Login | Register

Multimodal Investigations of Human Cortico-Ponto-Cerebellar Connectivity

Title:

Multimodal Investigations of Human Cortico-Ponto-Cerebellar Connectivity

Rousseau, Paul-Noel (2025) Multimodal Investigations of Human Cortico-Ponto-Cerebellar Connectivity. PhD thesis, Concordia University.

[thumbnail of Rousseau_PhD_F2025.pdf]
Preview
Text (application/pdf)
Rousseau_PhD_F2025.pdf - Accepted Version
Available under License Spectrum Terms of Access.
4MB

Abstract

Long regarded as being uniquely involved with motor control, the cerebellum is now recognized to contribute to nearly every aspect of human cognition. The cerebellum forms reciprocal connections with much of the cerebral cortex, receiving input via the pons and sending output back through the deep cerebellar nuclei and thalamus. These topographically organized, closed loop circuits, are thought to underly the cerebellum’s capacity to influence such a breadth of different processes. These connections have a rich history of study in non-human animals, but their organization in humans is largely understudied. In this dissertation we present a series of three studies that investigated the connectivity of the downstream, cortico-ponto-cerebellar, pathway in humans. In our first study (Chapter 2) we reconstructed connections between the pons and lobules of the cerebellar cortex using diffusion MRI tractography. We demonstrated topographic organizational principles broadly reflecting the segregation of motor and non-motor inputs to the cerebellum. Our second diffusion MRI tractography study (Chapter 3) mapped the corticopontine segment using methods to reconstruct gradients that reflect the continuous mappings of the cerebral cortex onto pons. In our final study (Chapter 3), we shifted to a functional connectivity approach, reconstructing gradients in the pons based on its connectivity with the cerebral and cerebellar cortices. While the first two studies serve as bridges to prior work conducted in non-human animals, the final study supports a novel perspective of the pons as a functionally dynamic integrative hub. Taken together, this work advances our understanding of cerebellar connectivity in humans and, by extension, its diverse contributions to behaviour and cognition.

Divisions:Concordia University > Faculty of Arts and Science > Psychology
Item Type:Thesis (PhD)
Authors:Rousseau, Paul-Noel
Institution:Concordia University
Degree Name:Ph. D.
Program:Psychology
Date:7 July 2025
Thesis Supervisor(s):Steele, Christopher
Keywords:Cerebellum, Pons, Connectivity, MRI, DWI, DMRI, Gradients, Corticopontine, Pontocerebellar, Cortico-ponto-cerebellar
ID Code:996236
Deposited By: Paul-Noel Rousseau
Deposited On:04 Nov 2025 17:36
Last Modified:04 Nov 2025 17:36

References:

Akakin, A., Peris-Celda, M., Kilic, T., Seker, A., Gutierrez-Martin, A., & Rhoton, A., Jr. (2014). The Dentate Nucleus and Its Projection System in the Human Cerebellum: The Dentate Nucleus Microsurgical Anatomical Study. Neurosurgery, 74(4), 401–425. https://doi.org/10.1227/NEU.0000000000000293
Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10(1), 25–61. https://doi.org/10.1016/0025-5564(71)90051-4
Albus, J. S. (1989). The Marr and Albus theories of the cerebellum-two early models of associative memory. Digest of Papers. COMPCON Spring 89. Thirty-Fourth IEEE Computer Society International Conference: Intellectual Leverage, 577–582. https://doi.org/10.1109/CMPCON.1989.301996
Assaf, Y., Johansen-Berg, H., & Thiebaut de Schotten, M. (2019). The role of diffusion MRI in neuroscience. NMR in Biomedicine, 32(4), e3762. https://doi.org/10.1002/nbm.3762
Ausim Azizi, S. (2007). . . . And the Olive Said to the Cerebellum: Organization and Functional Significance of the Olivo-Cerebellar System. The Neuroscientist, 13(6), 616–625. https://doi.org/10.1177/1073858407299286
Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54(3), Article 3. https://doi.org/10.1016/j.neuroimage.2010.09.025
Axer, M., Amunts, K., Grässel, D., Palm, C., Dammers, J., Axer, H., Pietrzyk, U., & Zilles, K. (2011). A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain. NeuroImage, 54(2), 1091–1101. https://doi.org/10.1016/j.neuroimage.2010.08.075
Axer, M., Graessel, D., Kleiner, M., Dammers, J., Dickscheid, T., Reckfort, J., Huetz, T., Eiben, B., Pietrzyk, U., Zilles, K., & Amunts, K. (2011). High-Resolution Fiber Tract Reconstruction in the Human Brain by Means of Three-Dimensional Polarized Light Imaging. Frontiers in Neuroinformatics, 5. https://doi.org/10.3389/fninf.2011.00034
Baker, K. B., Plow, E. B., Nagel, S., Rosenfeldt, A. B., Gopalakrishnan, R., Clark, C., Wyant, A., Schroedel, M., Ozinga, J., Davidson, S., Hogue, O., Floden, D., Chen, J., Ford, P. J., Sankary, L., Huang, X., Cunningham, D. A., DiFilippo, F. P., Hu, B., … Machado, A. G. (2023). Cerebellar deep brain stimulation for chronic post-stroke motor rehabilitation: A phase I trial. Nature Medicine, 29(9), Article 9. https://doi.org/10.1038/s41591-023-02507-0
Balsters, J. H., Cussans, E., Diedrichsen, J., Phillips, K. A., Preuss, T. M., Rilling, J. K., & Ramnani, N. (2010). Evolution of the cerebellar cortex: The selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage, 49(3), 2045–2052. https://doi.org/10.1016/j.neuroimage.2009.10.045
Beck, E. (1950). The origin, course and termination of the prefronto-pontine tract in the human brain. Brain: A Journal of Neurology, 73(3), Article 3. https://doi.org/10.1093/brain/73.3.368
Beissner, F. (2015). Functional MRI of the Brainstem: Common Problems and their Solutions. Clinical Neuroradiology, 25(2), 251–257. https://doi.org/10.1007/s00062-015-0404-0
Beissner, F., Schumann, A., Brunn, F., Eisenträger, D., & Bär, K.-J. (2014). Advances in functional magnetic resonance imaging of the human brainstem. NeuroImage, 86, 91–98. https://doi.org/10.1016/j.neuroimage.2013.07.081
Belkin, M., & Niyogi, P. (2001). Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. Advances in Neural Information Processing Systems, 14. https://proceedings.neurips.cc/paper_files/paper/2001/hash/f106b7f99d2cb30c3db1c3cc0fde9ccb-Abstract.html
Bell, C. C. (2002). Evolution of cerebellum-like structures. Brain, Behavior and Evolution, 59(5–6), 312–326. https://doi.org/10.1159/000063567
Benussi, A., Batsikadze, G., França, C., Cury, R. G., & Maas, R. P. P. W. M. (2023). The Therapeutic Potential of Non-Invasive and Invasive Cerebellar Stimulation Techniques in Hereditary Ataxias. Cells, 12(8). https://doi.org/10.3390/cells12081193
Biswas, M. S., Luo, Y., Sarpong, G. A., & Sugihara, I. (2019). Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse. The Journal of Comparative Neurology, 527(12), Article 12. https://doi.org/10.1002/cne.24662
