comparison study of the bio-degradation property of polylactic acid (PLA) green composites reinforced by kenaf fibers. Int. J. Technol. 9, 1205.
Suzuki, M., Ishii, S., Ota, M., Gonda, K., Kashima, H., Arai, T., Tachibana, Y., Takeno, H., Kasuya, K., 2024. Enhancing marine biodegradability of poly(butylene succinate) by blending with 16-hydroxyhexadecanoic acid and poly(ε-caprolactone). Polym. Degrad. Stab. 228, 110912. https://doi.org/10.1016/j.polymdegradstab.2024.110912
Tabatabaei, M., Hosseinzadeh Bandbafha, H., Yang, Y., Aghbashlo, M., Lam, S.S., Montgomery, H., Peng, W., 2021. Exergy intensity and environmental consequences of the medical face masks curtailing the COVID-19 pandemic: malign bodyguard? J. Clean. Prod. 313, 127880. https://doi.org/10.1016/j.jclepro.2021.127880
TAVANAIE, M., GEVARI, A., 2019. Biodegradability study of polypropylene fibers blended with disposable recycled poly(lactic acid) plastic flakes. Turk. J. Chem. 43, 424–434. https://doi.org/10.3906/kim-1807-116
Taylor, A.R., Wang, J., Kaur, P., Schlenk, D., Gan, J., 2023. Limited effectiveness of carbonaceous sorbents in sequestering aged organic contaminants in sediments. Environ. Sci. Technol. 57, 9385–9393. https://doi.org/10.1021/acs.est.3c02309
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metal toxicity and the environment, in: Luch, A. (Ed.), Molecular, clinical and environmental toxicology: volume 3: environmental toxicology, experientia supplementum. Springer, Basel, pp. 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
Teixeira, S., Eblagon, K.M., Miranda, F., R. Pereira, M.F., Figueiredo, J.L., 2021. Towards controlled degradation of poly(lactic) acid in technical applications. C 7, 42. https://doi.org/10.3390/c7020042
Teng, C., Zhou, K., Peng, C., Chen, W., 2021. Characterization and treatment of landfill leachate: A review. Water Res. 203, 117525. https://doi.org/10.1016/j.watres.2021.117525
TerraCycle, n.d. Masks - Zero Waste BoxTM. TerraCycle Zero Waste Boxes Aust. https://zerowasteboxes.terracycle.com.au/products/masks-zero-waste-boxes (accessed 7.22.23).
Tesfaldet, Y.T., Ndeh, N.T., Budnard, J., Treeson, P., 2022. Assessing face mask littering in urban environments and policy implications: the case of Bangkok. Sci. Total Environ. 806, 150952. https://doi.org/10.1016/j.scitotenv.2021.150952
Thadepalli, S., 2022. Review of multifarious applications of polymers in medical and health care textiles. Mater. Today Proc., International Conference on Integration of Advanced Technologies for Industry 4.0 : Materials Science 55, 330–336. https://doi.org/10.1016/j.matpr.2021.07.513
Thew, C.X.E., Lee, Z.S., Srinophakun, P., Ooi, C.W., 2023. Recent advances and challenges in sustainable management of plastic waste using biodegradation approach. Bioresour. Technol. 374, 128772. https://doi.org/10.1016/j.biortech.2023.128772
Tian, X., An, C., Chen, Z., 2023. The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review. Renew. Sustain. Energy Rev. 182, 113404. https://doi.org/10.1016/j.rser.2023.113404
Tian, X., An, C., Chen, Z., Tian, Z., 2021. Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada. Sci. Total Environ. 765, 144270. https://doi.org/10.1016/j.scitotenv.2020.144270
Tian, X., Lu, C., Song, Z., An, C., Wan, S., Peng, H., Feng, Q., Chen, Z., 2024. Quantifying weather-induced unreliable public transportation service in cold regions under future climate model scenarios. Sustain. Cities Soc. 113, 105660. https://doi.org/10.1016/j.scs.2024.105660
