Sagala, Eyrn Scarlet (2025) Parametric Heat Exchanger Sizing Model for Early Aircraft Design Phases. Masters thesis, Concordia University.
Preview |
Text (application/pdf)
8MBSagala_MA_F2025.pdf - Accepted Version Available under License Spectrum Terms of Access. |
Abstract
The aviation industry aims to reduce its environmental impact, and alternative propulsion architectures,
including hydrogen-based, hybrid-electric, or all-electric systems, are seen as promising
pathways. However, these novel designs have raised new requirements and feasibility questions
regarding thermal management. Electric Propulsion Aircraft (EPA) and Hybrid-Electric Propulsion
Aircraft (HEPA) fundamentally change the Thermal Management System (TMS) landscape by
relocating heat loads from the nacelle to inside the fuselage. Consequently, new design and development
methods for TMSs are necessary, beginning at the component level. These systems are
typically comprise of Heat Exchanger (HX)s, headers, distributors, pumps, pipes, ducts, valves, and
nozzles. Heat exchangers serve as the core component, facilitating heat transfer between materials.
This thesis presents research on the development and validation of a parametric sizing methodology
for heat exchangers intended for early aircraft design phases within a Multidisciplinary Design
Analysis and Optimization (MDAO) framework, i.e., for cryogenic heat transfer. The method is
based on physical equations, combined with validated empirical relationships for heat exchanger
design with iterative solver algorithms for sizing purposes. Since design problems typically involve
multiple variables and possible solutions, the methodology employs constraint-based optimization
techniques alongside a weighted sum solution selection method. The methodology is validated experimentally
by comparing its results with a commercial heat exchanger, and cross-validated with a
cryogenic HX. The research examines an all-electric hydrogen fuel cell aircraft architecture with a
7.6 MW propulsion system. Results show that the methodology successfully characterizes heat exchanger
performance across multiple operating conditions. The study reveals that idealized assumptions
overestimate system cooling potential by approximately 10%, with pressure losses reducing
liquid hydrogen cooling capacity by 60 kW and single-stage expansion further decreasing it by 38
kW. This methodology advances aircraft design by providing a parametric framework for evaluating
TMS requirements and feasibility during conceptual design. It enables more precise assessment
of hydrogen-based propulsion systems integration challenges while supporting the development of
efficient, sustainable aviation technologies.
iii
| Divisions: | Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering |
|---|---|
| Item Type: | Thesis (Masters) |
| Authors: | Sagala, Eyrn Scarlet |
| Institution: | Concordia University |
| Degree Name: | M.A. Sc. |
| Program: | Mechanical Engineering |
| Date: | 18 August 2025 |
| Thesis Supervisor(s): | Liscouët-Hanke, Susan |
| Keywords: | heat transfer, heat exchanger, design, numerical modeling |
| ID Code: | 996221 |
| Deposited By: | Eyrn Scarlet Sagala |
| Deposited On: | 04 Nov 2025 17:16 |
| Last Modified: | 04 Nov 2025 17:16 |
References:
[1] “Agenda item 14(e). methodological issues under the convention: Emissions from fuel usedfor international aviation and maritime transport,” International Civil Aviation Organization,
Montreal, Canada, Submission SBSTA57, 2022. [Online]. Available: https : / / www .
icao . int / environmental - protection / Documents / SBSTA57 _ ICAO %
20Submission_Final.pdf.
[2] M. Bracha, “Liquid hydrogen – status and trends as potential aviation fuel,” in Fuel Cell
and Hydrogen Technologies in Aviation, C. O. Colpan and A. Kovaˇc, Eds., Cham: Springer
International Publishing, 2022, pp. 23–53, ISBN: 978-3-030-99018-3. DOI: 10.1007/978-
3-030-99018-3_2. [Online]. Available: https://doi.org/10.1007/978-3-
030-99018-3_2.
[3] Air Transport Action Group. “Waypoint 2050,” Waypoint 2050. (2021), [Online]. Available:
https : / / aviationbenefits . org / environmental - efficiency /
climate-action/waypoint-2050/.
[4] Air Transport Action Group, “Aviation: Benefits beyond borders 2024,” Switzerland, Industry
High Level Group Report, Dec. 2024. [Online]. Available: https://aviationbenefits.
org/media/e5ynn4x0/abbb2024_full_report.pdf.
[5] “Consortium for research and innovation in aerospace in quebec (CRIAQ),” Home - CRIAQ.