Blanke, N., Chang, S., Novoseltseva, A., Wang, H., Boas, D. A., & Bigio, I. J. (2023). Multiscale label-free imaging of myelin in human brain tissue with polarization-sensitive optical coherence tomography and birefringence microscopy. Biomedical Optics Express, 14(11), 5946–5964. https://doi.org/10.1364/BOE.499354
Blazquez Freches, G., Haak, K. V., Beckmann, C. F., & Mars, R. B. (2021). Connectivity gradients on tractography data: Pipeline and example applications. Human Brain Mapping, 42(18), 5827–5845. https://doi.org/10.1002/hbm.25623
Blazquez Freches, G., Haak, K. V., Bryant, K. L., Schurz, M., Beckmann, C. F., & Mars, R. B. (2020). Principles of temporal association cortex organisation as revealed by connectivity gradients. Brain Structure and Function, 225(4), 1245–1260. https://doi.org/10.1007/s00429-020-02047-0
Border, B. G., & Mihailoff, G. A. (1990). GABAergic neural elements in the rat basilar pons: Electron microscopic immunochemistry. Journal of Comparative Neurology, 295(1), 123–135. https://doi.org/10.1002/cne.902950111
Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: Nodes in an integrated network. Nature Reviews Neuroscience, 19(6), 338–350. https://doi.org/10.1038/s41583-018-0002-7
Braitenberg, V. (1967). Is the cerebellar cortex a biological clock in the millisecond range? Progress in Brain Research, 25, 334–346. https://doi.org/10.1016/S0079-6123(08)60971-1
Brodal, P. (1978). The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain: A Journal of Neurology, 101(2), Article 2. https://doi.org/10.1093/brain/101.2.251
Brodal, P. (1979). The pontocerebellar projection in the rhesus monkey: An experimental study with retrograde axonal transport of horseradish peroxidase. Neuroscience, 4(2), Article 2. https://doi.org/10.1016/0306-4522(79)90082-4
Brodal, P. (1982). Further observations on the cerebellar projections from the pontine nuclei and the nucleus reticularis tegmenti pontis in the rhesus monkey. Journal of Comparative Neurology, 204(1), Article 1. https://doi.org/10.1002/cne.902040106
Brodal, P., & Bjaalie, J. G. (1992). Organization of the pontine nuclei. Neuroscience Research, 13(2), 83–118. https://doi.org/10.1016/0168-0102(92)90092-Q
Brodal, P., & Bjaalie, J. G. (1997). Salient anatomic features of the cortico-ponto-cerebellar pathway. Progress in Brain Research, 114, 227–249. https://doi.org/10.1016/s0079-6123(08)63367-1
Brooks, J. C., Faull, O. K., Pattinson, K. T., & Jenkinson, M. (2013). Physiological Noise in Brainstem fMRI. Frontiers in Human Neuroscience, 7. https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2013.00623
Buckner, R. L. (2013). The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging. Neuron, 80(3), 807–815. https://doi.org/10.1016/j.neuron.2013.10.044
Buckner, R. L., & Krienen, F. M. (2013). The evolution of distributed association networks in the human brain. Trends in Cognitive Sciences, 17(12), 648–665. https://doi.org/10.1016/j.tics.2013.09.017
Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), Article 5. https://doi.org/10.1152/jn.00339.2011
Bullock, D. N., Hayday, E. A., Grier, M. D., Tang, W., Pestilli, F., & Heilbronner, S. R. (2022). A taxonomy of the brain’s white matter: Twenty-one major tracts for the 21st century. Cerebral Cortex (New York, N.Y. : 1991), 32(20), 4524–4548. https://doi.org/10.1093/cercor/bhab500
Calabrese, E., Hickey, P., Hulette, C., Zhang, J., Parente, B., Lad, S. P., & Johnson, G. A. (2015). Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization. Human Brain Mapping, 36(8), 3167–3178. https://doi.org/10.1002/hbm.22836
Chakravarty, M. M., Steadman, P., van Eede, M. C., Calcott, R. D., Gu, V., Shaw, P., Raznahan, A., Collins, D. L., & Lerch, J. P. (2013). Performing label-fusion-based segmentation using multiple automatically generated templates. Human Brain Mapping, 34(10), Article 10. https://doi.org/10.1002/hbm.22092
Chan-Palay, V. (1977). The Cerebellar Dentate Nucleus. In V. Chan-Palay (Ed.), Cerebellar Dentate Nucleus: Organization, Cytology and Transmitters (pp. 1–24). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-66498-4_1
Cicirata, F., Serapide, M. F., Parenti, R., Pantò, M. R., Zappalà, A., Nicotra, A., & Cicero, D. (2005). The basilar pontine nuclei and the nucleus reticularis tegmenti pontis subserve distinct cerebrocerebellar pathways. In Progress in Brain Research (Vol. 148, pp. 259–282). Elsevier. https://doi.org/10.1016/S0079-6123(04)48021-2
Clower, D. M., West, R. A., Lynch, J. C., & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 21(16), 6283–6291. https://doi.org/10.1523/JNEUROSCI.21-16-06283.2001
Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and Computational Harmonic Analysis, 21(1), 5–30. https://doi.org/10.1016/j.acha.2006.04.006
Cooper, M. H., & Beal, J. A. (1978). The neurons and the synaptic endings in the primate basilar pontine gray. The Journal of Comparative Neurology, 180(1), 17–41. https://doi.org/10.1002/cne.901800103
Damoiseaux, J. S., & Greicius, M. D. (2009). Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure and Function, 213(6), 525–533. https://doi.org/10.1007/s00429-009-0208-6
Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., & Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103(37), 13848–13853. https://doi.org/10.1073/pnas.0601417103
Dell’Acqua, F., Bodi, I., Slater, D., Catani, M., & Modo, M. (2013). MR diffusion histology and micro-tractography reveal mesoscale features of the human cerebellum. Cerebellum (London, England), 12(6), Article 6. https://doi.org/10.1007/s12311-013-0503-x
Dell’Acqua, F., & Tournier, J.-D. (2019). Modelling white matter with spherical deconvolution: How and why? NMR in Biomedicine, 32(4), e3945. https://doi.org/10.1002/nbm.3945
Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biology, 2(11), e329. https://doi.org/10.1371/journal.pbio.0020329
Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. NeuroImage, 33(1), 127–138. https://doi.org/10.1016/j.neuroimage.2006.05.056
Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A probabilistic MR atlas of the human cerebellum. NeuroImage, 46(1), 39–46. https://doi.org/10.1016/j.neuroimage.2009.01.045
Diedrichsen, J., & Zotow, E. (2015). Surface-Based Display of Volume-Averaged Cerebellar Imaging Data. PloS One, 10(7), e0133402. https://doi.org/10.1371/journal.pone.0133402
D’Mello, A. M., & Stoodley, C. J. (2015). Cerebro-cerebellar circuits in autism spectrum disorder. Frontiers in Neuroscience, Volume 9-2015. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2015.00408
Doron, K. W., Funk, C. M., & Glickstein, M. (2010). Fronto-cerebellar circuits and eye movement control: A diffusion imaging tractography study of human cortico-pontine projections. Brain Research, 1307, 63–71. https://doi.org/10.1016/j.brainres.2009.10.029