Tian, Y., Hu, H., Chen, C., Li, F., Bin Ying, W., Zheng, L., Wang, J., Zhang, R., Zhu, J., 2022. Enhanced seawater degradation through copolymerization with diglycolic acid: Synthesis, microstructure, degradation mechanism and modification for antibacterial packaging. Chem. Eng. J. 447, 137535. https://doi.org/10.1016/j.cej.2022.137535
Toloue Farrokh, N., Suopajärvi, H., Mattila, O., Umeki, K., Phounglamcheik, A., Romar, H., Sulasalmi, P., Fabritius, T., 2018. Slow pyrolysis of by-product lignin from wood-based ethanol production– A detailed analysis of the produced chars. Energy 164, 112–123. https://doi.org/10.1016/j.energy.2018.08.161
Torres, F.G., De-la-Torre, G.E., 2021. Face mask waste generation and management during the COVID-19 pandemic: an overview and the Peruvian case. Sci. Total Environ. 786, 147628. https://doi.org/10.1016/j.scitotenv.2021.147628
Torres, I., González-Tobío, B., Ares, P., Gómez-Herrero, J., Zamora, F., 2022. Evaluation of the degradation of the graphene-polypropylene composites of masks in harsh working conditions. Mater. Today Chem. 26, 101146. https://doi.org/10.1016/j.mtchem.2022.101146
Travel Guide 2023, Get City Details, Metro/Train Route Details, Fare Details, Station Details. Trainonrails. https://trainonrails.com/ (accessed 1.15.23).
Tribedi, P., Dey, S., 2017. Pre-oxidation of low-density polyethylene (LDPE) by ultraviolet light (UV) promotes enhanced degradation of LDPE in soil. Environ. Monit. Assess. 189, 1–8. https://doi.org/10.1007/s10661-017-6351-2
Tsuji, H., 2022. Hydrolytic Degradation, in: Poly(Lactic Acid). John Wiley & Sons, Ltd, pp. 467–516. https://doi.org/10.1002/9781119767480.ch21
Tuñón-Molina, A., Takayama, K., Redwan, E.M., Uversky, V.N., Andrés, J., Serrano-Aroca, Á., 2021. Protective face masks: current status and future trends. ACS Appl. Mater. Interfaces 13, 56725–56751. https://doi.org/10.1021/acsami.1c12227
Uheida, A., Mejía, H.G., Abdel-Rehim, M., Hamd, W., Dutta, J., 2021. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J. Hazard. Mater. 406, 124299. https://doi.org/10.1016/j.jhazmat.2020.124299
Uras, Ü., Carrier, M., Hardie, A.G., Knoetze, J.H., 2012. Physico-chemical characterization of biochars from vacuum pyrolysis of South African agricultural wastes for application as soil amendments. J. Anal. Appl. Pyrolysis 98, 207–213. https://doi.org/10.1016/j.jaap.2012.08.007
Uzoejinwa, B.B., He, X., Wang, S., El-Fatah Abomohra, A., Hu, Y., Wang, Q., 2018. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Convers. Manag. 163, 468–492. https://doi.org/10.1016/j.enconman.2018.02.004
Valikhan Anaraki, M., Mahmoudian, F., Nabizadeh Chianeh, F., Farzin, S., 2022. Dye pollutant removal from synthetic wastewater: A new modeling and predicting approach based on experimental data analysis, kriging interpolation method, and computational intelligence techniques. J. Environ. Inform. 40, 84–94.
Vanapalli, K.R., Sharma, H.B., Ranjan, V.P., Samal, B., Bhattacharya, J., Dubey, B.K., Goel, S., 2021a. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total Environ. 750, 141514. https://doi.org/10.1016/j.scitotenv.2020.141514
Vercalsteren, A., Spirinckx, C., Geerken, T., Claeys, P., 2007. Comparative LCA of 4 types of drinking cups used at events; eco-efficiency analysis of 4 types of drinking cups used at events. Bélgica: OVAM.