(2025), [Online]. Available: https://www.criaq.aero/en/.
[6] “Projects - EAP: Exploration and modeling of alternative propulsion technologies for business
jets,” Projects - CRIAQ. (2025), [Online]. Available: https://www.criaq.aero/
en/projects/.
[7] A. Van Heerden, D. Judt, S. Jafari, C. Lawson, T. Nikolaidis, and D. Bosak, “Aircraft thermal
management: Practices, technology, system architectures, future challenges, and opportunities,”
Progress in Aerospace Sciences, vol. 128, 2022, ISSN: 0376-0421. DOI: 10.1016/j.
paerosci.2021.100767.
[8] ZeroAvia. “Hydrogen-electric powertrains,” zeroavia.com. (2025), [Online]. Available: https:
//zeroavia.com/powertrains/.
[9] I. Moir and A. G. Seabridge, Aircraft systems: mechanical, electrical, and avionics subsystems
integration (Aerospace series), 3rd ed. Chichester, West Sussex, England ; Hoboken,
NJ: Wiley, 2008, 504 pp., OCLC: ocn190786124, ISBN: 978-0-470-05996-8.
[10] H. Kellermann, S. Fuhrmann, M. Shamiyeh, and M. Hornung, “Design of a battery cooling
system for hybrid electric aircraft,” Journal of Propulsion and Power, vol. 38, no. 5, pp. 736–
751, Sep. 2022, eprint: https://doi.org/10.2514/1.B38695. DOI: 10.2514/1.B38695.
[Online]. Available: https://doi.org/10.2514/1.B38695.
[11] M. A. Rend´on, C. D. S´anchez R., J. Gallo M., and A. H. Anzai, “Aircraft hybrid-electric
propulsion: Development trends, challenges and opportunities,” Journal of Control, Automation
and Electrical Systems, vol. 32, no. 5, pp. 1244–1268, Oct. 1, 2021, ISSN: 2195-3899.
DOI: 10.1007/s40313-021-00740-x. [Online]. Available: https://doi.org/
10.1007/s40313-021-00740-x.
[12] National Aeronautics and Space Administration. “EAP frequently asked questions.” Section:
Aeronautics. (2025), [Online]. Available: https://www.nasa.gov/eap-faqs/.
[13] N. Gray, S. McDonagh, R. O’Shea, B. Smyth, and J. D. Murphy, “Decarbonising ships,
planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and
haulage sectors,” vol. 1, 2021. DOI: 10.1016/j.adapen.2021.100008. [Online].
Available: http://dx.doi.org/10.1016/j.adapen.2021.100008.
[14] C. Hartmann, J. K. Nøland, R. Nilssen, and R. Mellerud, “Dual use of liquid hydrogen in a
next-generation PEMFC-powered regional aircraft with superconducting propulsion,” IEEE
Transactions on Transportation Electrification, vol. 8, no. 4, pp. 4760–4778, Dec. 2022, Conference
Name: IEEE Transactions on Transportation Electrification, ISSN: 2332-7782. DOI:
10.1109/TTE.2022.3170827.
[15] S. Hall, Rules of thumb for chemical engineers, Sixth edition. Amsterdam, Netherlands: Elsevier,
2018, ISBN: 978-0-12-811038-6 0-12-811038-4 978-0-12-811037-9 0-12-811037-6.
[Online]. Available: http://uclibs.org/PID/301267.
[16] S. Gudmundsson, General aviation aircraft design : applied methods and procedures, Second
edition. Oxford, United Kingdom: Elsevier, 2022, ISBN: 978-0-12-822647-6 0-12-822647-1.
[Online]. Available: https://search.ebscohost.com/login.aspx?direct=
true&scope=site&db=nlebk&db=nlabk&AN=2464466.
[17] “Innovative benchmark technology for aircraft engineering design and efficient design phase
optimisation — FP7,” CORDIS — European Commission. (Jun. 2024), [Online]. Available:
https://cordis.europa.eu/project/id/605396/reporting.
[18] R. F. Barron and G. F. Nellis, Cryogenic Heat Transfer, 2nd ed. Boca Raton: CRC Press,
Taylor & Francis Group, 2016, 704 pp., ISBN: 978-1-4822-2745-1 1-4822-2745-2. DOI: 10.
1201/b20225. [Online]. Available: https://doi.org/10.1201/b20225.