Draganski, B., Kherif, F., Klöppel, S., Cook, P., Alexander, D., Parker, G., Deichmann, R., Ashburner, J., & Frackowiak, R. (2008). Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 28, 7143–7152. https://doi.org/10.1523/JNEUROSCI.1486-08.2008
Dum, R. P., & Strick, P. L. (2003). An Unfolded Map of the Cerebellar Dentate Nucleus and its Projections to the Cerebral Cortex. Journal of Neurophysiology, 89(1), 634–639. https://doi.org/10.1152/jn.00626.2002
Engelhardt, E., Moreira, D. M., & Laks, J. (2010). Cerebrocerebellar system and Arnold’s bundle - A tractographic study: Preliminary results. Dementia & Neuropsychologia, 4(4), 293–299. https://doi.org/10.1590/S1980-57642010DN40400007
Fries, P. (2015). Rhythms for Cognition: Communication through Coherence. Neuron, 88(1), 220–235. https://doi.org/10.1016/j.neuron.2015.09.034
Garyfallidis, E., Côté, M.-A., Rheault, F., Sidhu, J., Hau, J., Petit, L., Fortin, D., Cunanne, S., & Descoteaux, M. (2018). Recognition of white matter bundles using local and global streamline-based registration and clustering. NeuroImage, 170, 283–295. https://doi.org/10.1016/j.neuroimage.2017.07.015
Girard, G., Whittingstall, K., Deriche, R., & Descoteaux, M. (2014). Towards quantitative connectivity analysis: Reducing tractography biases. NeuroImage, 98, 266–278. https://doi.org/10.1016/j.neuroimage.2014.04.074
Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L. R., Auerbach, E. J., Behrens, T. E. J., Coalson, T. S., Harms, M. P., Jenkinson, M., Moeller, S., Robinson, E. C., Sotiropoulos, S. N., Xu, J., Yacoub, E., Ugurbil, K., & Van Essen, D. C. (2016). The Human Connectome Project’s neuroimaging approach. Nature Neuroscience, 19(9), Article 9. https://doi.org/10.1038/nn.4361
Glickstein, M., & Doron, K. (2008). Cerebellum: Connections and Functions. The Cerebellum, 7(4), 589–594. https://doi.org/10.1007/s12311-008-0074-4
Glickstein, M., May III, J. G., & Mercier, B. E. (1985). Corticopontine projection in the macaque: The distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. Journal of Comparative Neurology, 235(3), Article 3. https://doi.org/10.1002/cne.902350306
Glover, G. H. (2011). Overview of functional magnetic resonance imaging. Neurosurgery Clinics of North America, 22(2), Article 2. https://doi.org/10.1016/j.nec.2010.11.001
Goodlett, C. R. (2008). The Cerebellum. In P. M. Conn (Ed.), Neuroscience in Medicine (pp. 221–245). Humana Press. https://doi.org/10.1007/978-1-60327-455-5_14
Granziera, C., Schmahmann, J. D., Hadjikhani, N., Meyer, H., Meuli, R., Wedeen, V., & Krueger, G. (2009). Diffusion Spectrum Imaging Shows the Structural Basis of Functional Cerebellar Circuits in the Human Cerebellum In Vivo. PLOS ONE, 4(4), e5101. https://doi.org/10.1371/journal.pone.0005101
Grodd, W., Hülsmann, E., Lotze, M., Wildgruber, D., & Erb, M. (2001). Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Human Brain Mapping, 13(2), 55–73. https://doi.org/10.1002/hbm.1025
Groot, J. M., Miletic, S., Isherwood, S. J. S., Tse, D. H. Y., Habli, S., Håberg, A. K., Bazin, P.-L., Mittner, M., & Forstmann, B. U. (2024). A high-resolution 7 Tesla resting-state fMRI dataset optimized for studying the subcortex. Data in Brief, 55, 110668. https://doi.org/10.1016/j.dib.2024.110668
Guell, X., D’Mello, A. M., Hubbard, N. A., Romeo, R. R., Gabrieli, J. D. E., Whitfield-Gabrieli, S., Schmahmann, J. D., & Anteraper, S. A. (2020). Functional Territories of Human Dentate Nucleus. Cerebral Cortex (New York, N.Y. : 1991), 30(4), 2401–2417. https://doi.org/10.1093/cercor/bhz247
Guell, X., Schmahmann, J. D., Gabrieli, J. D., & Ghosh, S. S. (2018). Functional gradients of the cerebellum. eLife, 7, e36652. https://doi.org/10.7554/eLife.36652
Hale, J. R., Mayhew, S. D., Mullinger, K. J., Wilson, R. S., Arvanitis, T. N., Francis, S. T., & Bagshaw, A. P. (2015). Comparison of functional thalamic segmentation from seed-based analysis and ICA. NeuroImage, 114, 448–465. https://doi.org/10.1016/j.neuroimage.2015.04.027
Halko, M. A., Farzan, F., Eldaief, M. C., Schmahmann, J. D., & Pascual-Leone, A. (2014). Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34(36), 12049–12056. https://doi.org/10.1523/JNEUROSCI.1776-14.2014
Heck, D. H., Fox, M. B., Correia Chapman, B., McAfee, S. S., & Liu, Y. (2023). Cerebellar control of thalamocortical circuits for cognitive function: A review of pathways and a proposed mechanism. Frontiers in Systems Neuroscience, Volume 17-2023. https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2023.1126508
Heffner, C. D., Lumsden, A. G., & O’Leary, D. D. (1990). Target control of collateral extension and directional axon growth in the mammalian brain. Science (New York, N.Y.), 247(4939), 217–220. https://doi.org/10.1126/science.2294603
Hernandez-Castillo, C. R., Vaca-Palomares, I., Barrios, F., Martinez, L., Boll, M.-C., & Fernandez-Ruiz, J. (2016). Ataxia Severity Correlates with White Matter Degeneration in Spinocerebellar Ataxia Type 7. AJNR. American Journal of Neuroradiology, 37(11), 2050–2054. https://doi.org/10.3174/ajnr.A4903
Hoover, J. E., & Strick, P. L. (1999). The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 19(4), 1446–1463. https://doi.org/10.1523/JNEUROSCI.19-04-01446.1999
Human Connectome Project. (2017). HCP 1200 Dense Connectome + PTN Appendix. Washington University. https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf
Huntenburg, J. M., Steele, C. J., & Bazin, P.-L. (2018). Nighres: Processing tools for high-resolution neuroimaging. GigaScience, 7(7), giy082. https://doi.org/10.1093/gigascience/giy082
Hutchison, R. M., & Everling, S. (2012). Monkey in the middle: Why non-human primates are needed to bridge the gap in resting-state investigations. Frontiers in Neuroanatomy, Volume 6-2012. https://www.frontiersin.org/journals/neuroanatomy/articles/10.3389/fnana.2012.00029
Iglesias, J. E., Van Leemput, K., Bhatt, P., Casillas, C., Dutt, S., Schuff, N., Truran-Sacrey, D., Boxer, A., & Fischl, B. (2015). Bayesian segmentation of brainstem structures in MRI. NeuroImage, 113, 184–195. https://doi.org/10.1016/j.neuroimage.2015.02.065
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9(4), 304–313. https://doi.org/10.1038/nrn2332
Ito, M. (2010). Cerebellar Cortex. In G. M. Shepherd & S. Grillner (Eds.), Handbook of Brain Microcircuits (pp. 293–300). Oxford University Press. https://doi.org/10.1093/med/9780195389883.003.0028
Ito, M., Sakurai, M., & Tongroach, P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. The Journal of Physiology, 324, 113–134. https://doi.org/10.1113/jphysiol.1982.sp014103
Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1(2), 136–152. https://doi.org/10.1162/jocn.1989.1.2.136
Jamieson, E. B. (1910). The Arrangement of the Fibres of the Middle Cerebellar Peduncle, as shown by Dissection. Journal of Anatomy and Physiology, 44(Pt 3), Article Pt 3.