Vijayalakshmi, S., Gopalsamy, P., Muthusamy, K., Sundarraj, D.K., Pulikondan francis, S., Ramesh, T., Oh, D.-H., Thi Thuy, D.L., Anh Truong, T.T., Van, H.T., Karuppannan, S., 2022. Environmental hazard of polypropylene from disposable face masks linked to the COVID-19 pandemic and its possible mitigation techniques through a green approach. J. Chem. 2022, e9402236. https://doi.org/10.1155/2022/9402236
Villena, J., Moreno, M.M., González-Mora, S., López-Perales, J.A., Morales-Rodríguez, P.A., Moreno, C., 2022. Degradation pattern of five biodegradable, potentially low-environmental-impact mulches under laboratory conditions. Agriculture 12, 1910. https://doi.org/10.3390/agriculture12111910
Vimalkumar, K., Zhu, H., Kannan, K., 2022. Widespread occurrence of phthalate and non-phthalate plasticizers in single-use facemasks collected in the United States. Environ. Int. 158, 106967. https://doi.org/10.1016/j.envint.2021.106967
Vink, E.T.H., Glassner, D.A., Kolstad, J.J., Wooley, R.J., O’Connor, R.P., 2007. The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Ind. Biotechnol. 3, 58–81. https://doi.org/10.1089/ind.2007.3.058
Wan, S., Nik-Bakht, M., Ng, K.T.W., Tian, X., An, C., Sun, H., Yue, R., 2024. Insights into the urban municipal solid waste generation during the COVID-19 pandemic from machine learning analysis. Sustain. Cities Soc. 100, 105044. https://doi.org/10.1016/j.scs.2023.105044
Wang, C., Liang, S., Bai, L., Gu, X., Jin, X., Ok, Y.S., Gu, C., 2023. Photoaging of typical microplastics as affected by air humidity: mechanistic insights into the important role of water molecules. Environ. Sci. Technol. 57, 5967–5977. https://doi.org/10.1021/acs.est.2c08571
Wang, G.-X., Huang, D., Ji, J.-H., Völker, C., Wurm, F.R., 2021. Seawater-degradable polymers—fighting the marine plastic pollution. Adv. Sci. 8, 2001121. https://doi.org/10.1002/advs.202001121
Wang, Jiao, Shen, J., Ye, D., Yan, X., Zhang, Y., Yang, W., Li, X., Wang, Junqi, Zhang, L., Pan, L., 2020. Disinfection technology of hospital wastes and wastewater: suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environ. Pollut. 262, 114665. https://doi.org/10.1016/j.envpol.2020.114665
Wang, L., Gramlich, W.M., Gardner, D.J., Han, Y., Tajvidi, M., 2018. Spray-dried cellulose nanofibril-reinforced polypropylene composites for extrusion-based additive manufacturing: nonisothermal crystallization kinetics and thermal expansion. J. Compos. Sci. 2, 7. https://doi.org/10.3390/jcs2010007
Wang, M., Li, Q., Shi, C., Lv, J., Xu, Y., Yang, J., Chua, S.L., Jia, L., Chen, H., Liu, Q., Huang, C., Huang, Y., Chen, J., Fang, M., 2023. Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation. Nat. Nanotechnol. 1–9. https://doi.org/10.1038/s41565-023-01329-y
Wang, M.W., Wang, Y., Shen, F.Q., Jin, J.L., 2023. Projection pursuit method based on connection cloud model for assessment of debris flow disasters. J. Environ. Inform. 41, 118–129.