[19] I. H. Bell, J. Wronski, S. Quoilin, and V. Lemort, “Pure and pseudo-pure fluid thermophysical
property evaluation and the open-source thermophysical property library CoolProp,” Industrial
& Engineering Chemistry Research, vol. 53, no. 6, pp. 2498–2508, Feb. 12, 2014,
Publisher: American Chemical Society, ISSN: 0888-5885. DOI: 10.1021/ie4033999.
[Online]. Available: https://doi.org/10.1021/ie4033999.
[20] Z. Ouyang, T. Nikolaidis, and S. Jafari, “Integrated power and thermal management systems
for civil aircraft: Review, challenges, and future opportunities,” Applied Sciences, vol. 14,
no. 9, p. 3689, Apr. 26, 2024, ISSN: 2076-3417. DOI: 10.3390/app14093689. [Online].
Available: https://www.mdpi.com/2076-3417/14/9/3689.
[21] J. Kim, K. Kwon, S. Roy, E. Garcia, and D. N. Mavris, “Megawatt-class turboelectric distributed
propulsion, power, and thermal systems for aircraft,” in 2018 AIAA Aerospace Sciences
Meeting, Kissimmee, Florida: American Institute of Aeronautics and Astronautics,
Jan. 8, 2018, ISBN: 978-1-62410-524-1. DOI: 10.2514/6.2018-2024. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/6.2018-2024.
[22] M. Coutinho et al., “A review on the recent developments in thermal management systems
for hybrid-electric aircraft,” Applied Thermal Engineering, vol. 227, p. 120 427, Jun. 5, 2023,
ISSN: 1359-4311. DOI: 10.1016/j.applthermaleng.2023.120427. [Online].
Available: https : / / www . sciencedirect . com / science / article / pii /
S1359431123004568.
[23] T. Yu, Y. Huangfu, H. Bai, Y. Liu, W. Shi, and Z. Zhang, “An energy management strategy
based on equivalent consumption minimum for hybrid-electric aircraft with battery cooling
system,” in 2022 IEEE 5th International Conference on Electronics Technology (ICET),
ISSN: 2768-6515, May 2022, pp. 280–284. DOI: 10.1109/ICET55676.2022.9824153.
[24] B. Tarhan, O. Yetik, and T. H. Karakoc, “Hybrid battery management system design for electric
aircraft,” Energy, vol. 234, p. 121 227, Nov. 1, 2021, ISSN: 0360-5442. DOI: 10.1016/
j.energy.2021.121227. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0360544221014754.
[25] Thomas Imre Cyrille Buidin and Florin Mariasiu, “Battery thermal management systems:
Current status and design approach of cooling technologies,” Energies, vol. 14, no. 4879,
p. 4879, 2021, ISSN: 1996-1073. DOI: 10.3390/en14164879.
[26] R. Jansen, C. Bowman, A. Jankovsky, R. Dyson, and J. Felder, “Overview of NASA electrified
aircraft propulsion (EAP) research for large subsonic transports,” in 53rd AIAA/SAE/ASEE
Joint Propulsion Conference, ser. AIAA Propulsion and Energy Forum, American Institute
of Aeronautics and Astronautics, Jul. 7, 2017. DOI: 10.2514/6.2017-4701. [Online].
Available: https://doi.org/10.2514/6.2017-4701.
[27] J. M. Rheaume and C. E. Lentsii, “Design and simulation of a commercial hybrid electric
aircraft thermal management system,” in 2018 AIAA/IEEE Electric Aircraft Technologies
Symposium (EATS), Jul. 2018, pp. 1–9. [Online]. Available: https://ieeexplore.
ieee.org/document/8552766.
[28] J. M. Rheaume, M. Macdonald, and C. E. Lents, “Commercial hybrid electric aircraft thermal
management system design, simulation, and operation improvements,” in 2019 AIAA/IEEE
Electric Aircraft Technologies Symposium (EATS), Aug. 2019, pp. 1–23. DOI: 10.2514/
6.2019-4492.
[29] M. Sumption, J. Murphy, M. Susner, and T. Haugan, “Performance metrics of electrical conductors
for aerospace cryogenic motors, generators, and transmission cables,” Cryogenics,
vol. 111, p. 103 171, Oct. 1, 2020, ISSN: 0011-2275. DOI: 10.1016/j.cryogenics.
2020.103171. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0011227520301739.