Jeurissen, B., Descoteaux, M., Mori, S., & Leemans, A. (2019). Diffusion MRI fiber tractography of the brain. NMR in Biomedicine, 32(4), Article 4. https://doi.org/10.1002/nbm.3785
Jin, L., & Lloyd, R. V. (1997). In situ hybridization: Methods and applications. Journal of Clinical Laboratory Analysis, 11(1), 2–9. https://doi.org/10.1002/(SICI)1098-2825(1997)11:1<2::AID-JCLA2>3.0.CO;2-F
Johansen-Berg, H., Behrens, T. E. J., Sillery, E., Ciccarelli, O., Thompson, A. J., Smith, S. M., & Matthews, P. M. (2005). Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cerebral Cortex (New York, N.Y. : 1991), 15(1), Article 1. https://doi.org/10.1093/cercor/bhh105
Johansen-Berg, H., & Rushworth, M. F. S. (2009). Using diffusion imaging to study human connectional anatomy. Annual Review of Neuroscience, 32, 75–94. https://doi.org/10.1146/annurev.neuro.051508.135735
Kamali, A., Kramer, L. A., Frye, R. E., Butler, I. J., & Hasan, K. M. (2010). Diffusion tensor tractography of the human brain cortico-ponto-cerebellar pathways: A quantitative preliminary study. Journal of Magnetic Resonance Imaging, 32(4), Article 4. https://doi.org/10.1002/jmri.22330
Karbasforoushan, H., Tian, R., & Baker, J. (2022). There is a topographic organization in human cortico-pontine connectivity. Brain Communications, 4(2), Article 2. https://doi.org/10.1093/braincomms/fcac047
Karnath, H.-O., Sperber, C., & Rorden, C. (2018). Mapping human brain lesions and their functional consequences. NeuroImage, 165, 180–189. https://doi.org/10.1016/j.neuroimage.2017.10.028
Katsumi, Y., Zhang, J., Chen, D., Kamona, N., Bunce, J. G., Hutchinson, J. B., Yarossi, M., Tunik, E., Dickerson, B. C., Quigley, K. S., & Barrett, L. F. (2023). Correspondence of functional connectivity gradients across human isocortex, cerebellum, and hippocampus. Communications Biology, 6(1), Article 1. https://doi.org/10.1038/s42003-023-04796-0
Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727. https://doi.org/10.1016/s0959-4388(99)00028-8
Kelly, R. M., & Strick, P. L. (2003). Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate. The Journal of Neuroscience, 23(23), Article 23. https://doi.org/10.1523/JNEUROSCI.23-23-08432.2003
Kim Jong S., Lee Jay H., Im Joo H., & Lee Myoung C. (1995). Syndromes of Pontine Base Infarction. Stroke, 26(6), Article 6. https://doi.org/10.1161/01.STR.26.6.950
King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B., & Diedrichsen, J. (2019). Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nature Neuroscience, 22(8), Article 8. https://doi.org/10.1038/s41593-019-0436-x
King, M., Shahshahani, L., Ivry, R. B., & Diedrichsen, J. (2023). A task-general connectivity model reveals variation in convergence of cortical inputs to functional regions of the cerebellum. eLife, 12. https://doi.org/10.7554/eLife.81511
Koziol, L. F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., Ito, M., Manto, M., Marvel, C., Parker, K., Pezzulo, G., Ramnani, N., Riva, D., Schmahmann, J., Vandervert, L., & Yamazaki, T. (2014). Consensus paper: The cerebellum’s role in movement and cognition. Cerebellum (London, England), 13(1), Article 1. https://doi.org/10.1007/s12311-013-0511-x
Kratochwil, C. F., Maheshwari, U., & Rijli, F. M. (2017). The Long Journey of Pontine Nuclei Neurons: From Rhombic Lip to Cortico-Ponto-Cerebellar Circuitry. Frontiers in Neural Circuits, 11, 33. https://doi.org/10.3389/fncir.2017.00033
Kuceyeski, A., Maruta, J., Relkin, N., & Raj, A. (2013). The Network Modification (NeMo) Tool: Elucidating the effect of white matter integrity changes on cortical and subcortical structural connectivity. Brain Connectivity, 3(5), 451–463. https://doi.org/10.1089/brain.2013.0147
Lanciego, J. L., & Wouterlood, F. G. (2020). Neuroanatomical tract-tracing techniques that did go viral. Brain Structure and Function, 225(4), 1193–1224. https://doi.org/10.1007/s00429-020-02041-6
Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience, 4(6), 469–480. https://doi.org/10.1038/nrn1119
Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: a review of methods and clinical applications. AJNR. American Journal of Neuroradiology, 34(10), 1866–1872. https://doi.org/10.3174/ajnr.A3263
Leergaard, T. B., & Bjaalie, J. G. (2007). Topography of the complete corticopontine projection: From experiments to principal Maps. Frontiers in Neuroscience, 1(1), Article 1. https://doi.org/10.3389/neuro.01.1.1.016.2007
Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100(4), 443–454. https://doi.org/10.1037//0735-7044.100.4.443
Lent, R., Azevedo, F. A. C., Andrade-Moraes, C. H., & Pinto, A. V. O. (2012). How many neurons do you have? Some dogmas of quantitative neuroscience under revision. The European Journal of Neuroscience, 35(1), 1–9. https://doi.org/10.1111/j.1460-9568.2011.07923.x
Liu, C. J., Ammon, W., Jones, R. J., Nolan, J. C., Gong, D., Maffei, C., Edlow, B. L., Augustinack, J. C., Magnain, C., Yendiki, A., Villiger, M., Fischl, B., & Wang, H. (2023). Quantitative imaging of three-dimensional fiber orientation in the human brain via two illumination angles using polarization-sensitive optical coherence tomography. bioRxiv. https://doi.org/10.1101/2023.10.20.563298
Lundell, H., & Steele, C. J. (2024). Cerebellar imaging with diffusion magnetic resonance imaging: Approaches, challenges, and potential. Current Opinion in Behavioral Sciences, 56, 101353. https://doi.org/10.1016/j.cobeha.2024.101353