Wang, Zheng, An, C., Chen, X., Lee, K., Zhang, B., Feng, Q., 2021a. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. J. Hazard. Mater. 417, 126036. https://doi.org/10.1016/j.jhazmat.2021.126036
Wang, Z., An, C., Lee, K., Chen, X., Zhang, B., Yin, J., Feng, Q., 2022. Physicochemical change and microparticle release from disposable gloves in the aqueous environment impacted by accelerated weathering. Sci. Total Environ. 832, 154986. https://doi.org/10.1016/j.scitotenv.2022.154986
Wang, Z., An, C., Lee, K., Feng, Q., 2023. Overlooked role of bulk nanobubbles in the alteration and motion of microplastics in the ocean environment. Environ. Sci. Technol. 57, 11289–11299. https://doi.org/10.1021/acs.est.3c03270
Wang, Zhiwei, Burra, K.G., Lei, T., Gupta, A.K., 2021. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-a review. Prog. Energy Combust. Sci. 84, 100899. https://doi.org/10.1016/j.pecs.2020.100899
Wang, Zheng, Guy, C., Ng, K.T.W., An, C., 2021b. A new challenge for the management and disposal of personal protective equipment waste during the COVID-19 pandemic. Sustainability 13, 7034. https://doi.org/10.3390/su13137034
Wang, Z., Huang, G., An, C., 2025. Recyclability and recovery of carbon from waste printed circuit boards within a circular economy perspective: A review. J. Environ. Manage. 375, 124266. https://doi.org/10.1016/j.jenvman.2025.124266
Webb, H.K., Arnott, J., Crawford, R.J., Ivanova, E.P., 2013. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers 5, 1–18. https://doi.org/10.3390/polym5010001
Weber, D., 2021. Awarded for Innovative advanced recycling solution for ppe waste - GreenMantra Technologies. https://greenmantra.com/iscaward/ (accessed 7.22.23).
Weissinger, R., 2022. Standards and the International standardization landscape: Relevance to plastics and plastic pollution. Forum on Trade, Environment & the SDGs (TESS).
White, J.R., Shyichuk, A.V., 2007. Effect of stabilizer on scission and crosslinking rate changes during photo-oxidation of polypropylene. Polym. Degrad. Stab. 92, 2095–2101. https://doi.org/10.1016/j.polymdegradstab.2007.07.013
WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int (accessed 9.7.22).
WHO: COVID-19 is no longer global health emergency | CTV News. https://www.ctvnews.ca/health/coronavirus/covid-19-is-no-longer-global-health-emergency-world-health-organization-1.6385557 (accessed 5.6.23).
World Population Clock: 8 Billion People (LIVE, 2022) - Worldometer. https://www.worldometers.info/world-population/ (accessed 12.26.22).
Wu, X., Zhou, Q., Mu, L., Hu, X., 2022. Machine learning in the identification, prediction and exploration of environmental toxicology: Challenges and perspectives. J. Hazard. Mater. 438, 129487. https://doi.org/10.1016/j.jhazmat.2022.129487
Xiao, H., Harding, J., Lei, S., Chen, W., Xia, S., Cai, N., Chen, X., Hu, J., Chen, Y., Wang, X., Tu, X., Yang, H., Chen, H., 2022. Hydrogen and aromatics recovery through plasma-catalytic pyrolysis of waste polypropylene. J. Clean. Prod. 350, 131467. https://doi.org/10.1016/j.jclepro.2022.131467
Xue, J., Grift, T.E., Hansen, A.C., 2011. Effect of biodiesel on engine performances and emissions. Renew. Sustain. Energy Rev. 15, 1098–1116. https://doi.org/10.1016/j.rser.2010.11.016
Yadav, D., Singh, R., Kumar, A., Sarkar, B., 2022. Reduction of pollution through sustainable and flexible production by controlling by-products. J. Environ. Inform. 40, 106–124. https://doi.org/10.3808/jei.202200476