[30] G. Licheva and S. Liscou¨et-Hanke, “CRYOGENIC TANK SIZING MODEL FOR THE
CONCEPTUAL DESIGN OF HYDROGEN-POWERED AIRCRAFT,” in Aircraft Design
and Integrated System, Florence, Italy: International Council of the Aeronautical Sciences,
2024. [Online]. Available: https://www.icas.org/icas_archive/icas2024/
data/papers/icas2024_0193_paper.pdf.
[31] H. Nakagawa, Y. Miseki, and M. Akoshima, “Gas adsorption, thermal and structural properties
of sinters made of fine silver powder for ultra-low-temperature heat exchangers,” Cryogenics,
vol. 102, pp. 1–8, Sep. 2019, ISSN: 00112275. DOI: 10.1016/j.cryogenics.
2019 . 07 . 001. [Online]. Available: https : / / linkinghub . elsevier . com /
retrieve[32] B. Sund´en and J. Fu, Heat transfer in aerospace applications, 1 online resource (xv, 255
pages) vols. London: Academic Press, 2017, ISBN: 978-0-12-809761-8. [Online]. Available:
http://www.books24x7.com/marc.asp?bookid=120113 (visited on
07/31/2023).
[33] J. E. HESSELGREAVES, R. LAW, and D. A. REAY, Compact heat exchangers : selection,
design, and operation. Amsterdam: Pergamon, 2001, ISBN: 9780080529547; 0080529542;
1281072044; 9781281072047; 9786611072049; 6611072047. [Online]. Available: http:
//site.ebrary.com/id/10206373.
[34] W. M. Kays, Compact Heat Exchangers (3rd Edition), in collab. with A. L. London. Erscheinungsort
nicht ermittelbar: Scientific International, 2018, ISBN: 978-93-87938-03-8 978-1-
5231-2179-3.
[35] “NOMENCLATURE, AIRCRAFT AIR CONDITIONING EQUIPMENT,” SAE ARP 147, version
E, SAE International, Oct. 2024, Reaffirmed.
[36] “Engine Bleed Air Systems for Aircraft,” SAE ARP 1796, version B, SAE International, May
2020, Reaffirmed.
[37] D. Popov et al., “Cryogenic heat exchangers for process cooling and renewable energy storage:
A review,” Applied Thermal Engineering, vol. 153, pp. 275–290, May 2019, ISSN:
13594311. DOI: 10.1016/j.applthermaleng.2019.02.106. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1359431118336007.
[38] M. Weikl, K. Braun, and J. Weiss, “Coil-wound heat exchangers for molten salt applications,”
Energy Procedia, vol. 49, pp. 1054–1060, 2014, ISSN: 18766102. DOI: 10.1016/j.
egypro.2014.03.113. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S1876610214005670 (visited on 12/16/2023).
[39] M. A. Tomi´c, S. K. Ayed, ˇ Z. ˇ Z. Stevanovi´c, P. S. eki´c, P. M. ˇ Zivkovi´c, and M. V. Vuki´c, “Perforated
plate convective heat transfer analysis,” International Journal of Thermal Sciences,
vol. 124, pp. 300–306, 2018, ISSN: 1290-0729. DOI: 10.1016/j.ijthermalsci.
2017.10.021.
[40] Massachusetts Institute of Technology. “Printed-circuit heat exchanger (PCHE),” MIT ASE.
(2025), [Online]. Available: https://ase.mit.edu/projects/printed-circuitheat-
exchanger-pche/ (visited on 12/04/2023).
[41] “Air Conditioning Systems for Subsonic Airplanes,” ARP85, version G, SAE International,
Oct. 2024, Reaffirmed.
[42] H. Strumpf and Z. Mirza, “Development of a microchannel heat exchanger for aerospace applications,”
in ASME, American Society of Mechanical Engineers Digital Collection, Jul. 22,
2013, pp. 459–467. DOI: 10.1115/ICNMM2012-73043. [Online]. Available: https:
//asmedigitalcollection.asme.org/ICNMM/proceedings-abstract/
ICNMM2012/44793/459/246238.
[43] O. P. Arsenyeva, L. L. Tovazhnyansky, P. O. Kapustenko, and G. L. Khavin, “Optimal design
of plate-and-frame heat exchangers for efficient heat recovery in process industries,” Energy,
vol. 36, no. 8, pp. 4588–4598, 2011, 4588. DOI: 10.1016/j.energy.2011.03.022.