Marchant, J. K., Ferris, N. G., Grass, D., Allen, M. S., Gopalakrishnan, V., Olchanyi, M., Sehgal, D., Sheft, M., Strom, A., Bilgic, B., Edlow, B., Hillman, E. M. C., Juttukonda, M. R., Lewis, L., Nasr, S., Nummenmaa, A., Polimeni, J. R., Tootell, R. B. H., Wald, L. L., … Gollub, R. L. (2024). Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging – A Symposium Review. Neuroinformatics, 22(4), 679–706. https://doi.org/10.1007/s12021-024-09686-2
Marcus, D., Harwell, J., Olsen, T., Hodge, M., Glasser, M., Prior, F., Jenkinson, M., Laumann, T., Curtiss, S., & Van Essen, D. (2011). Informatics and Data Mining Tools and Strategies for the Human Connectome Project. Frontiers in Neuroinformatics, Volume 5-2011. https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2011.00004
Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., Huntenburg, J. M., Langs, G., Bezgin, G., Eickhoff, S. B., Castellanos, F. X., Petrides, M., Jefferies, E., & Smallwood, J. (2016). Situating the default-mode network along a principal gradient of macroscale cortical organization. Proceedings of the National Academy of Sciences of the United States of America, 113(44), Article 44. https://doi.org/10.1073/pnas.1608282113
Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202(2), 437–470. https://doi.org/10.1113/jphysiol.1969.sp008820
McAfee, S. S., Liu, Y., Sillitoe, R. V., & Heck, D. H. (2022). Cerebellar Coordination of Neuronal Communication in Cerebral Cortex. Frontiers in Systems Neuroscience, Volume 15-2021. https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2021.781527
Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science (New York, N.Y.), 266(5184), 458–461. https://doi.org/10.1126/science.7939688
Middleton, F. A., & Strick, P. L. (1998). Cerebellar output: Motor and cognitive channels. Trends in Cognitive Sciences, 2(9), 348–354. https://doi.org/10.1016/S1364-6613(98)01220-0
Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 21(2), 700–712. https://doi.org/10.1523/JNEUROSCI.21-02-00700.2001
Mihailoff, G. A., Kosinski, R. J., Azizi, S. A., Lee, H. S., & Border, B. G. (1992). The Expanding Role of the Basilar Pontine Nuclei as a Source of Cerebellar Afferents. In R. Llinás & C. Sotelo (Eds.), The Cerebellum Revisited (pp. 135–164). Springer US. https://doi.org/10.1007/978-1-4612-2840-0_7
Miterko, L. N., Baker, K. B., Beckinghausen, J., Bradnam, L. V., Cheng, M. Y., Cooperrider, J., DeLong, M. R., Gornati, S. V., Hallett, M., Heck, D. H., Hoebeek, F. E., Kouzani, A. Z., Kuo, S.-H., Louis, E. D., Machado, A., Manto, M., McCambridge, A. B., Nitsche, M. A., Taib, N. O. B., … Sillitoe, R. V. (2019). Consensus Paper: Experimental Neurostimulation of the Cerebellum. The Cerebellum, 18(6), Article 6. https://doi.org/10.1007/s12311-019-01041-5
Mohamed, A. Z., Kwiatek, R., Del Fante, P., Calhoun, V. D., Lagopoulos, J., & Shan, Z. Y. (2024). Functional MRI of the Brainstem for Assessing Its Autonomic Functions: From Imaging Parameters and Analysis to Functional Atlas. Journal of Magnetic Resonance Imaging, 60(5), 1880–1891. https://doi.org/10.1002/jmri.29286
Naidich, T. P., Duvernoy, H. M., Delman, B. N., Sorensen, A. G., Kollias, S. S., & Haacke, E. M. (2009). Duvernoy’s Atlas of the Human Brain Stem and Cerebellum. Springer. https://doi.org/10.1007/978-3-211-73971-6
Najdenovska, E., Alemán-Gómez, Y., Battistella, G., Descoteaux, M., Hagmann, P., Jacquemont, S., Maeder, P., Thiran, J.-P., Fornari, E., & Bach Cuadra, M. (2018). In-vivo probabilistic atlas of human thalamic nuclei based on diffusion- weighted magnetic resonance imaging. Scientific Data, 5(1), Article 1. https://doi.org/10.1038/sdata.2018.270
Nettekoven, C., Zhi, D., Shahshahani, L., Pinho, A. L., Saadon-Grosman, N., Buckner, R. L., & Diedrichsen, J. (2024). A hierarchical atlas of the human cerebellum for functional precision mapping. Nature Communications, 15(1), 8376. https://doi.org/10.1038/s41467-024-52371-w
O’Donnell, L. J., & Westin, C.-F. (2011). An introduction to diffusion tensor image analysis. Neurosurgery Clinics of North America, 22(2), 185–196, viii. https://doi.org/10.1016/j.nec.2010.12.004
Olivito, G., Lupo, M., Iacobacci, C., Clausi, S., Romano, S., Masciullo, M., Molinari, M., Cercignani, M., Bozzali, M., & Leggio, M. (2017). Microstructural MRI Basis of the Cognitive Functions in Patients with Spinocerebellar Ataxia Type 2. Neuroscience, 366, 44–53. https://doi.org/10.1016/j.neuroscience.2017.10.007
Palesi, F., De Rinaldis, A., Castellazzi, G., Calamante, F., Muhlert, N., Chard, D., Tournier, J. D., Magenes, G., D’Angelo, E., & Gandini Wheeler-Kingshott, C. A. M. (2017). Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: Implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/s41598-017-13079-8
Park, M. T. M., Pipitone, J., Baer, L. H., Winterburn, J. L., Shah, Y., Chavez, S., Schira, M. M., Lobaugh, N. J., Lerch, J. P., Voineskos, A. N., & Chakravarty, M. M. (2014). Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates. NeuroImage, 95, 217–231. https://doi.org/10.1016/j.neuroimage.2014.03.037
Parvizi, J. (2009). Corticocentric myopia: Old bias in new cognitive sciences. Trends in Cognitive Sciences, 13(8), 354–359. https://doi.org/10.1016/j.tics.2009.04.008
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830.