Yan, H., Cousins, I.T., Zhang, C., Zhou, Q., 2015. Perfluoroalkyl acids in municipal landfill leachates from China: occurrence, fate during leachate treatment and potential impact on groundwater. Sci. Total Environ. 524–525, 23–31. https://doi.org/10.1016/j.scitotenv.2015.03.111
Yang, G.Q., Li, M., Guo, P., 2022. Monte carlo-based agricultural water management under uncertainty: a case study of Shijin irrigation district, China. J. Environ. Inform. 39, 152–164. https://doi.org/10.3808/jei.202000441
Yang, M., Zhang, B., Xin, X., Liu, B., Zhu, Z., Dong, G., Zhao, Y., Lee, K., Chen, B., 2022. Microplastic-oil-dispersant agglomerates in the marine environment: Formation mechanism and impact on oil dispersion. J. Hazard. Mater. 426, 127825. https://doi.org/10.1016/j.jhazmat.2021.127825
Yang, M., Zhao, R., Qin, J., Zhang, J., Yang, L., Wang, C., Yue, G., 2023. Co-pyrolysis of heavy bio-oil and disposable masks pyrolysate with Ce/Fe-based oxygen carrier catalyst. Fuel 336, 127147. https://doi.org/10.1016/j.fuel.2022.127147
Yang, W., Cao, L., Li, W., Du, X., Lin, Z., Zhang, P., 2022. Carbon nanotube prepared by catalytic pyrolysis as the electrode for supercapacitors from polypropylene wasted face masks. Ionics 28, 3489–3500. https://doi.org/10.1007/s11581-022-04567-7
Yang, X., An, C., Feng, Q., Boufadel, M., Ji, W., 2022. Aggregation of microplastics and clay particles in the nearshore environment: characteristics, influencing factors, and implications. Water Res. 119077. https://doi.org/10.1016/j.watres.2022.119077
Yang, X., Huang, G., Chen, Z., Feng, Q., An, C., Lyu, L., Bi, H., Zhou, S., 2024a. Spotlight on the vertical migration of aged microplastics in coastal waters. J. Hazard. Mater. 469, 134040. https://doi.org/10.1016/j.jhazmat.2024.134040
Yang, X., Huang, G., Feng, Q., An, C., Zhou, S., Bi, H., Lyu, L., 2024b. Unveiling the vertical migration of microplastics with suspended particulate matter in the estuarine environment: roles of salinity, particle properties, and hydrodynamics. Environ. Sci. Technol. 58, 2944–2955. https://doi.org/10.1021/acs.est.3c08186
Yang, Y., Liu, W., Zhang, Z., Grossart, H.-P., Gadd, G.M., 2020. Microplastics provide new microbial niches in aquatic environments. Appl. Microbiol. Biotechnol. 104, 6501–6511. https://doi.org/10.1007/s00253-020-10704-x
Yeligbayeva, G., Al Azzam, K.M., Irmukhametova, G., Bekbayeva, L., Kairatuly, O.Z., Iskalieva, A., Negim, E.-S., Nadia, B., 2024. The effect of calcium carbonate, rice, and wheat straw on the biodegradability of polyethylene/starch films. Polym. Cryst. 2024, 8674988. https://doi.org/10.1155/2024/8674988
Yeung, C.W.S., Teo, J.Y.Q., Loh, X.J., Lim, J.Y.C., 2021. Polyolefins and polystyrene as chemical resources for a sustainable future: challenges, advances, and prospects. ACS Mater. Lett. 3, 1660–1676. https://doi.org/10.1021/acsmaterialslett.1c00490
Yousef, S., Eimontas, J., Striūgas, N., Abdelnaby, M.A., 2022. A new strategy for butanol extraction from COVID-19 mask using catalytic pyrolysis process over ZSM-5 zeolite catalyst and its kinetic behavior. Thermochim. Acta 711, 179198. https://doi.org/10.1016/j.tca.2022.179198
Yousef, S., Eimontas, J., Striūgas, N., Abdelnaby, M.A., 2021. Pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of coronavirus face masks. J. Anal. Appl. Pyrolysis 156, 105118. https://doi.org/10.1016/j.jaap.2021.105118