[Online]. Available: http://dx.doi.org/10.1016/j.energy.2011.03.022./pii/S001122751930061X (visited on 08/10/2025).
[44] K. Xu and R. Smith, “Design and optimization of plate heat exchanger networks,” in Computer
Aided Chemical Engineering, vol. 44, Elsevier, 2018, pp. 451–456, ISBN: 978-0-444-
64241-7. DOI: 10.1016/B978-0-444-64241-7.50070-7. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/B9780444642417500707.
[45] “GAMS - cutting edge modeling.” (2025), [Online]. Available: https://www.gams.
com/.
[46] M. White, G. Nellis, S. Kelin, W. Zhu, and Y. Gianchandani, “An experimentally validated
numerical modeling technique for perforated plate heat exchangers,” Journal of heat transfer,
vol. 132, pp. 1–9, Nov. 1, 2010. DOI: 10.1115/1.4000673.
[47] G. Nellis, “A heat exchanger model that includes axial conduction, parasitic heat loads, and
property variations,” Cryogenics, vol. 43, no. 9, pp. 523–538, 2003, 523. DOI: 10.1016/
S0011-2275(03)00132-2. [Online]. Available: http://dx.doi.org/10.1016/
S0011-2275(03)00132-2.
[48] A. Allahyarzadeh-Bidgoli, M. Mehrpooya, and J. I. Yanagihara, “Geometric optimization of
thermo-hydraulic performance of multistream plate fin heat exchangers in two-stage condensation
cycle: Thermodynamic and operating cost analyses,” Process Safety and Environmental
Protection, vol. 162, pp. 631–648, Jun. 2022, ISSN: 09575820. DOI: 10.1016/j.
psep.2022.03.088. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0957582022003032.
[49] H. Najafi, B. Najafi, and P. Hoseinpoori, “Energy and cost optimization of a plate and fin heat
exchanger using genetic algorithm,” Applied Thermal Engineering, vol. 31, no. 10, pp. 1839–
1847, Jul. 2011, ISSN: 13594311. DOI: 10.1016/j.applthermaleng.2011.02.
031. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S1359431111001128.
[50] M. Mehrpooya, M. M. M. Sharifzadeh, M. J. Zonouz, and M. A. Rosen, “Cost and economic
potential analysis of a cascading power cycle with liquefied natural gas regasification,”
Energy Conversion and Management, vol. 156, pp. 68–83, Jan. 2018, ISSN: 01968904.
DOI: 10 . 1016 / j . enconman . 2017 . 10 . 100. [Online]. Available: https : / /
linkinghub.elsevier.com/retrieve/pii/S0196890417310324 (visited
on 07/01/2025).
[51] W. M. Kays and A. L. London, Compact heat exchangers (McGraw-Hill series in mechanical
engineering), 2d ed. New York: McGraw-Hill Book Co., 1998, xi, 272, Section: xi, 272 pages
illustrations 24 cm., ISBN: 978-0-07-033391-8.
[52] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm:
NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–
197, Apr. 2002, ISSN: 1089778X. DOI: 10.1109/4235.996017. [Online]. Available:
http://ieeexplore.ieee.org/document/996017/.
[53] S. Wang, C. Liu, S. Zhang, Q. Li, and E. Huo, “Multi-objective optimization and fluid selection
of organic rankine cycle (ORC) system based on economic-environmental-sustainable
analysis,” Energy Conversion and Management, vol. 254, 2022. DOI: 10.1016/j.enconman.
2022.115238. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.
2022.115238.
[54] K. Zhu et al., “Design, optimization and experimental testing of 2 k cryogenic plate-fin heat
exchanger,” Applied Thermal Engineering, vol. 223, p. 119 973, Mar. 2023, ISSN: 13594311.
DOI: 10.1016/j.applthermaleng.2023.119973. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S1359431123000029 (visited
on 06/02/2025).
[55] H. M. M¨uller-Steinhagen, “Fouling phenomena during boiling of cryogenic liquids,” Cryogenics,
vol. 28, no. 6, pp. 406–408, Jun. 1, 1988, ISSN: 0011-2275. DOI: 10.1016/0011-
2275(88)90040-9. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0011227588900409.
[56] B. D. Raja, R. Jhala, and V. Patel, “Many-objective optimization of cross-flow plate-fin heat
exchanger,” International Journal of Thermal Sciences, vol. 118, pp. 320–339, Aug. 2017,
ISSN: 12900729. DOI: 10.1016/j.ijthermalsci.2017.05.005. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1290072916314661.