Perrini, P., Tiezzi, G., Castagna, M., & Vannozzi, R. (2013). Three-dimensional microsurgical anatomy of cerebellar peduncles. Neurosurgical Review, 36(2), 215–225. https://doi.org/10.1007/s10143-012-0417-y
Popa, D., Spolidoro, M., Proville, R. D., Guyon, N., Belliveau, L., & Léna, C. (2013). Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(15), 6552–6556. https://doi.org/10.1523/JNEUROSCI.5521-12.2013
Ramnani, N., Behrens, T. E. J., Johansen-Berg, H., Richter, M. C., Pinsk, M. A., Andersson, J. L. R., Rudebeck, P., Ciccarelli, O., Richter, W., Thompson, A. J., Gross, C. G., Robson, M. D., Kastner, S., & Matthews, P. M. (2006). The evolution of prefrontal inputs to the cortico-pontine system: Diffusion imaging evidence from Macaque monkeys and humans. Cerebral Cortex (New York, N.Y.: 1991), 16(6), Article 6. https://doi.org/10.1093/cercor/bhj024
Rapoport, M., van Reekum, R., & Mayberg, H. (2000). The Role of the Cerebellum in Cognition and Behavior. The Journal of Neuropsychiatry and Clinical Neurosciences, 12(2), 193–198. https://doi.org/10.1176/jnp.12.2.193
Rheault, F., Poulin, P., Caron, A. V., St-Onge, E., & Descoteaux, M. (2020). Common misconceptions, hidden biases and modern challenges of dMRI tractography. Journal of Neural Engineering, 17(1), 011001. https://doi.org/10.1088/1741-2552/ab6aad
Rilling, J. K. (2014). Comparative primate neuroimaging: Insights into human brain evolution. Trends in Cognitive Sciences, 18(1), Article 1. https://doi.org/10.1016/j.tics.2013.09.013
Roostaei, T., Nazeri, A., Sahraian, M. A., & Minagar, A. (2014). The Human Cerebellum: A Review of Physiologic Neuroanatomy. Neurologic Clinics, 32(4), 859–869. https://doi.org/10.1016/j.ncl.2014.07.013
Ross, E. D. (1980). Localization of the pyramidal tract in the internal capsule by whole brain dissection. Neurology, 30(1), 59–64. https://doi.org/10.1212/wnl.30.1.59
Rousseau, P.-N., Bazin, P.-L., & Steele, C. J. (2025). Multiscale gradients of corticopontine structural connectivity. Scientific Reports, 15(1), 16399. https://doi.org/10.1038/s41598-025-00886-7
Rousseau, P.-N., Chakravarty, M. M., & Steele, C. J. (2022). Mapping pontocerebellar connectivity with diffusion MRI. NeuroImage, 119684. https://doi.org/10.1016/j.neuroimage.2022.119684
Salamon, N., Sicotte, N., Drain, A., Frew, A., Alger, J. R., Jen, J., Perlman, S., & Salamon, G. (2007). White matter fiber tractography and color mapping of the normal human cerebellum with diffusion tensor imaging. Journal of Neuroradiology, 34(2), 115–128. https://doi.org/10.1016/j.neurad.2007.03.002
Sarwar, T., Ramamohanarao, K., & Zalesky, A. (2019). Mapping connectomes with diffusion MRI: deterministic or probabilistic tractography? Magnetic Resonance in Medicine, 81(2), 1368–1384. https://doi.org/10.1002/mrm.27471
Schell, G., & Strick, P. (1984). The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. The Journal of Neuroscience, 4(2), 539. https://doi.org/10.1523/JNEUROSCI.04-02-00539.1984
Schilling, K. G., Nath, V., Hansen, C., Parvathaneni, P., Blaber, J., Gao, Y., Neher, P., Aydogan, D. B., Shi, Y., Ocampo-Pineda, M., Schiavi, S., Daducci, A., Girard, G., Barakovic, M., Rafael-Patino, J., Romascano, D., Rensonnet, G., Pizzolato, M., Bates, A., … Landman, B. A. (2019). Limits to anatomical accuracy of diffusion tractography using modern approaches. NeuroImage, 185, 1–11. https://doi.org/10.1016/j.neuroimage.2018.10.029
Schmahmann, J. D. (2001). The cerebrocerebellar system: Anatomic substrates of the cerebellar contribution to cognition and emotion. International Review of Psychiatry, 13(4), Article 4. https://doi.org/10.1080/09540260120082092
Schmahmann, J. D. (2010). The Role of the Cerebellum in Cognition and Emotion: Personal Reflections Since 1982 on the Dysmetria of Thought Hypothesis, and Its Historical Evolution from Theory to Therapy. Neuropsychology Review, 20(3), Article 3. https://doi.org/10.1007/s11065-010-9142-x
Schmahmann, J. D. (2016). A Brief History of the Cerebellum. In D. L. Gruol, N. Koibuchi, M. Manto, M. Molinari, J. D. Schmahmann, & Y. Shen (Eds.), Essentials of Cerebellum and Cerebellar Disorders: A Primer For Graduate Students (pp. 5–20). Springer International Publishing. https://doi.org/10.1007/978-3-319-24551-5_2
Schmahmann, J. D. (2019). The cerebellum and cognition. Neuroscience Letters, 688, 62–75. https://doi.org/10.1016/j.neulet.2018.07.005
Schmahmann, J. D., Doyon, J., McDonald, D., Holmes, C., Lavoie, K., Hurwitz, A. S., Kabani, N., Toga, A., Evans, A., & Petrides, M. (1999). Three-Dimensional MRI Atlas of the Human Cerebellum in Proportional Stereotaxic Space. NeuroImage, 10(3), 233–260. https://doi.org/10.1006/nimg.1999.0459
Schmahmann, J. D., Guell, X., Stoodley, C. J., & Halko, M. A. (2019). The Theory and Neuroscience of Cerebellar Cognition. Annual Review of Neuroscience, 42(1), Article 1. https://doi.org/10.1146/annurev-neuro-070918-050258
Schmahmann, J. D., Ko, R., & MacMore, J. (2004). The human basis pontis: Motor syndromes and topographic organization. Brain, 127(6), 1269–1291. https://doi.org/10.1093/brain/awh138
Schmahmann, J. D., & Pandya, D. N. (1989). Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. Journal of Comparative Neurology, 289(1), Article 1. https://doi.org/10.1002/cne.902890105
Schmahmann, J. D., & Pandya, D. N. (1991). Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. Journal of Comparative Neurology, 308(2), Article 2. https://doi.org/10.1002/cne.903080209
Schmahmann, J. D., & Pandya, D. N. (1993). Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. The Journal of Comparative Neurology, 337(1), 94–112. https://doi.org/10.1002/cne.903370107
Schmahmann, J. D., & Pandya, D. N. (1995). Prefrontal cortex projections to the basilar pons in rhesus monkey: Implications for the cerebellar contribution to higher function. Neuroscience Letters, 199(3), Article 3. https://doi.org/10.1016/0304-3940(95)12056-A
Schmahmann, J. D., & Pandya, D. N. (1997a). Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 17(1), Article 1.