Yu, F., Pei, Y., Zhang, X., Ma, J., 2023. Weathering and degradation of polylactic acid masks in a simulated environment in the context of the COVID-19 pandemic and their effects on the growth of winter grazing ryegrass. J. Hazard. Mater. 448, 130889. https://doi.org/10.1016/j.jhazmat.2023.130889
Yu, Y., Ding, Y., Zhou, C., Ge, S., 2023. Aging of polylactic acid microplastics during hydrothermal treatment of sewage sludge and its effects on heavy metals adsorption. Environ. Res. 216, 114532. https://doi.org/10.1016/j.envres.2022.114532
Yue, R., An, C., Ye, Z., Owens, E., Taylor, E., Zhao, S., 2022. Green biomass-derived materials for oil spill response: recent advancements and future perspectives. Curr. Opin. Chem. Eng. 36, 100767. https://doi.org/10.1016/j.coche.2021.100767
Yuwen, C., Liu, B., Rong, Q., Hou, K., Zhang, L., Guo, S., 2023. Enhanced microwave absorption capacity of iron-based catalysts by introducing Co and Ni for microwave pyrolysis of waste COVID-19 masks. Fuel 340, 127551. https://doi.org/10.1016/j.fuel.2023.127551
Yuwen, C., Liu, B., Rong, Q., Zhang, L., Guo, S., 2022. Porous carbon materials derived from discarded COVID-19 masks via microwave solvothermal method for lithium‑sulfur batteries. Sci. Total Environ. 817, 152995. https://doi.org/10.1016/j.scitotenv.2022.152995
Zaaba, N.F., Ismail, H., Jaafar, M., 2015. A study of the degradation of compatibilized and uncompatibilized peanut shell powder/recycled polypropylene composites due to natural weathering. J. Vinyl Addit. Technol. 23, 290–297. https://doi.org/10.1002/vnl.21504
Zaaba, N.F., Jaafar, M., 2020. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 60, 2061–2075. https://doi.org/10.1002/pen.25511
Zander, N.E., Gillan, M., Burckhard, Z., Gardea, F., 2019. Recycled polypropylene blends as novel 3D printing materials. Addit. Manuf. 25, 122–130.
Zhang, B., Wang, J., Yan, F., 2018. Load-dependent tribocorrosion behaviour of nickel-aluminium bronze in artificial seawater. Corros. Sci. 131, 252–263. https://doi.org/10.1016/j.corsci.2017.11.028
Zhang, J., Hori, N., Takemura, A., 2022. Stability and degradation of four agricultural wastes liquefied polyols based polyurethane foams. J. Appl. Polym. Sci. 139, e52893. https://doi.org/10.1002/app.52893
Zhang, K., Hamidian, A.H., Tubić, A., Zhang, Y., Fang, J.K.H., Wu, C., Lam, P.K.S., 2021. Understanding plastic degradation and microplastic formation in the environment: A review. Environ. Pollut. 274, 116554. https://doi.org/10.1016/j.envpol.2021.116554
Zhang, M., Biesold, G.M., Choi, W., Yu, J., Deng, Y., Silvestre, C., Lin, Z., 2022. Recent advances in polymers and polymer composites for food packaging. Mater. Today 53, 134–161. https://doi.org/10.1016/j.mattod.2022.01.022
Zhang, M., Sun, S., Liu, J., Sun, J., 2023. Recycling polypropylene from non-woven disposable masks in developing a three-dimensional printing filament. Text. Res. J. 00405175221147722. https://doi.org/10.1177/00405175221147722
Zhang, Q., Bai, X., Ding, L., Zhang, X., Zhang, L., Shu, X., Guo, X., 2023. Assessment of relationship between aging and contaminant-carryover for different filter layer of surgical mask under urban environmental stressors. J. Hazard. Mater. 443, 130381. https://doi.org/10.1016/j.jhazmat.2022.130381