[57] D. P. Raymer, Aircraft design: a conceptual approach (AIAA education series), Sixth edition.
Reston, Virginia: American Institute of Aeronautics and Astronautics, Inc., 2018, xxx, 1062,
Section: xxx, 1062 pages : illustrations ; 24 cm, ISBN: 978-1-62410-490-9.
[58] W. M. Kays and A. L. London, Compact heat exchangers, Repr. ed. 1998 with corrections.
Malabar, Fla: Krieger Pub. Co, 1998, 335 pp., ISBN: 978-1-57524-060-2.
[59] C. Ranganayakulu and K. N. Seetharamu, Compact Heat Exchangers: Analysis, Design and
Optimization using FEM and CFD Approach. ASME Press, May 20, 2018, ISBN: 978-1-119-
42418-5. DOI: 10.1115/1.861CHE. [Online]. Available: https://asmedigitalcollectionasme-
org.lib- ezproxy.concordia.ca/ebooks/book/45/Compact-
Heat-Exchangers-Analysis-Design-and.
[60] D. P. Sekuli´c and R. K. Shah, Fundamentals of Heat Exchanger Design, 1st ed. Wiley,
Sep. 21, 2023, ISBN: 978-1-119-88326-5 978-1-119-88329-6. DOI: 10.1002/9781119883296.
[Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.
1002/9781119883296 (visited on 08/11/2025).
[61] R. K. Shah, A. E. Bergles, F. Mayinger, and T. NATO Advanced Study Institute on ”Heat
Exchangers–Thermal-Hydraulic Fundamentals {and} Design” (1980 : Istanbul, Heat exchangers:
thermal-hydraulic fundamentals and design (Advanced Study Institute book).Washington:
Hemisphere Pub. Corp. ; 1981, xi, 1131, Section: xi, 1131 pages : illustrations ; 25
cm., ISBN: 978-0-07-033284-3.
[62] H. Lee, Thermal design: heat sinks, thermoelectrics, heat pipes, compact heat exchangers,
and solar cells, Second edition. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2022, ISBN:
978-1-119-68604-0 978-1-119-68601-9 978-1-119-68603-3 978-1-119-68597-5. [Online].
Available: https://concordiauniversity.on.worldcat.org/search/
detail/1305501326?queryString=Thermal%20Design%20lee&databaseList=
&clusterResults=true&groupVariantRecords=false.
[63] H. Martin, “A theoretical approach to predict the performance of chevron-type plate heat
exchangers,” Chemical Engineering and Processing: Process Intensification, vol. Volume
35, no. 4, 1996, ISSN: 0255-2701. DOI: 10.1016/0255-2701(95)04129-X. [Online].
Available: https://doi.org/10.1016/0255-2701(95)04129-X.
[64] H. Martin, “Economic optimization of compact heat exchangers,” in Proceedings of the EFConference
on Compact Heat Exchangers and Enhancement Technology for the Process Industries,
Banff, AB, Canada., 1999.
[65] D. G. Goodwin, H. K. Moffat, I. Schoegl, R. L. Speth, and B.W.Weber, Cantera: An objectoriented
software toolkit for chemical kinetics, thermodynamics, and transport processes,
version 3.1.0, Dec. 14, 2024. DOI: 10.5281/zenodo.14455267. [Online]. Available:
https://zenodo.org/records/14455267 (visited on 04/14/2025).
[66] M. Alder, E. Moerland, J. Jepsen, and B. Nagel, “RECENT ADVANCES IN ESTABLISHING
a COMMON LANGUAGE FOR AIRCRAFT DESIGN WITH CPACS,” presented at
the Aerospace Europe Conference, Bordeaux, France, 2020.
[67] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A. Naylor, “OpenMDAO:
An open-source framework for multidisciplinary design, analysis, and optimization,” Structural
and Multidisciplinary Optimization, vol. 59, no. 4, pp. 1075–1104, Apr. 2019, ISSN:
1615-147X, 1615-1488. DOI: 10.1007/s00158-019-02211-z. [Online]. Available:
http://link.springer.com/10.1007/s00158-019-02211-z (visited on
05/04/2025).
[68] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,” IEEE Access, vol. 8,
pp. 89 497–89 509, 2020, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.2990567.