Schmahmann, J. D., & Pandya, D. N. (1997b). The cerebrocerebellar system. In J. D. Schmahmann (Ed.), International review of neurobiology (Vol. 41, pp. 31–60). Academic Press. https://doi.org/10.1016/S0074-7742(08)60346-3
Schmahmann, J. D., Rosene, D. L., & Pandya, D. N. (2004). Motor projections to the basis pontis in rhesus monkey. The Journal of Comparative Neurology, 478(3), Article 3. https://doi.org/10.1002/cne.20286
Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain : A Journal of Neurology, 121 ( Pt 4), 561–579. https://doi.org/10.1093/brain/121.4.561
Schulz, R., Frey, B. M., Koch, P., Zimerman, M., Bönstrup, M., Feldheim, J., Timmermann, J. E., Schön, G., Cheng, B., Thomalla, G., Gerloff, C., & Hummel, F. C. (2017). Cortico-Cerebellar Structural Connectivity Is Related to Residual Motor Output in Chronic Stroke. Cerebral Cortex (New York, N.Y. : 1991), 27(1), 635–645. https://doi.org/10.1093/cercor/bhv251
Schwarz, C., & Thier, P. (1999). Binding of signals relevant for action: Towards a hypothesis of the functional role of the pontine nuclei. Trends in Neurosciences, 22(10), Article 10. https://doi.org/10.1016/S0166-2236(99)01446-0
Sclocco, R., Beissner, F., Bianciardi, M., Polimeni, J. R., & Napadow, V. (2018). Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. NeuroImage, 168, 412–426. https://doi.org/10.1016/j.neuroimage.2017.02.052
Simioni, A. C., Dagher, A., & Fellows, L. K. (2016). Compensatory striatal–cerebellar connectivity in mild–moderate Parkinson’s disease. NeuroImage: Clinical, 10, 54–62. https://doi.org/10.1016/j.nicl.2015.11.005
Sitek, K. R., Gulban, O. F., Calabrese, E., Johnson, G. A., Lage-Castellanos, A., Moerel, M., Ghosh, S. S., & De Martino, F. (2019). Mapping the human subcortical auditory system using histology, postmortem MRI and in vivo MRI at 7T. eLife, 8, e48932. https://doi.org/10.7554/eLife.48932
Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A. (2012). Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage, 62(3), Article 3. https://doi.org/10.1016/j.neuroimage.2012.06.005
Smitha, K., Akhil Raja, K., Arun, K., Rajesh, P., Thomas, B., Kapilamoorthy, T., & Kesavadas, C. (2017). Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. The Neuroradiology Journal, 30(4), 305–317. https://doi.org/10.1177/1971400917697342
Snider, R. S., & Eldred, E. (1952). Cerebrocerebellar relationships in the monkey. Journal of Neurophysiology, 15(1), 27–40. https://doi.org/10.1152/jn.1952.15.1.27
Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The Cerebellum: Adaptive Prediction for Movement and Cognition. Trends in Cognitive Sciences, 21(5), Article 5. https://doi.org/10.1016/j.tics.2017.02.005
Sotiropoulos, S. N., & Zalesky, A. (2019). Building connectomes using diffusion MRI: why, how and but. NMR in Biomedicine, 32(4), e3752. https://doi.org/10.1002/nbm.3752
Steele, C. J., Anwander, A., Bazin, P.-L., Trampel, R., Schaefer, A., Turner, R., Ramnani, N., & Villringer, A. (2017). Human Cerebellar Sub-millimeter Diffusion Imaging Reveals the Motor and Non-motor Topography of the Dentate Nucleus. Cerebral Cortex (New York, N.Y. : 1991), 27(9), Article 9. https://doi.org/10.1093/cercor/bhw258
Steele, C. J., & Chakravarty, M. M. (2018). Gray-matter structural variability in the human cerebellum: Lobule-specific differences across sex and hemisphere. NeuroImage, 170, 164–173. https://doi.org/10.1016/j.neuroimage.2017.04.066
Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NeuroImage, 44(2), 489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039
Stoodley, C. J., & Schmahmann, J. D. (2018). Chapter 4—Functional topography of the human cerebellum. In M. Manto & T. A. G. M. Huisman (Eds.), Handbook of Clinical Neurology (Vol. 154, pp. 59–70). Elsevier. https://doi.org/10.1016/B978-0-444-63956-1.00004-7
Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. NeuroImage, 59(2), 1560–1570. https://doi.org/10.1016/j.neuroimage.2011.08.065
Streng, M. L., & Krook-Magnuson, E. (2021). The cerebellum and epilepsy. Epilepsy & Behavior : E&B, 121(Pt B), 106909. https://doi.org/10.1016/j.yebeh.2020.106909
Strick, P. L. (1985). How do the basal ganglia and cerebellum gain access to the cortical motor areas? Behavioural Brain Research, 18(2), 107–123. https://doi.org/10.1016/0166-4328(85)90067-1
Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434. https://doi.org/10.1146/annurev.neuro.31.060407.125606
Sullivan, E. V., Zahr, N. M., Rohlfing, T., & Pfefferbaum, A. (2010). Fiber tracking functionally distinct components of the internal capsule. Neuropsychologia, 48(14), 4155–4163. https://doi.org/10.1016/j.neuropsychologia.2010.10.023
Takahashi, E., Song, J. W., Folkerth, R. D., Grant, P. E., & Schmahmann, J. D. (2013). Detection of postmortem human cerebellar cortex and white matter pathways using high angular resolution diffusion tractography: A feasibility study. NeuroImage, 68, 105–111. https://doi.org/10.1016/j.neuroimage.2012.11.042
Tanabe, H. C., Kubo, D., Hasegawa, K., Kochiyama, T., & Kondo, O. (2018). Cerebellum: Anatomy, Physiology, Function, and Evolution. In E. Bruner, N. Ogihara, & H. C. Tanabe (Eds.), Digital Endocasts: From Skulls to Brains (pp. 275–289). Springer Japan. https://doi.org/10.1007/978-4-431-56582-6_18
Tardif, C. L., Gauthier, C. J., Steele, C. J., Bazin, P.-L., Schäfer, A., Schaefer, A., Turner, R., & Villringer, A. (2016). Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity. NeuroImage, 131, 55–72. https://doi.org/10.1016/j.neuroimage.2015.08.047
Teune, T. M., van der Burg, J., van der Moer, J., Voogd, J., & Ruigrok, T. J. H. (2000). Topography of cerebellar nuclear projections to the brain stem in the rat. In Progress in Brain Research (Vol. 124, pp. 141–172). Elsevier. https://doi.org/10.1016/S0079-6123(00)24014-4
Thomas, A. (1897). Le cervelet: Étude anatomique, clinique et physiologique. Steinheil. https://gallica.bnf.fr/ark:/12148/bpt6k76509b