Zhang, Y., Gao, W., Mo, A., Jiang, J., He, D., 2022. Degradation of polylactic acid/polybutylene adipate films in different ratios and the response of bacterial community in soil environments. Environ. Pollut. 313, 120167. https://doi.org/10.1016/j.envpol.2022.120167
Zhao, C., Mark, L.H., Kim, S., Chang, E., Park, C.B., Lee, P.C., 2021. Recent progress in micro-/nano-fibrillar reinforced polymeric composite foams. Polym. Eng. Sci. 61, 926–941. https://doi.org/10.1002/pen.25643
Zhao, J., Huang, Y., Wang, G., Qiao, Y., Chen, Z., Zhang, A., Park, C.B., 2021. Fabrication of outstanding thermal-insulating, mechanical robust and superhydrophobic PP/CNT/sorbitol derivative nanocomposite foams for efficient oil/water separation. J. Hazard. Mater. 418, 126295. https://doi.org/10.1016/j.jhazmat.2021.126295
Zhao, S., Huang, G., An, C., Wei, J., Yao, Y., 2015. Enhancement of soil retention for phenanthrene in binary cationic gemini and nonionic surfactant mixtures: Characterizing two-step adsorption and partition processes through experimental and modeling approaches. J. Hazard. Mater. 286, 144–151. https://doi.org/10.1016/j.jhazmat.2014.12.044
Zhao, X., Boruah, B., Chin, K.F., Đokić, M., Modak, J.M., Soo, H.S., 2022. Upcycling to sustainably reuse plastics. Adv. Mater. 34, 2100843. https://doi.org/10.1002/adma.202100843
Zheng, J., Suh, S., 2019. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378.
Zheng, M., Wu, P., Li, L., Yu, F., Ma, J., 2023. Adsorption/desorption behavior of ciprofloxacin on aged biodegradable plastic PLA under different exposure conditions. J. Environ. Chem. Eng. 11, 109256. https://doi.org/10.1016/j.jece.2022.109256
Zheng, Y., Tao, L., Yang, X., Huang, Y., Liu, C., Zheng, Z., 2019. Comparative study on pyrolysis and catalytic pyrolysis upgrading of biomass model compounds: thermochemical behaviors, kinetics, and aromatic hydrocarbon formation. J. Energy Inst. 92, 1348–1363. https://doi.org/10.1016/j.joei.2018.09.006
Zhou, F., Li, Y., Wang, S., Wu, X., Peng, J., Wang, F., Wang, L., Mao, J., 2023. Turning waste into valuables: In situ deposition of polypyrrole on the obsolete mask for Cr(VI) removal and desalination. Sep. Purif. Technol. 306, 122643. https://doi.org/10.1016/j.seppur.2022.122643
Zhou, S., Chen, Z., Huang, X., Yang, X., Lyu, L., An, C., Peng, H., 2024. An integrated environmental and economic assessment for the disposal of food waste from grocery retail stores towards resource recovery. Environ. Sci. Pollut. Res. 31, 63325–63342. https://doi.org/10.1007/s11356-024-35402-3
Zhou, W., Yan, Z., Zhang, L., 2024. A comparative study of 11 non-linear regression models highlighting autoencoder, DBN, and SVR, enhanced by SHAP importance analysis in soybean branching prediction. Sci. Rep. 14, 5905. https://doi.org/10.1038/s41598-024-55243-x
Zhu, Y., Wang, Z., Chen, Z., Lin, C., Li, P., Huang, Z., Cai, P., Wu, C., Zeng, Q., 2022. High value-added utilization of artificial marble wastes and potential applications in biodegradable sustainable packaging. Compos. Sci. Technol. 229, 109682. https://doi.org/10.1016/j.compscitech.2022.109682
Žorža, L., Gudrā, D., Sīpola, K., Vonda, K., Fridmanis, D., Kalniņa, I., Bartkevics, V., Dēliņa, A., Grīnbergs, A., Muter, O., 2023. Uncovering the potential of landfill leachate for biodegradation of cassava-derived plastics. Bioresour. Technol. Rep. 24, 101628. https://doi.org/10.1016/j.biteb.2023.101628
Repository Staff Only: item control page


Download Statistics
Download Statistics