[Online]. Available: https://ieeexplore.ieee.org/document/9078759/
(visited on 05/20/2025).
[69] B. Leite, A. O. S. D. Costa, and E. F. D. Costa Junior, “Multi-objective optimization of
adiabatic styrene reactors using generalized differential evolution 3 (GDE3),” Chemical Engineering
Science, vol. 265, p. 118 196, Jan. 2023, ISSN: 00092509. DOI: 10.1016/j.
ces.2022.118196. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0009250922007801 (visited on 05/20/2025).
[70] J. R. R. A. Martins and A. Ning, Engineering Design Optimization, 1st ed. Cambridge
University Press, Nov. 18, 2021, ISBN: 978-1-108-98064-7 978-1-108-83341-7. DOI: 10.
1017/9781108980647. [Online]. Available: https://www.cambridge.org/
core/product/identifier/9781108980647/type/book (visited on 05/24/2024).
[71] S. Kukkonen and K. Deb, “A fast and effective method for pruning of non-dominated solutions
in many-objective problems,” in Parallel Problem Solving from Nature - PPSN IX, T. P.
Runarsson, H.-G. Beyer, E. Burke, J. J. Merelo-Guerv´os, L. D. Whitley, and X. Yao, Eds.,
vol. 4193, Series Title: Lecture Notes in Computer Science, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 553–562, ISBN: 978-3-540-38990-3 978-3-540-38991-0. DOI:
10.1007/11844297_56. [Online]. Available: https://link.springer.com/
10.1007/11844297_56 (visited on 05/20/2025).
[72] “Bell & Gossett BP400-40 - Brazed Plate Heat Exchanger.” en. (), [Online]. Available:
https://www.statesupply.com/bh4215 (visited on 11/18/2024).
[73] “Aluminum 6061-T6 (UNS AA96061).” en, NIST. (), [Online]. Available: https : / /
www.nist.gov/mml/acmd/aluminum- 6061- t6- uns- aa96061 (visited on
06/29/2025).
[74] “HTF7000 turbofan engine,” Honeywell. (2025), [Online]. Available: https://aerospace.
honeywell.com/us/en/products-and-services/product/hardwareand-
systems/engines/htf7000-turbofan-engine (visited on 05/23/2024).
[75] “Bombardier challenger 300,” Elevate Aviation Group. (2025), [Online]. Available: https:
/ / eag . aero / best - private - jets / super - midsize - private - jets /
bombardier-challenger-300/ (visited on 04/14/2025).
[76] T. Takagi, K. Takadama, and H. Sato, “Incremental lattice design of weight vector set,” in
Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion,
ser. GECCO ’20, New York, NY, USA: Association for Computing Machinery, Jul. 8, 2020,
pp. 1486–1494, ISBN: 978-1-4503-7127-8. DOI: 10.1145/3377929.3398082. [Online].
Available: https://dl.acm.org/doi/10.1145/3377929.3398082
(visited on 05/20/2025).
[77] B. Boden et al., “RCE: An integration environment for engineering and science,” SoftwareX,
vol. 15, p. 100 759, Jul. 2021, ISSN: 23527110. DOI: 10 . 1016 / j . softx . 2021 .
100759. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S2352711021000820 (visited on 08/21/2025).
[78] H. Strumpf and Z. Mirza, “Development of a Microchannel Heat Exchanger for Aerospace
Applications,” en, in ASME, American Society of Mechanical Engineers Digital Collection,
Jul. 22, 2013, pp. 459–467. DOI: 10.1115/ICNMM2012-73043.
[79] P. Zhang et al., “Thermal cycling behavior of selective laser-remelted thermal barrier coatings
with different laser dot distances,” Journal of Thermal Spray Technology, vol. 30, no. 4,
pp. 1038–1048, Apr. 2021, ISSN: 1059-9630, 1544-1016. DOI: 10.1007/s11666-021-
01173 - 3. [Online]. Available: https : / / link . springer . com / 10 . 1007 /
s11666-021-01173-3.
[80] C. Wang, X. Lin, L. Wang, S. Zhang, and W. Huang, “Cryogenic mechanical properties of
316l stainless steel fabricated by selective laser melting,” Materials Science and Engineering:
A, vol. 815, p. 141 317, May 2021, ISSN: 09215093. DOI: 10.1016/j.msea.2021.
141317. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S0921509321005864.
Repository Staff Only: item control page


Download Statistics
Download Statistics