Tobyne, S. M., Ochoa, W. B., Bireley, J. D., Smith, V. M., Geurts, J. J., Schmahmann, J. D., & Klawiter, E. C. (2018). Cognitive impairment and the regional distribution of cerebellar lesions in multiple sclerosis. Multiple Sclerosis Journal, 24(13), 1687–1695. https://doi.org/10.1177/1352458517730132
Tournier, J.-D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage, 35(4), Article 4. https://doi.org/10.1016/j.neuroimage.2007.02.016
Tournier, J.-D., Calamante, F., & Connelly, A. (2012). MRtrix: Diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology, 22(1), Article 1. https://doi.org/10.1002/ima.22005
Tournier, J.-D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C.-H., & Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 202, 116137. https://doi.org/10.1016/j.neuroimage.2019.116137
Traynor, C., Heckemann, R. A., Hammers, A., O’Muircheartaigh, J., Crum, W. R., Barker, G. J., & Richardson, M. P. (2010). Reproducibility of thalamic segmentation based on probabilistic tractography. NeuroImage, 52(1), 69–85. https://doi.org/10.1016/j.neuroimage.2010.04.024
Tremblay, S. A., Alasmar, Z., Pirhadi, A., Carbonell, F., Iturria-Medina, Y., Gauthier, C. J., & Steele, C. J. (2024). MVComp toolbox: MultiVariate Comparisons of brain MRI features accounting for common information across metrics. Aperture Neuro, 4. https://doi.org/10.52294/001c.118427
van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), Article 8. https://doi.org/10.1016/j.euroneuro.2010.03.008
van Dun, K., Mitoma, H., & Manto, M. (2018). Cerebellar Cortex as a Therapeutic Target for Neurostimulation. The Cerebellum, 17(6), 777–787. https://doi.org/10.1007/s12311-018-0976-8
Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., & Ugurbil, K. (2013). The WU-Minn Human Connectome Project: An overview. NeuroImage, 80, 62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041
Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S. W., Della Penna, S., Feinberg, D., Glasser, M. F., Harel, N., Heath, A. C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., … WU-Minn HCP Consortium. (2012). The Human Connectome Project: A data acquisition perspective. NeuroImage, 62(4), 2222–2231. https://doi.org/10.1016/j.neuroimage.2012.02.018
Walter, J. T., & Khodakhah, K. (2006). The linear computational algorithm of cerebellar Purkinje cells. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(50), 12861–12872. https://doi.org/10.1523/JNEUROSCI.4507-05.2006
Wang, H., Magnain, C., Wang, R., Dubb, J., Varjabedian, A., Tirrell, L. S., Stevens, A., Augustinack, J. C., Konukoglu, E., Aganj, I., Frosch, M. P., Schmahmann, J. D., Fischl, B., & Boas, D. A. (2018). As-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity. NeuroImage, 165, 56–68. https://doi.org/10.1016/j.neuroimage.2017.10.012
Wessel, M. J., & Hummel, F. C. (2018). Non-invasive Cerebellar Stimulation: A Promising Approach for Stroke Recovery? The Cerebellum, 17(3), Article 3. https://doi.org/10.1007/s12311-017-0906-1
Wiesendanger, R., Wiesendanger, M., & Ruëgg, D. G. (1979). An anatomical investigation of the corticopontine projection in the primate (Macaca fascicularis and Saimiri sciureus)—II. The projection from frontal and parietal association areas. Neuroscience, 4(6), Article 6. https://doi.org/10.1016/0306-4522(79)90004-6
Wilkins, A. (2017). Cerebellar Dysfunction in Multiple Sclerosis. Frontiers in Neurology, 8. https://doi.org/10.3389/fneur.2017.00312
Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347. https://doi.org/10.1016/S1364-6613(98)01221-2
Wu, T., & Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain, 136(3), 696–709. https://doi.org/10.1093/brain/aws360
Wu, X., Sarpong, G. A., Zhang, J., & Sugihara, I. (2023). Divergent topographic projection of cerebral cortical areas to overlapping cerebellar lobules through distinct regions of the pontine nuclei. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14352
WU-Minn HCP Consortium. (2017). 1200 Subjects Data Release Reference Manual. The Human Connectome Projection. https://www.humanconnectome.org
Xiao, N., Wu, G., Zhou, Z., Yao, J., Wu, B., Sui, J., & Tin, C. (2023). Positive feedback of efferent copy via pontine nucleus facilitates cerebellum-mediated associative learning. Cell Reports, 42(2), 112072. https://doi.org/10.1016/j.celrep.2023.112072
Yendiki, A., Aggarwal, M., Axer, M., Howard, A. F. D., van Walsum, A.-M. van C., & Haber, S. N. (2022). Post mortem mapping of connectional anatomy for the validation of diffusion MRI. NeuroImage, 256, 119146. https://doi.org/10.1016/j.neuroimage.2022.119146
Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), Article 3. PubMed. https://doi.org/10.1152/jn.00338.2011
Zayed, A., Iturria-Medina, Y., Villringer, A., Sehm, B., & Steele, C. J. (2020). Rapid Quantification of White Matter Disconnection in the Human Brain. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2020, 1701–1704. https://doi.org/10.1109/EMBC44109.2020.9176229
Zeineh, M. M., Palomero-Gallagher, N., Axer, M., Gräβel, D., Goubran, M., Wree, A., Woods, R., Amunts, K., & Zilles, K. (2017). Direct Visualization and Mapping of the Spatial Course of Fiber Tracts at Microscopic Resolution in the Human Hippocampus. Cerebral Cortex, 27(3), 1779–1794. https://doi.org/10.1093/cercor/bhw010
Zhang, J., Abiose, O., Katsumi, Y., Touroutoglou, A., Dickerson, B. C., & Barrett, L. F. (2019). Intrinsic Functional Connectivity is Organized as Three Interdependent Gradients. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-51793-7
Zilles, K. (2018). Brodmann: A pioneer of human brain mapping—His impact on concepts of cortical organization. Brain, 141(11), 3262–3278. https://doi.org/10.1093/brain/awy273
Zilles, K., & Amunts, K. (2010). Centenary of Brodmann’s map—Conception and fate. Nature Reviews Neuroscience, 11(2), 139–145. https://doi.org/10.1038/nrn2776
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top